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Abstract—This paper establishes information-theoretic limits
in estimating a finite field low-rank matrix given random linear
measurements of it. Necessary and sufficient conditions on the
number of measurements required are provided. It is shown that
these conditions are sharp. The reliability function associated to
the minimum-rank decoder is also derived. Our bounds hold even
in the case where the sensing matrices are sparse. Connections
to rank-metric codes are discussed.

Index Terms—Rank minimization, Finite fields, Reliability
function, Sparse measurement matrices, Rank-metric codes

I. INTRODUCTION

The problem of matrix completion [1]–[3] has been well-
studied in recent years. Essentially, one is given a (small)
subset of entries of a low-rank matrix and one is required
to estimate all the the remaining entries. This problem has a
variety of applications from collaborative filtering to obtaining
the minimal realization of a linear system. Algorithms based
on the nuclear-norm (sum of singular values) convex relaxation
of the rank function have enjoyed tremendous successes.

A generalization of the matrix completion problem is the
rank minimization problem [4] where, instead of being given
entries of the low-rank matrix, one is given linear measure-
ments of it. The nuclear-norm heuristic has also been proven to
be extremely effective in finding the unknown matrix. Results
from the literature are typically of the following flavor: If
the number of measurements exceeds a small multiple of the
product of the dimension of the matrix and its rank, then
the nuclear-norm heuristic is guaranteed to yield the same
(optimal) solution as the exact rank-minimization problem.

The bulk (if not all) of the rank minimization literature
deals with the case where the entries of the unknown matrix
are from the reals R. In this paper, we focus on the case
where the elements of the matrix belong to a finite field Fq.
Arithmetic is performed in the field and the rank is also
computed with respect to Fq. Such a problem has applications
in coding theory as well as distributed storage and interference
alignment [5]. We derive information-theoretic limits on the
number of measurements needed for estimating the matrix
given linear measurements. In this paper, we are not as
concerned with the computational complexity of recovering
the unknown low-rank matrix as compared to the fundamental
limits of doing so. However, we will comment on possible
practical rank minimization techniques over finite fields by

This work is supported in part by the Air Force Office of Scientific Research
under grant FA9550-09-1-0140 and by the National Science Foundation under
grant CCF 0963834. V. Y. F. Tan is also supported by A*STAR Singapore.

drawing analogies between rank minimization and the class
of codes known as rank-metric codes [6]–[8].

A. Summary of Contributions

There are four key contributions in this paper. Firstly, by
using Fano’s inequality, we derive a necessary condition on the
number of measurements required for estimating a matrix from
linear measurements. We have a weak and strong converse; the
latter providing the rate of convergence of the error probability
to unity (over all estimators). Secondly, we demonstrate that
the so-called min-rank decoder (similar to Csiszár’s α-decoder
[9]) achieves the information-theoretic lower bound on the
number of measurements under the condition that the elements
of the sensing (or measurement) matrices are drawn indepen-
dently and uniformly from Fq. Thirdly, we derive the reliability
function (error exponent) of the min-rank decoder by using
de Caen’s lower bound on the probability of a union [10].
Finally, we show that as long as the fraction of non-zero
entries of the sensing matrices scales as Ω( log n

n ), the min-rank
decoder achieves the information-theoretic lower bound. This
result opens the possibility for the development of decoding
algorithms based on sparse parity-check matrices.

B. Related Work

Our work is partially inspired by [11] where fundamental
limits for compressed sensing over finite fields were derived.
To the best of the authors’ knowledge, the work by Vishwanath
in [3] is the only one that deals with matrix completion (or
rank minimization) over finite alphabets in an information-
theoretic setting. It was shown using typicality arguments that
the number of measurements required is within a logarithmic
factor of the lower bound. Our setting is different because we
assume that we have linear measurements instead of randomly
sampled entries. We are able to show that the achievability and
converse match for a family of sensing matrices.

