Error-Free Communication Over State-Dependent Channels with Variable-Length Feedback

Vincent Y. F. Tan (NUS)

Joint work with

Carol Wang (NUS)

June 18, 2018

Vincent Tan

Zero-Error SD-DMCs with VLF

June 18, 2018 1 / 19

→ Ξ → +

- State-dependent discrete memoryless channel (SD-DMC) with complete and noiseless feedback
 - The state process is i.i.d.

- State-dependent discrete memoryless channel (SD-DMC) with complete and noiseless feedback
 - The state process is i.i.d.
- Notation:
 - *M* the set of messages
 - \mathcal{X} channel input alphabet
 - *Y* channel output alphabet
 - S the set of channel states
 - *M*, *X*, *Y*, *S* − r.v.s corresponding to the selected message, channel input letter, channel output letter, and channel state

We analyze various cases of state information availability:

< ∃ >

We analyze various cases of state information availability: <u>strictly causal</u> state info at the transmitter

We analyze various cases of state information availability: <u>causal</u> state info at the transmitter

We analyze various cases of state information availability: <u>non-causal</u> state info at the transmitter (Gel'fand-Pinsker)

We analyze various cases of state information availability: state info at both the transmitter and the receiver

We analyze various cases of state information availability: causal state info at the receiver

The Channel Model

We analyze various cases of state information availability: etc.

SD-DMC with causal state information at both Enc and Dec

Definition

An $(\ell, |\mathcal{M}|, \epsilon)$ variable-length feedback (VLF) code for the message set \mathcal{M} is defined by:

1) A sequence of encoders $f_n : \mathcal{M} \times \mathcal{Y}^{n-1} \times \mathcal{S}^n \to \mathcal{X}$, defining

$$X_n = f_n(M, Y^{n-1}, S^n);$$

- 2) A sequence of decoders $g_n : \mathcal{Y}^n \times \mathcal{S}^n \to \mathcal{M}$, defining the decoder's estimates of the transmitted message, $g_n(Y^n, S^n)$;
- 3) A integer-valued random variable τ (stopping time of $\{\sigma(Y^n, S^n)\}_{n=0}^{\infty}$) representing the code length and satisfying

$$\mathbb{E}[\tau] \leq \ell.$$

Definition (cont.)

Decoder's final decision is computed at time τ ,

$$\widehat{M} = g_{\tau}(Y^{\tau}, S^{\tau}),$$

and it must satisfy

 $\mathbb{P}\big[\widehat{M} \neq M\big] \leq \epsilon.$

・ 同・ ・ ヨ・・・

Definition (cont.)

Decoder's final decision is computed at time τ ,

$$\widehat{M} = g_{\tau}(Y^{\tau}, S^{\tau}),$$

and it must satisfy

$$\mathbb{P}\big[\widehat{M} \neq M\big] \leq \epsilon.$$

When $\epsilon = 0$, such a code is called zero-error VLF code.

If there exists a constant $b < \infty$ such that $\tau \le b$, such a code is called bounded-length feedback code, and if $\tau = b = \ell$, it is called fixed-length feedback code.

Definition (cont.)

Decoder's final decision is computed at time τ ,

$$\widehat{M} = g_{\tau}(Y^{\tau}, S^{\tau}),$$

and it must satisfy

$$\mathbb{P}\big[\widehat{M} \neq M\big] \leq \epsilon.$$

When $\epsilon = 0$, such a code is called zero-error VLF code.

If there exists a constant $b < \infty$ such that $\tau \le b$, such a code is called bounded-length feedback code, and if $\tau = b = \ell$, it is called fixed-length feedback code.

For the other cases of state information availability – replace S^n above by S^0 , S^{n-1} , or S^{∞} accordingly.

Sac

Definition (cont.)

Code rate: $\frac{1}{\ell} \log |\mathcal{M}|$.

э

< 🗇 🕨 < 🖃 🕨

Definition (cont.)

Code rate: $\frac{1}{\ell} \log |\mathcal{M}|$.

Vanishing-error capacity: the supremum of all code rates with an arbitrarily small error probability.

$$C = \sup\left\{rac{1}{\ell}\log|\mathcal{M}|:\lim_{\ell\to\infty}\mathbb{P}\big[\widehat{M}
eq M\big] = 0
ight\}$$

- 4 ∃ ▶

nac

Definition (cont.)

Code rate: $\frac{1}{\ell} \log |\mathcal{M}|$.

Vanishing-error capacity: the supremum of all code rates with an arbitrarily small error probability.

$$C = \sup\left\{rac{1}{\ell}\log|\mathcal{M}|:\lim_{\ell o\infty}\mathbb{P}ig[\widehat{M}
eq Mig] = 0
ight\}$$

Zero-error capacity: the supremum of the rates of all zero-error codes.

$$C_0 = \sup\left\{rac{1}{\ell}\log|\mathcal{M}|:\mathbb{P}ig[\widehat{M}
eq Mig] = 0
ight\}$$

→ Ξ >

Definition (cont.)

