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Transmission of Information
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Shannon abstracted away information meaning, “semantics”
• treat all data equally — bits as a “universal currency”
• crucial abstraction for modern communication and computing systems

Also relaxed computation and delay constraints to discover a 
fundamental limit: capacity, providing a goal-post to work toward
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Shannon’s Figure 1

Information theory ≡ Finding fundamental limits for reliable
information transmission

Channel coding: Concerned with the maximum rate of
communication in bits/channel use
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Channel Coding (One-Shot)

- - - -
M X Ye W d M̂

A code is an triple C = {M, e, d} whereM is the message set

The average error probability perr(C) is

perr(C) := Pr [M̂ 6= M]

where M is uniform onM

ε-Error Capacity is

M∗(W, ε) := sup
{

m ∈ N
∣∣ ∃ C s.t. m = |M|, perr(C) ≤ ε

}
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Channel Coding (n-Shot)

- - - -
M Xn Yn

e Wn d M̂

Consider n independent uses of a channel

Assume W is a discrete memoryless channel

For vectors x = (x1, . . . , xn) ∈ X n and y := (y1, . . . , yn) ∈ Yn,

Wn(y|x) =

n∏
i=1

W(yi|xi)

Blocklength n, ε-Error Capacity is

M∗(Wn, ε)
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Main Contribution

Upper bound log M∗(Wn, ε) for n large (converse)

Concerned with the third-order term of the asymptotic expansion

Going beyond the normal approximation terms

Theorem (Tomamichel-Tan (2013))

For all DMCs with positive ε-dispersion Vε,

log M∗(Wn, ε) ≤ nC −
√

nVεQ−1(ε) +
1
2

log n + O(1)

where Q(a) :=
∫ +∞

a
1√
2π

exp
(
− 1

2 x2
)

dx

The 1
2 log n term is our main contribution
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Main Contribution: Remarks

Our bound

log M∗(Wn, ε) ≤ nC −
√

nVεQ−1(ε) +
1
2

log n + O(1)

Best upper bound till date:

log M∗(Wn, ε) ≤ nC −
√

nVεQ−1(ε) +

(
|X | − 1

2

)
log n + O(1)

V. Strassen (1964) Polyanskiy-Poor-Verdú or PPV (2010)

Requires new converse techniques
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Outline

1 Background

2 Related work

3 Main result

4 New converse

5 Proof sketch

6 Summary and open problems
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Background: Shannon’s Channel Coding Theorem

Shannon’s noisy channel coding
theorem and

Wolfowitz’s strong converse state that

Theorem (Shannon (1949), Wolfowitz (1959))

lim
n→∞

1
n

log M∗(Wn, ε) = C, ∀ ε ∈ (0, 1)

where C is the channel capacity defined as

C = C(W) = max
P

I(P,W)
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Background: Shannon’s Channel Coding Theorem

lim
n→∞

1
n

log M∗(Wn, ε) = C bits/channel use

Noisy channel coding theorem is independent of ε ∈ (0, 1)

-

6

C
R0

1

lim
n→∞

perr(C)

Phase transition at capacity

Vincent Tan (I2R and NUS) Third-Order Asymptotics for DMCs HKTW Workshop 2013 10 / 29



Background: Shannon’s Channel Coding Theorem

lim
n→∞

1
n

log M∗(Wn, ε) = C bits/channel use

Noisy channel coding theorem is independent of ε ∈ (0, 1)

-

6

C
R0

1

lim
n→∞

perr(C)

Phase transition at capacity

Vincent Tan (I2R and NUS) Third-Order Asymptotics for DMCs HKTW Workshop 2013 10 / 29



Background: Shannon’s Channel Coding Theorem

lim
n→∞

1
n

log M∗(Wn, ε) = C bits/channel use

Noisy channel coding theorem is independent of ε ∈ (0, 1)

-

6

C
R0

1

lim
n→∞

perr(C)

Phase transition at capacity

Vincent Tan (I2R and NUS) Third-Order Asymptotics for DMCs HKTW Workshop 2013 10 / 29



Background: Shannon’s Channel Coding Theorem

lim
n→∞

1
n

log M∗(Wn, ε) = C bits/channel use

Noisy channel coding theorem is independent of ε ∈ (0, 1)

-

6

C
R0

1

lim
n→∞

perr(C)

Phase transition at capacity

Vincent Tan (I2R and NUS) Third-Order Asymptotics for DMCs HKTW Workshop 2013 10 / 29



Background: ε-Dispersion

What happens at capacity?