The family of codes known as rank-metric codes [6]–[8] is
similar to the rank minimization problem over finite fields. We
comment on connections in Section VI and [12].

II. NOTATION AND SYSTEM MODEL

In this paper we adopt the following set of notation: San-
serif font (e.g., y), bold-face upper-case (e.g., X), bold-
face lower-case (e.g., w) denote random quantities, matrices
and vectors respectively. Sets (and events) are denoted with
calligraphic font. For a prime power q, we denote the Galois
(finite) field with q elements as Fq. The set of m×n matrices
with entries in Fq is denoted as Fm×n

q . For simplicity, we let



[k] := {1, . . . , k} and yk := (y1, . . . , yk). For a matrix M,
∥M∥0 and rank(M) denote the number of non-zero elements
in M and the rank of M in Fq respectively.

We are interested in the following model: Let X be an
unknown square1 matrix in Fn×n

q whose rank is less than
or equal to r, i.e., rank(X) ≤ r. We assume that the rank-
dimension ratio γ := r/n is constant as n grows. We would
like to recover X from linear measurements

ya = ⟨Ha,X⟩ :=
∑

(i,j)∈[n]2

[Ha]i,j [X]i,j a ∈ [k]. (1)

In (1), the sensing matrices Ha ∈ Fn×n
q , a ∈ [k] are chosen

according to some probability mass function (pmf). The k
scalar measurements ya ∈ Fq, a ∈ [k] are available to
estimate X. We will allow k to depend on n, i.e., k = k(n).
Multiplication and addition in (1) are performed in Fq.

Our model is somewhat different from the matrix comple-
tion problem [1]–[3]. In the matrix completion setup, a subset
of entries Ω ⊂ [n]2 in the matrix X is observed and one would
like to “fill in” the rest assuming the matrix is low-rank. This
corresponds to the case where the sensing matrix Ha is only
non-zero in a single position and assuming Ha ̸= Ha′ for
all a ̸= a′, the number of measurements is k = |Ω|. In our
measurement model in (1), we do not assume that ∥Ha∥0 = 1.

We are interested in estimating the matrix X given yk. Our
goal in this paper is to characterize necessary and sufficient
conditions on the number of measurements k as n becomes
large assuming a particular pmf governing the sensing matrices
Ha. In the sequel, we will leverage the following lemma:

Lemma 1 (Bounds on number of low-rank matrices [6]). Let
Ψq(n, r) be the number of matrices in Fn×n

q of rank less than
or equal to r. Then the following bounds hold:

q(2n−2)r−r2 ≤ Ψq(n, r) ≤ q(2n+1)r−r2+1. (2)

In other words, | logq Ψq(n, r)− 2γ(1− γ/2)n2| = o(n2).

III. NECESSARY CONDITIONS FOR RECOVERY

This section presents a necessary condition on the scaling of
k with n for the matrix X to be recovered reliably, i.e., for the
error probability in estimating X to tend to zero as n grows.
As with all other converse statements in information theory,
it is necessary to assume a statistical model on the unknown
object, in this case X. Hence, in this section, we denote the
unknown low-rank matrix as X. We also assume that X is
drawn uniformly at random from the set of matrices in Fn×n

q of
rank less than or equal to r = γn. For an estimator X̂(yk,Hk)
whose range is the set of all Fn×n

q -matrices whose rank is less
than or equal to r, we define the event En := {X̂ ̸= X}.

Proposition 2 (Weak converse). Fix ε > 0 and assume that X
is drawn uniformly at random from all matrices of rank less
than or equal to r. Also, assume X is independent of Hk. If,

k < (2− ε)γ (1− γ/2)n2 (3)

1Our results are not restricted to the case where X is square but in this
paper, we focus on the case when X is square for ease of exposition.

then for any estimator X̂ whose range is the set of Fn×n
q -

matrices whose rank is less than or equal to r, P(En) ≥ ε/3
for all n sufficiently large.