Code rate: $\frac{1}{\ell} \log |\mathcal{M}|$.

Vanishing-error capacity: the supremum of all code rates with an arbitrarily small error probability.

$$C = \sup\left\{rac{1}{\ell}\log|\mathcal{M}|:\lim_{\ell o\infty}\mathbb{P}ig[\widehat{M}
eq Mig] = 0
ight\}$$

Zero-error capacity: the supremum of the rates of all zero-error codes.

$$C_0 = \sup\left\{rac{1}{\ell}\log|\mathcal{M}|:\mathbb{P}ig[\widehat{M}
eq Mig] = 0
ight\}$$

For each of the above capacities, one must specify variable-length, bounded-length, of fixed-length coding schemes.

Vincent Tan

Zero-Error SD-DMCs with VLF

June 18, 2018 6 / 19

Main Results

- We determine the zero-error VLF capacity of SD-DMCs by:
 - finding necessary and sufficient conditions for positivity of the zero-error VLF capacity
 - proving that the zero-error VLF capacity, whenever positive, equals the conventional, vanishing-error capacity of the same channel
- We obtain the corresponding results for the bounded-length coding schemes as well
- arXiv:1712.07756

Related Work

Zero-error capacity of channels with feedback:

- Shannon'56: DMCs, fixed-length codes
- Burnashev'76: DMCs, variable-length codes
- Han–Sato'91: DMCs, bounded-length codes
- Massey'07: DMCs, variable-length codes (different proofs, noisy feedback, incomplete feedback, etc.)
- Bracher–Lapidoth'18: SD-DMCs with channel state info the the transmitter, fixed-length codes

Vanishing-Error Capacity

Vincent Tan

Zero-Error SD-DMCs with VLF

E 9/19 June 18, 2018

DQC

Vanishing-Error Capacity

Theorem

Feedback and variable-length coding do not increase the capacity of an SD-DMC.

ъ

< □ > < 同 > < 回 > <

Theorem

Feedback and variable-length coding do not increase the capacity of an SD-DMC.

 The statement holds in all cases of state-information availability (none/strictly causal/causal/non-causal at the transmitter and/or receiver)

Vincent Tan

Zero-Error SD-DMCs with VLF

June 18, 2018 10 / 19

Sac

 Consider an SD-DMC with non-causal state information at the transmitter and no state information at the receiver (Gel'fand-Pinsker)

Sar

 Consider an SD-DMC with non-causal state information at the transmitter and no state information at the receiver (Gel'fand-Pinsker)

Theorem

The zero-error VLF capacity of the Gel'fand-Pinsker channel is positive if and only if

$$\exists y \in \mathcal{Y} \quad \forall s \in \mathcal{S} \quad \exists x_s \in \mathcal{X} \quad W(y|x_s, s) = 0.$$
(1)

 If (1) holds, y is said to be a disprover for input x_s in the state s (Massey's terminology)

Proof (⇐):

We need to show that, if (1) holds, then one bit can be transmitted error free in a finite expected number of channel uses

Proof (⇐):

- We need to show that, if (1) holds, then one bit can be transmitted error free in a finite expected number of channel uses
- Let *y* ∈ 𝒴 be an output letter claimed to exist in (1), i.e., such a *y* satisfies

 $\forall s \in \mathcal{S} \quad \exists x_s \in \mathcal{X} \quad W(y|x_s,s) = 0$

Proof (⇐):

- We need to show that, if (1) holds, then one bit can be transmitted error free in a finite expected number of channel uses
- Let *y* ∈ 𝔅 be an output letter claimed to exist in (1), i.e., such a *y* satisfies

$$\forall s \in \mathcal{S} \quad \exists x_s \in \mathcal{X} \quad W(y|x_s, s) = 0$$

For every state $s \in S$ choose an input letter x_s with

 $W(y|x_s,s)=0$

Proof (\Leftarrow) :

- We need to show that, if (1) holds, then one bit can be transmitted error free in a finite expected number of channel uses
- Let *y* ∈ 𝒴 be an output letter claimed to exist in (1), i.e., such a *y* satisfies

$$\forall s \in \mathcal{S} \quad \exists x_s \in \mathcal{X} \quad W(y|x_s,s) = 0$$

For every state $s \in S$ choose an input letter x_s with

$$W(y|x_s,s)=0$$

■ Also, let $x'_s \neq x_s$ be an input letter satisfying

$$W(y|x'_s,s) > 0$$

Proof (\Leftarrow) :