More precisely, what happens when

log |M| ≈ nC + a
√

n

for some a ∈ R?

Assume capacity-achieving input distribution (CAID) P∗ is unique

The ε-dispersion is an operational quantity that is equal to

Vε = V(P∗,W) = EP∗

[
VarW(·|X)

(
log

W(·|X)

Q∗(·)
∣∣X)]

where (X,Y) ∼ P∗ ×W and Q∗(y) =
∑

x P∗(x)W(y|x)

Since CAID is unique, Vε = V
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Background: ε-Dispersion

Assume rate of the code satisfies

1
n

log |M| = C +
a√
n

-

6

0

0.5

1

a

lim
n→∞

perr(C)

perr(C) ≈ Φ
(

a√
V

)

Here, we have fixed a, the second-order coding rate [Hayashi (2009)]
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Background: ε-Dispersion

Theorem (Strassen (1964), Hayashi (2009), Polyanskiy-Poor-Verdú
(2010))

For every ε ∈ (0, 1), and if Vε > 0, we have

log M∗(Wn, ε) = nC −
√

nVQ−1(ε) + O(log n)

V. Strassen
(1964)

M. Hayashi
(2009) Polyanskiy-Poor-Verdú (2010)
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Background: ε-Dispersion

Berry-Esséen theorem: For independent Xi with zero-mean and
variances σ2

i ,

P

(
1√
n

n∑
i=1

Xi ≥ a

)
= Q

( a
σ̄

)
± 6 B√

n

where σ̄2 = 1
n

∑n
i=1 σ

2
i and B is related to the third moment

PPV showed that the normal approximation

log M∗(Wn, ε) ≈ nC −
√

nVQ−1(ε)

is very accurate even at moderate blocklengths of ≈ 100
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Background: ε-Dispersion for the BSC

For a BSC with crossover probability p = 0.11, the normal
approximation yields:
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Blocklength n

B
its

 p
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nn
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Capacity
ε = 0.01
ε = 0.1
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Related Work: Third-Order Term

Recall that we are interested in quantifying the third-order term ρn

ρn = log M∗(Wn, ε)−
[
nC −

√
nVQ−1(ε)

]
ρn = O(log n) if channel is non-exotic

Motivation 1: ρn may be important at very short blocklengths

Motivation 2: Because we’re information theorists

Wir müssen wissen – wir werden wissen (David Hilbert)
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Related Work: Third-Order Term

ρn = log M∗(Wn, ε)−
[
nC −

√
nVQ−1(ε)

]
For the BSC [PPV10]

ρn =
1
2

log n + O(1)

For the BEC [PPV10]
ρn = O(1)

For the AWGN under maximum-power constraints [PPV10]

O(1) ≤ ρn ≤
1
2

log n + O(1)

Our converse technique can be applied to the AWGN channel
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Related Work: Achievability for Third-Order Term

Proposition (Polyanskiy (2010))

Assume that all elements of {W(y|x) : x ∈ X , y ∈ Y} are positive and
C > 0. Then,

ρn ≥
1
2

log n + O(1)

This is an achievability result

BEC doesn’t satisfy assumptions

We will not try to improve on it
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Related Work: Converse for Third-Order Term

Proposition (Polyanskiy (2010))

If W is weakly input-symmetric

ρn ≤
1
2

log n + O(1)

This is a converse result

Gallager-symmetric channels are weakly input-symmetric

The set of weakly input-symmetric channels is very thin

We dispense of this symmetry assumption
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Related Work: Converse for Third-Order Term

Proposition (Strassen (1964), PPV (2010))

If W is a DMC with positive ε-dispersion,

ρn ≤
(
|X | − 1

2

)
log n + O(1)

Every code can be partitioned into no more than (n + 1)|X |−1

constant-composition subcodes

M∗P(Wn, ε): Max size of a constant-composition code with type P

As such,

M∗(Wn, ε) ≤ (n + 1)|X |−1 max
P∈Pn(X )

M∗P(Wn, ε)

This is where the dependence on |X | comes in
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Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε-dispersion,

ρn ≤
1
2

log n + O(1)

The 1
2 cannot be improved without further assumptions

For BSC
ρn =

1
2

log n + O(1)