Proposition 2 states that the number of measurements k
must exceed 2nr − r2 = 2γ(1 − γ/2)n2 for recovery of
X to be reliable. From a linear algebraic perspective, this
means we need at least as many measurements as degrees
of freedom. The proof involves an elementary application of
Fano’s inequality and is included for completeness.

Proof: Consider the following lower bounds:

P(X̂ ̸= X)
(a)

≥ H(X|yk,Hk)−1

logq Ψq(n, r)
=

H(X)−I(X; yk,Hk)−1

logq Ψq(n, r)

=
H(X)− I(X; yk|Hk)− 1

logq Ψq(n, r)
=

H(X)−H(yk|Hk)− 1

logq Ψq(n, r)

(b)

≥ H(X)− k − 1

logq Ψq(n, r)

(c)
= 1− k

logq Ψq(n, r)
− o(1), (4)

where (a) is by Fano’s inequality, (b) because ya ∈ Fq so
H(yk|Hk) ≤ H(yk) ≤ kH(y1) ≤ 1 and finally, (c) is due to
the uniformity of X. Hence, if k satisfies (3) for some ε > 0,
then k/logq Ψq(n, r)≤1−ε/2 for all n sufficiently large by (2).
Hence, (4) is larger than ε/3 for all n sufficiently large.

We emphasize that the assumption that the sensing matrices
Ha, a ∈ [k] is statistically independent of the unknown
low-rank matrix X is important. This assumption is not a
restrictive one in practice since the sensing mechanism is
usually independent of the unknown matrix.

IV. UNIFORMLY RANDOM SENSING MATRICES

In this section, we provide sufficient conditions for the
recovery of X (a deterministic low-rank matrix) given yk. To
do so consider the following optimization problem:

min rank(X) s.t. ⟨Ha,X⟩ = ya, a ∈ [k]. (5)

That is, among all matrices that satisfy the linear constraints
in (1), we find the one whose rank is the minimum. We
call (5) the min-rank decoder. Denote the set of minimizers
to (5) as S ⊂ Fn×n

q . If S is a singleton set, we denote the
unique optimizer to (5) as X∗. The optimization problem is
intractable unless there is additional structure on the sensing
matrices Ha (See Section VI). The form of the minimization
problem is reminiscent of Csiszár’s so-called α-decoder for
linear codes [9]. In [9], Csiszár analyzed the error exponent of
the decoder that minimizes a function α( · ) [e.g., the entropy
H( · )] of the empirical distribution of a sequence subject to
the sequence satisfying a set of Fq-linear constraints.

In this section, we will also provide the functional form
of the reliability function (error exponent) for this recovery
problem. We will then generalize the model in (1) to the case
where the measurements yk may be noisy.

A. The Noiseless Case

We now assume that each element in each sensing matrix is
drawn independently and uniformly at random from Fq, i.e.,



P([Ha]i,j = h) = 1/q for all h ∈ Fq. We call this the uniform
measurement model. We also define the error event to be

En := {|S| > 1} ∪ ({|S| = 1} ∩ {X∗ ̸= X}). (6)

Note that as we consider {|S| > 1} to be an error, we demand
the solution to (5) to be unique. We can now exploit ideas
from [11] to demonstrate the following result:

Proposition 3 (Achievability). Fix ε > 0. Under the uniform
measurement model, if

k > (2 + ε)γ (1− γ/2)n2 (7)

then P(En) → 0 as n → ∞.

Note that the number of measurements stipulated by Propo-
sition 3 matches the information-theoretic lower bound in (3).
In this sense, the min-rank decoder prescribed by the optimiza-
tion problem in (5) is optimal. We remark that the packing-
like achievability proof [11] is much simpler than in the one
presented in [3] (albeit in a slightly different setting).

