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Sufficient Statistics

Random variable X 2 X has distribution PX|✓ which depends on a
parameter ✓ 2 ⇥.

To estimate ✓, we often don’t need X but some function of X, say
Y = f (X) 2 Y is sufficient.

Y = f (X) is called sufficient statistics for the family {PX|✓}.

In this case, X (�� Y (�� ✓ forms a Markov chain. Equivalently,

PX|✓(x) =
X

y2Y
PX|Y(x|y)PY|✓(y) =

X

y2Y
PX,Y|✓(x, y) 8(x, ✓)

In information theory language,

I(✓;X) = I(✓; f (X)) = I(✓; Y).

Y provides as much information about ✓ as X does.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 4 / 35



Sufficient Statistics

Random variable X 2 X has distribution PX|✓ which depends on a
parameter ✓ 2 ⇥.

To estimate ✓, we often don’t need X but some function of X, say
Y = f (X) 2 Y is sufficient.

Y = f (X) is called sufficient statistics for the family {PX|✓}.

In this case, X (�� Y (�� ✓ forms a Markov chain. Equivalently,

PX|✓(x) =
X

y2Y
PX|Y(x|y)PY|✓(y) =

X

y2Y
PX,Y|✓(x, y) 8(x, ✓)

In information theory language,

I(✓;X) = I(✓; f (X)) = I(✓; Y).

Y provides as much information about ✓ as X does.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 4 / 35



Sufficient Statistics

Random variable X 2 X has distribution PX|✓ which depends on a
parameter ✓ 2 ⇥.

To estimate ✓, we often don’t need X but some function of X, say
Y = f (X) 2 Y is sufficient.

Y = f (X) is called sufficient statistics for the family {PX|✓}.

In this case, X (�� Y (�� ✓ forms a Markov chain. Equivalently,

PX|✓(x) =
X

y2Y
PX|Y(x|y)PY|✓(y) =

X

y2Y
PX,Y|✓(x, y) 8(x, ✓)

In information theory language,

I(✓;X) = I(✓; f (X)) = I(✓; Y).

Y provides as much information about ✓ as X does.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 4 / 35



Sufficient Statistics

Random variable X 2 X has distribution PX|✓ which depends on a
parameter ✓ 2 ⇥.

To estimate ✓, we often don’t need X but some function of X, say
Y = f (X) 2 Y is sufficient.

Y = f (X) is called sufficient statistics for the family {PX|✓}.

In this case, X (�� Y (�� ✓ forms a Markov chain.

Equivalently,

PX|✓(x) =
X

y2Y
PX|Y(x|y)PY|✓(y) =

X

y2Y
PX,Y|✓(x, y) 8(x, ✓)

In information theory language,

I(✓;X) = I(✓; f (X)) = I(✓; Y).

Y provides as much information about ✓ as X does.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 4 / 35



Sufficient Statistics

Random variable X 2 X has distribution PX|✓ which depends on a
parameter ✓ 2 ⇥.

To estimate ✓, we often don’t need X but some function of X, say
Y = f (X) 2 Y is sufficient.

Y = f (X) is called sufficient statistics for the family {PX|✓}.

In this case, X (�� Y (�� ✓ forms a Markov chain. Equivalently,

PX|✓(x) =
X

y2Y
PX|Y(x|y)PY|✓(y) =

X

y2Y
PX,Y|✓(x, y) 8(x, ✓)

In information theory language,

I(✓;X) = I(✓; f (X)) = I(✓; Y).

Y provides as much information about ✓ as X does.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 4 / 35



Sufficient Statistics

Random variable X 2 X has distribution PX|✓ which depends on a
parameter ✓ 2 ⇥.

To estimate ✓, we often don’t need X but some function of X, say
Y = f (X) 2 Y is sufficient.

Y = f (X) is called sufficient statistics for the family {PX|✓}.