We can dispense of the positive ε-dispersion assumption as well

No need for unique CAID
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Main Result: Tight Third-Order Term

All cases are covered

�
�
�
�>

Z
Z
Z
Z~

Yes

No

Vε > 0

≤nC−
√

nVεQ−1(ε)+ 1
2 log n+O(1)

�
�
�
�>

Z
Z
Z
Z~

Yes

No

not exotic
or ε< 1

2

≤nC+O(1)

�
�
�
�>

Z
Z
Z
Z~

Yes

No

exotic
and ε= 1

2

≤nC+ 1
2 log n+O(1)

≤nC+O
(
n

1
3
)

[PPV10]
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Proof Technique for Tight Third-Order Term

For the regular case, ρn ≤ 1
2 log n + O(1)

The type-counting trick and upper bounds on M∗P(Wn, ε) are not
sufficiently tight

We need a new converse bound for general DMCs

Information spectrum divergence

Dε
s (P‖Q) := sup

{
R ∈ R

∣∣P(log
P(X)

Q(X)
≤ R

)
≤ ε
}

“Information Spectrum Methods in Information Theory”
by T. S. Han (2003)
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Proof Technique: Information Spectrum Divergence

Dε
s (P‖Q) := sup

{
R ∈ R

∣∣P(log
P(X)

Q(X)
≤ R

)
≤ ε
}

t t -

“Density” of log P(X)
Q(X)

R∗

ε 1− ε

If Xn is i.i.d. P, the central limit theorem yields

Dε
s (Pn‖Qn) ≈ nD(P‖Q)−

√
nV(P‖Q)Q−1(ε)
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Proof Technique: The New Converse Bound

Lemma (Tomamichel-Tan (2013))

For every channel W, every ε ∈ (0, 1) and δ ∈ (0, 1− ε), we have

log M∗(W, ε) ≤ min
Q∈P(Y)

max
x∈X

Dε+δ
s (W(·|x)‖Q) + log

1
δ

When DMC is used n times,

log M∗(Wn, ε) ≤ min
Q(n)∈P(Yn)

max
x∈X n

Dε+δ
s (Wn(·|x)‖Q(n)) + log

1
δ

Choose δ = n−
1
2 so log 1

δ = 1
2 log n

Since all x within a type class result in the same Dε+δ
s (if Q(n) is

permutation invariant), it’s really a max over types Px ∈ Pn(X )
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Proof Technique: Choice of Output Distribution

log M∗(Wn, ε) ≤ max
x∈X n

Dε+δ
s (Wn(·|x)‖Q(n)) + log

1
δ
, ∀Q(n) ∈ P(Yn)

Q(n)(y): invariant to permutations of the n channel uses

Q(n)(y) :=
1
2

∑
k∈K

λ(k)Qn
k(y) +

1
2

∑
P∈Pn(X )

1
|Pn(X )|

(PW)n(y)

First term: Qk’s and λ(k)’s designed to form an n−
1
2 -cover of P(Y):

∀Q ∈ P(Y), ∃k ∈ K s.t. ‖Q− Qk‖2 ≤ n−
1
2 .

Second term: Mixture over output distributions induced by input
types [Hayashi (2009)]
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Proof Technique: Summary

Q(n)(y) :=
1
2

∑
k∈K

λ(k)Qn
k(y) +

1
2

∑
P∈Pn(X )

1
|Pn(X )|

(PW)n(y)

This construction ensures that for every type Px near the CAID is
well-approximated by by a Qk(x)

Well in the sense that the loss is

− logλ(k) = O(1)

for every x such that Px is near the CAID

For types Px far from the CAID, use the second part and

I(Px,W) ≤ C′ < C
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Summary and Food for Thought

We showed that for DMCs with positive ε-dispersion,

log M∗(Wn, ε) ≤ nC −
√

nVεQ−1(ε) +
1
2

log n + O(1)

How important is the assumption of discreteness?

Does our uniform quantization technique extend to lossy source
coding? [Ingber-Kochman (2010), Kostina-Verdú (2012)]

Alternate proof using Bahadur-Ranga Rao [Moulin (2012)]?

P

(
1
n

n∑
i=1

Xi ≥ c

)
= Θ

(
exp(−nI(c))√

n

)

This result has been used to refine the sphere-packing bound
[Altug-Wagner (2012)]
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