Proof: To each Z ∈ Fn×n
q that is not equal to X and

whose rank is less than or equal to rank(X), define the event

AZ := {⟨Z,Ha⟩ = ⟨X,Ha⟩,∀ a ∈ [k]}. (8)

Then we note that P(En) = P(∪Z̸=X:rank(Z)≤rank(X)AZ)
since an error occurs if and only if there exists a Z ̸= X such
that (i) Z satisfies the linear constraints (ii) its rank is less than
the rank of X. Furthermore, we claim that P(AZ) = q−k for
every Z ̸= X. This follows because

P(AZ) = P(⟨Z−X,Ha⟩ = 0, a ∈ [k])

(a)
= P(⟨Z−X,H1⟩ = 0)k

(b)
= q−k (9)

where (a) follows from the fact that the Ha are i.i.d. matrices
and (b) from the fact Z−X ̸= 0 and every non-zero element
in a finite field has a (unique) multiplicative inverse so P(⟨Z−
X,H1⟩ = 0) = q−1 for every Z ̸= X. Now by combining (9)
with the use of the union of events bound, we have

P(En) ≤
∑

Z ̸=X:rank(Z)≤rank(X)

q−k
(a)

≤ q2(n+1)r−r2+1−k

= qn
2[2γ(1−γ/2)+o(1)−k/n2], (10)

where (a) follows from the upper bound in (2). Thus, we
see that if k satisfies (7), the exponent in (10) is less than
−εγ(1− γ/2) + o(1) and hence P(En) → 0.

B. The Reliability Function

We have shown in the previous section that the min-
rank decoder is optimal in the sense that the number of
measurements required for it to decode X reliably matches
the lower bound on k. It is also interesting to analyze the rate
at which P(En) decays to zero for the min-rank decoder.

To do so, we define2 R := 1 − limn→∞ k/n2, assuming
the limit exists. Also define the reliability function or error

2The quantity R can be interpreted as a lower bound of the rate of the code
C := {C ∈ Fn×n

q : ⟨C,Ha⟩ = 0, a ∈ [k]}.

exponent E : [0, 1] → R≥0 as

E(R) := lim
n→∞

− 1

n2
logq P(En). (11)

Unlike the usual definition of the reliability function, the
normalization in (11) is 1/n2 since X is n×n.3 The following
proposition provides an upper bound for the reliability function
assuming the min-rank decoder is used.

Proposition 4 (Upper bound on E(R)). Let γ̃ := rank(X)/n
and assume that γ̃ is constant. Under the uniform measurement
model and assuming the min-rank decoder is used,

E(R) ≤ max{(1−R)− 2γ̃ (1− γ̃/2) , 0}. (12)

The proof of this result hinges on the pairwise independence
of the events AZ and de Caen’s inequality [10].

Proof: Let (Ω,F ,P) be a probability space. The inequal-
ity by de Caen states that for events B1, . . . ,BM ∈ F , the
probability of the union can be lower bounded as

P

(
M∪

m=1

Bm

)
≥

M∑
m=1

P(Bm)2∑M
m′=1 P(Bm ∩ Bm′)

. (13)

In order to apply (13) to our setup, we need to compute the
probabilities P(AZ) and P(AZ ∩AZ′). The former is q−k as
argued in (9). Note that since the the uniform measurement
model is assumed, P(AZ∩AZ′) = q−2k if Z ̸= Z′ and P(AZ∩
AZ′) = P(AZ) = q−k if Z = Z′. Now, we apply (13) to
P(En) noting that En is the union of all AZ such that Z ̸= X
and rank(Z) ≤ rank(X) =: r̃. Then,

P(En) ≥
∑
Z ̸=X

rank(Z)≤rank(X)

q−2k

q−k

(
1 +

∑
Z′ ̸=X,Z

rank(Z′)≤rank(X)

q−k

)
(a)

≥ q2nr̃−r̃2−o(n2)−k

1 + q2nr̃−r̃2+o(n2)−k
=

qn
2[2γ̃(1−γ̃/2)−o(1)−k/n2]

1 + qn2[2γ̃(1−γ̃/2)+o(1)−k/n2]
,

where (a) is from the bounds in (2). Assuming 1 − R ≥
2γ̃ (1−γ̃/2), the normalized logarithm of the error probability
can now be simplified as

lim sup
n→∞

− 1

n2
logq P(En) ≤ −2γ̃ (1− γ̃/2) + lim

n→∞

k

n2
, (14)

where we used the fact that qn
2[2γ̃(1−γ̃/2)+o(1)−k/n2] → 0.