■ If the states realized in the first two time slots are s₁, s₂, the transmitter sends x_{s1}, x'_{s2} for 0 and x'_{s1}, x_{s2} for 1 Note that the transmitter knows the states (Gel'fand-Pinsker)

Proof (\Leftarrow) :

- If the states realized in the first two time slots are s_1, s_2 , the transmitter sends x_{s_1}, x'_{s_2} for 0 and x'_{s_1}, x_{s_2} for 1 Note that the transmitter knows the states (Gel'fand-Pinsker)
- Since $W(y|x_s, s) = 0$, we conclude that
 - if the letters obtained at the output are ¬*y*, *y*, then 0 must have been transmitted;

Proof (\Leftarrow) :

■ If the states realized in the first two time slots are s_1, s_2 , the transmitter sends x_{s_1}, x'_{s_2} for 0 and x'_{s_1}, x_{s_2} for 1 Note that the transmitter knows the states (Gel'fand-Pinsker)

Since $W(y|x_s, s) = 0$, we conclude that

- if the letters obtained at the output are ¬*y*, *y*, then 0 must have been transmitted;
- if the letters obtained at the output are *y*, ¬*y*, then 1 must have been transmitted;

Proof (\Leftarrow) :

■ If the states realized in the first two time slots are s_1, s_2 , the transmitter sends x_{s_1}, x'_{s_2} for 0 and x'_{s_1}, x_{s_2} for 1 Note that the transmitter knows the states (Gel'fand-Pinsker)

Since $W(y|x_s, s) = 0$, we conclude that

- if the letters obtained at the output are ¬*y*, *y*, then 0 must have been transmitted;
- if the letters obtained at the output are *y*, ¬*y*, then 1 must have been transmitted;
- if the letters obtained at the output are ¬*y*, ¬*y*, the procedure is repeated in the next two slots, and so on.

Proof (\Leftarrow) :

■ If the states realized in the first two time slots are s_1, s_2 , the transmitter sends x_{s_1}, x'_{s_2} for 0 and x'_{s_1}, x_{s_2} for 1 Note that the transmitter knows the states (Gel'fand-Pinsker)

Since $W(y|x_s, s) = 0$, we conclude that

- if the letters obtained at the output are ¬*y*, *y*, then 0 must have been transmitted;
- if the letters obtained at the output are *y*, ¬*y*, then 1 must have been transmitted;
- if the letters obtained at the output are ¬*y*, ¬*y*, the procedure is repeated in the next two slots, and so on.
- In a finite expected number of channel uses the receiver will recover the transmitted bit.

Proof (\Rightarrow) :

■ If (1) doesn't hold, then for every output letter *y* there exists a state s_y such that $W(y|x, s_y) > 0$ for all input letters *x*

Sac

Proof (\Rightarrow) :

- If (1) doesn't hold, then for every output letter *y* there exists a state s_y such that $W(y|x, s_y) > 0$ for all input letters *x*
- Then for any output sequence $y_1 \cdots y_n$ the state sequence $s_{y_1} \cdots s_{y_n}$ produces $y_1 \cdots y_n$ with positive probability on any input $x_1 \cdots x_n$

Proof (\Rightarrow) :

- If (1) doesn't hold, then for every output letter *y* there exists a state s_y such that $W(y|x, s_y) > 0$ for all input letters *x*
- Then for any output sequence $y_1 \cdots y_n$ the state sequence $s_{y_1} \cdots s_{y_n}$ produces $y_1 \cdots y_n$ with positive probability on any input $x_1 \cdots x_n$
- This means that the decoder cannot be certain, at any time instant *n*, what was the transmitted message

Proof (\Rightarrow) :

- If (1) doesn't hold, then for every output letter *y* there exists a state s_y such that $W(y|x, s_y) > 0$ for all input letters *x*
- Then for any output sequence $y_1 \cdots y_n$ the state sequence $s_{y_1} \cdots s_{y_n}$ produces $y_1 \cdots y_n$ with positive probability on any input $x_1 \cdots x_n$
- This means that the decoder cannot be certain, at any time instant *n*, what was the transmitted message
- Therefore, zero-error communication in a finite average number of channel uses is impossible.

Vincent Tan

Zero-Error SD-DMCs with VLF

June 18, 2018 14 / 19

- 17 →

Sac

Theorem

The zero-error VLF capacity of an SD-DMC, whenever positive, equals the vanishing-error capacity of the same channel.