This shows that E(R) is upper bounded by the RHS of (14).
The case where 1 − R < 2γ̃ (1−γ̃/2) results in E(R) = 0
because P(En) fails to converge to zero as n → ∞.

Corollary 5. Under the assumptions of Proposition 4,

E(R) = max{(1−R)− 2γ̃ (1− γ̃/2) , 0} (15)

Proof: The lower bound on E(R) follows directly from
achievability in (10). The upper bound is given in (14).

We have a precise characterization of the reliability function
E(R). Observe that pairwise independence of the events AZ

is crucial. This is a consequence of the linear measurement

3The “block-length” of the code C is n2.



model in (1). Note that the events AZ are not jointly indepen-
dent. But the beauty of de Caen’s bound allows us to exploit
the pairwise independence to lower bound P(En) and thus to
obtain a tight upper bound on E(R). To draw an analogy, just
as linear codes achieve capacity in symmetric DMCs as only
pairwise independence is required, de Caen’s inequality allows
us to move the exploitation of pairwise independence into the
error exponent domain and make statements about the error
exponent behavior of ensembles of linear codes.

C. The Noisy Case

We conclude of this section by commenting how the min-
rank decoder can be modified if the measurements yk are
corrupted by noise from the finite field. Now, instead of having
access to noiseless measurements, we have

ya = ⟨Ha,X⟩+ wa a ∈ [k]. (16)

where w = (w1, . . . , wk) ∈ Fk
q is a deterministic but unknown

noise vector. We assume that ∥w∥0 = ⌊σn2⌋ for some noise
level σ ∈ (0, k/n2]. Consider the following generalization of
the min-rank decoder:

minimize rank(X) + λ∥w∥0
subject to ⟨Ha,X⟩+ wa = ya, a ∈ [k] (17)

The optimization variables are X ∈ Fn×n
q and w ∈ Fk

q . The
parameter λ > 0 (which is allowed to depend on n) governs
the tradeoff between the rank of X and the sparsity of w. Let
Hb( · ) denote the binary entropy function.

Proposition 6 (Achievability under noisy measurement
model). Fix ε > 0 and choose λ = 1

n . Assuming the uniform
measurement model and that ∥w∥0 = ⌊σn2⌋, if

k >
(3 + ε)(γ + σ)[1− (γ + σ)/3]

1−Hb[1/(3− (γ + σ))] logq 2
n2, (18)

then P(En) → 0 as n → ∞.

Since the prefactor in (18) is a monotonically increasing
function in the noise level σ, the number of measurements
degrades as σ increases, agreeing with intuition. Note that the
regularization parameter λ is independent of σ. The factor of
3 (instead of 2) in (18) arises due in part to the uncertainty
in the locations of the non-zero elements of w. The proof
of Proposition 6 is given in [12]. The analysis can also be
extended to the case where the noise vector is random.

V. SPARSE RANDOM SENSING MATRICES

In the previous section, we focused exclusively on the
case where the elements of the sensing matrices Ha, a ∈ [k]
are drawn independently and uniformly at random from Fq.
However, there is substantial motivation to consider different
ensembles of sensing matrices. For example, in low-density
parity check (LDPC) codes, the parity check matrix (analogous
to the set of Ha matrices) is sparse. The sparsity aids in
decoding via the sum-product (belief propagation) algorithm
as the resulting Tanner (factor) graph is sparse.