The statement holds in all cases of state-information availability

- none
- strictly causal
- causal
- non-causal
- and at the
 - transmitter and/or
 - receiver

Proof: (Massey's coding scheme)

Consider a block code of length *n*, rate $\approx C$ (vanishing-error capacity), and error probability ϵ

- Consider a block code of length *n*, rate $\approx C$ (vanishing-error capacity), and error probability ϵ
- In the first phase of the protocol, the transmitter sends a codeword from this code

- Consider a block code of length *n*, rate $\approx C$ (vanishing-error capacity), and error probability ϵ
- In the first phase of the protocol, the transmitter sends a codeword from this code
- From the received feedback it knows whether the decoding was correct or not

- Consider a block code of length *n*, rate $\approx C$ (vanishing-error capacity), and error probability ϵ
- In the first phase of the protocol, the transmitter sends a codeword from this code
- From the received feedback it knows whether the decoding was correct or not
- Depending on the result, it sends one bit with the meaning of ACK/NACK through the channel

- Consider a block code of length *n*, rate $\approx C$ (vanishing-error capacity), and error probability ϵ
- In the first phase of the protocol, the transmitter sends a codeword from this code
- From the received feedback it knows whether the decoding was correct or not
- Depending on the result, it sends one bit with the meaning of ACK/NACK through the channel
 - The bit can be sent error free because the zero-error capacity is positive by assumption

- Consider a block code of length *n*, rate $\approx C$ (vanishing-error capacity), and error probability ϵ
- In the first phase of the protocol, the transmitter sends a codeword from this code
- From the received feedback it knows whether the decoding was correct or not
- Depending on the result, it sends one bit with the meaning of ACK/NACK through the channel
 - The bit can be sent error free because the zero-error capacity is positive by assumption
 - ACK means that the decoding was correct and that a new codeword is about to be transmitted

Proof: (Massey's coding scheme)

- Consider a block code of length *n*, rate $\approx C$ (vanishing-error capacity), and error probability ϵ
- In the first phase of the protocol, the transmitter sends a codeword from this code
- From the received feedback it knows whether the decoding was correct or not
- Depending on the result, it sends one bit with the meaning of ACK/NACK through the channel
 - The bit can be sent error free because the zero-error capacity is positive by assumption
 - ACK means that the decoding was correct and that a new codeword is about to be transmitted
 - NACK means that the decoding was not correct and that the same codeword is about to be retransmitted

3

Sac

イロト イポト イヨト イヨト

Proof: (Massey's coding scheme)

In a finite expected number of channel uses the receiver will correctly decode the transmitted codeword

- In a finite expected number of channel uses the receiver will correctly decode the transmitted codeword
- The rate of the whole scheme is also ≈ C because retransmissions happen with probability *ϵ*, and this can be made arbitrarily small

Zero-Error Capacity: Bounded-Length Codes

Vincent Tan

Zero-Error SD-DMCs with VLF

June 18, 2018 17 / 19

Sac

Zero-Error Capacity: Bounded-Length Codes

Theorem

The conditions for positivity of the zero-error feedback capacity under bounded-length coding are the same as under fixed-length coding.

For example, for the Gel'fand-Pinsker channel, this condition is (Bracher–Lapidoth'18):

$$\forall s, s' \in \mathcal{S} \quad \exists x, x' \in \mathcal{X} \quad \forall y \in \mathcal{Y} \quad W(y|x, s)W(y|x', s') = 0.$$

Zero-Error Capacity: Bounded-Length Codes

Theorem

The conditions for positivity of the zero-error feedback capacity under bounded-length coding are the same as under fixed-length coding.

For example, for the Gel'fand-Pinsker channel, this condition is (Bracher–Lapidoth'18):

$$\forall s, s' \in \mathcal{S} \quad \exists x, x' \in \mathcal{X} \quad \forall y \in \mathcal{Y} \quad W(y|x, s)W(y|x', s') = 0.$$

Theorem

The zero-error BLF capacity of an SD-DMC, whenever positive, equals the vanishing-error capacity of the same channel.

イロト イポト イヨト イヨト

State Information at the Receiver

1

Sac

State Information at the Receiver

- The case where state information is given only to the receiver seems to be quite subtle
- It is not clear how to define the code length for variable-length codes, i.e., the stopping time of the transmission
 - The decoder makes a decision based on the outputs Y^n and states S^n
 - The encoder, not knowing the states, is not able to exactly simulate the decoding process and to determine the moment when the decision has been made

State Information at the Receiver

- The case where state information is given only to the receiver seems to be quite subtle
- It is not clear how to define the code length for variable-length codes, i.e., the stopping time of the transmission
 - The decoder makes a decision based on the outputs Y^n and states S^n
 - The encoder, not knowing the states, is not able to exactly simulate the decoding process and to determine the moment when the decision has been made
- For this case, we obtain two sufficient conditions for positivity of the zero-error VLF capacity

Further Work

- Incomplete/noisy/coded feedback
- Zero-error VLF capacity for the case when state information is given only to the decoder
- Other models: non i.i.d. channel states, multi-user channels...

etc.