In this section, we analyze the scenario where the sensing
matrices are sparse. More precisely, each element of each
matrix Ha is assumed to be an independently and identically
distributed random variable with associated pmf

P (h; δ, q) :=

{
1− δ h = 0

δ/(q − 1) h ∈ Fq \ {0}
. (19)

Observe that if δ is small, then the probability that a randomly
selected entry in Ha is zero is close to unity. In the rest of
this section, we allow δ to depend on n but we do not make
the dependence of δ on n explicit for ease of exposition. The
question we would like to answer is: How fast can δ decay
with n such that the min-rank decoder is still reliable?

Theorem 7 (Achievability under sparse measurement model).
Fix ε > 0 and let δ be any sequence in Ω( log n

n ). If there exists
a positive integer Nε such that (7) holds for all n > Nε, then
P(En) → 0 as n → ∞.

Note that the sparsity-factor δ of the sensing matrices is
allowed to tend to zero albeit at a controlled rate of Θ( log n

n ).
Thus, each Ha is allowed to have, on average, Θ(n log n) non-
zero entries (out of n2 entries). The scaling rate is reminiscent
of the number of trials required for success in the so-called
coupon collector’s problem. Indeed, we need at least an entry
in a row and an entry in a column of X to be sensed (by
a sensing matrix Ha) for the min-rank decoder to succeed.
The number of measurements required in the sparse sensing
case is exactly the same as in the case where the elements of
Ha are drawn uniformly at random from Fq in Proposition 3.
In fact it also matches the information-theoretic lower bound.
The following lemma is used in the proof of Theorem 7.

Lemma 8. Let dZ :=∥X−Z∥0. The probability of AZ, denoted
as θ(dZ; δ, q, k), is only a function of dZ and is given as

θ(d; δ, q, k) =

[
q−1 + (1− q−1)

(
1− δ

1− q−1

)d
]k

. (20)

Lemma 8 can be proved by induction on d and by observing
that the pmf of [Ha]1,1+[Ha]1,2 is the circular convolution of
P (h; δ, q) with itself. The function θ(d; δ, q, k) is monotoni-
cally decreasing in d and is also upper bounded by (1−δ)k for
all d. We now provide a sketch of the proof of Theorem 7. The
basic idea is to partition all possibly “misleading” matrices Z
into subsets based on their Hamming distance from X.

Proof: We can upper bound the probability P(En) as:

P(En)
(a)

≤
n2∑
d=1

∑
Z ̸=X,rank(Z)≤rank(X)

∥X−Z∥0=d

θ(d; δ, q, k)

(b)

≤
⌊βn2⌋∑
d=1

∑
Z̸=X,rank(Z)≤rank(X)

∥X−Z∥0=d

(1− δ)k + . . .

+
n2∑

d=⌈βn2⌉

∑
Z̸=X,rank(Z)≤rank(X)

∥X−Z∥0=d

θ(⌈βn2⌉; δ, q, k), (21)



where in (a) we partition the sum over Z into classes of
matrices which differ from X by d entries and in (b), we
partition the resulting sum into two parts in accordance to the
fractional parameter β (which is allowed to depend on n). We
denote the two sums in (21) as An and Bn respectively. Now,

An ≤ n2|{Z : ∥Z−X∥0 = ⌊βn2⌋}|(1− δ)k

≤ n22n
2Hb(β)(q − 1)βn

2

exp(−δk). (22)

Similarly, the second term in (21) can be upper bounded as

Bn ≤ n2|{Z : rank(Z) ≤ rank(X)}|θ(⌈βn2⌉; δ, q, k)
(a)

≤ n2q2γ(1−γ/2)n2+o(n2)θ(⌈βn2⌉; δ, q, k) (23)
(b)
= n2q

n2
[
2γ(1−γ/2)+o(1)+ k

n2 logq(q
−1+(1−q−1)(1− δ

1−q−1 )⌈βn2⌉)
]
,

where in (a) we used Lemma 1 and in (b) we used Lemma 8.
Consider the choice of parameters: β = Θ( δ

log n ) and δ =

Ω( log n
n ). Then, both (22) and (23) tend to zero as n → ∞ if

k satisfies (7) for all n sufficiently large.
The natural question at this juncture is whether the “relia-

bility function” can be computed for this sparse measurement
model. The events AZ are no longer pairwise independent and
so it is not straightforward to compute P(AZ∩AZ′). Thus, de
Caen’s bound may not be tight as in the uniform measurement
model in Section IV. By the choice of (β, δ) our bounding
technique in Theorem 7 only ensures that

lim sup
n→∞

1

n log n
logq P(En) ≤ −C (24)

for some C ∈ (0,∞). Thus, instead of having a speed4 of
n2 in the large-deviations upper bound, we have a speed of
n log n. This is because δ ∈ o(1). Whether the speed n log n is
optimal is open. Also, is there a tradeoff between the sparsity
factor δ and a bound on the number of measurements?

VI. DISCUSSION AND CONCLUSIONS

There is a natural correspondence between the rank min-
imization problem and rank-metric decoding [6], [7]. In the
former, we solve a problem of the form (5). In the latter, the
code typically consists of all matrices that lie in the kernel of
some linear operator H, i.e., the code C = ker(H) ⊂ Fn×n

q .
A particular codeword C ∈ C is transmitted. The received
word is given as R = C + X, where X is assumed to be a
low-rank “error” matrix. The optimization problem is then

minimize rank(R−C) subject to C ∈ C (25)

which is identical to the min-rank problem in (5) with the
identification of the error matrix X ≡ R − C. In general,
solving (25) is intractable (NP-hard) but it is known that if
the linear operator H admits a favorable algebraic structure,
then learning a sufficiently low-rank X (and thus C) from
R can be done in polynomial time. More precisely, the class

4The term speed is in direct analogy to the theory of large-deviations where
Pn is said to satisfy a large-deviations upper bound with speed an and rate
function I( · ) if lim supn→∞ a−1

n log Pn(E) ≤ − infx∈cl(E) I(x).

of Gabidulin codes [13], which are rank-metric analogs of
Reed-Soloman codes, not only achieves the Singleton bound
(and thus has maximum rank distance), but decoding can be
achieved using a modified form of the Berlekamp-Massey
algorithm. However, the structured nature of codes (and in
particular the mutual dependence between the equivalent Ha

matrices) does not permit the line of analysis we adopted.
Another promising direction was adopted in [8] where the

authors assumed that the error matrix X is drawn uniformly
at random from all matrices of known rank r. The authors
constructed a code in which they first learned the rowspace of
X before adopting a message-passing strategy to complete the
reconstruction. However, the structured codebook violates the
assumptions for our preceding analyses to hold. Nonetheless,
by writing X = UVT for matrices U,V ∈ Fn×r

q , we see that
if the rowspace is known, all that remains unknown in X is the
U matrix. Thus, in principle, we can solve the system of linear
equations ⟨Ha,UVT ⟩ = ya, a ∈ [k] for U to complete the
recovery of X. This is a subject of current investigation. The
ideas in [8] were extended in [14] where the authors computed
the capacity of various matrix-valued channels over finite fields
as well as devised “error trapping” codes to achieve capacity.

In this paper, we derived fundamental limits for recovering a
low-rank matrix over a finite field given linear measurements.
We showed that even if the sensing matrices are exceedingly
sparse, reliable recovery is still possible with as few measure-
ments as the lower bound stipulates. In the longer version
of this paper [12], we draw further comparisons between our
work and rank-metric codes, comment on the coding-theoretic
interpretations of the results herein and suggest a procedure
to reduce on the complexity of min-rank decoding.
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