In this case, X (�� Y (�� ✓ forms a Markov chain. Equivalently,

PX|✓(x) =
X

y2Y
PX|Y(x|y)PY|✓(y) =

X

y2Y
PX,Y|✓(x, y) 8(x, ✓)

In information theory language,

I(✓;X) = I(✓; f (X)) = I(✓; Y).

Y provides as much information about ✓ as X does.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 4 / 35



Examples

Xn = (X
1

, . . . ,Xn) 2 {0, 1}n is i.i.d. Bernoulli with parameter
✓ = Pr[Xi = 1]. Then

Xn (�� 1

n

nX

i=1

Xi (�� ✓

forms a Markov chain so Y = f (Xn) = 1

n
Pn

i=1

Xi is a sufficient
statistic for the family {PXn|✓}.

Exponential family with natural parameter ✓ = (✓
1

, . . . , ✓d)

Pn
X|✓(x

n) = Pn
X(x

n) exp

⇥hY(n)(xn), ✓i � nA(✓)
⇤
.

Vector of sufficient statistics Y(n)(xn) = (Y(n)
1

(xn), . . . , Y(n)
d (xn)) with

Y(n)
i (xn) =

nX

j=1

Yi(xj), i = 1, . . . , d.
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Another Interpretation : Exact Reproduction of PX|✓

- - -X ⇠ PX|✓ Y X ⇠ PX|Y = PX|Y,✓
f '

If Y is a sufficient statistic relative to {PX|✓}, can find f and ' s.t.
PX|✓ can be reproduced exactly using the code (f ,').

PX|Y=y,✓ does not depend on ✓ because X (�� Y (�� ✓. Can set
decoder as

'(y) = PX|Y=y = PX|Y=y,✓

Denote (f � PX|✓)(y) =
P

x2X PX|✓(x) Pr[ f (x) = y ]. Hence,

' � f � PX|✓ =
X

y2Y
(f � PX|✓)(y)'(y)

=
X

y2Y
PX|✓{x 2 X : f (x) = y}PX|Y=y,✓ = PX|✓.
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Memory Size

How much memory to store the sufficient statistics?

Example 1: Binomial case. Since X = {0, 1}, the sufficient statistic

1

n

nX

j=1

Xj 2
⇢

0

n
,

1

n
,

2

n
, . . . ,

n
n

�

can take on n + 1 ⇠ n1 values.

Example 2: k-nomial case, i.e., X = {0, 1, . . . , k � 1} and we have
n samples. Size of sufficient statistics Y(n)(xn) satisfies

��{Y(n)(xn) : xn 2 X n}�� =
✓

n + k � 1

k � 1

◆
⇠ nk�1

(k � 1)!
,

so the size of the memory is ⇣ nk�1.

Example 3: ✓ 2 ⇥ = [0, 1] is the unknown mean of a Gaussian.
Sufficient statistics can take uncountable number of values.
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Our Contribution

Reduce the exponent d in nd by relaxing exact recovery condition
on generating distribution Pn

X|✓.

- - -Xn ⇠ Pn
X|✓ Y P̂Xn

fn 'n

Now instead of exact recovery Pn
X|✓ = 'n � fn � Pn

X|✓ for every n 2 N,
we only require that

lim

n!1

Z

⇥
F
⇣

Pn
X|✓,'n � fn � Pn

X|✓
⌘
µ(d✓)  �.

for some � � 0.

Most of the time, we can reduce the exponent to d/2 and this is
optimal.
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Definition of Code

- - -Xn ⇠ Pn
X|✓ Y P̂Xn

fn 'n

Definition (Code)

A size-Mn code Cn = (fn,'n) consists of

A possibly stochastic encoder fn : X n ! Yn = {1, . . . ,Mn};

A decoder 'n : Yn ! P(X n) (set of distributions on X n)
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Definition of Error

Definition (Average Error)

The average error is a code Cn = (fn,'n) is defined as

"(Cn) :=

Z

⇥
F
⇣
'n � fn � Pn

X|✓,Pn
X|✓
⌘
µ(d✓)

= E✓⇠µ

h
F
⇣
'n � fn � Pn

X|✓,Pn
X|✓
⌘i

where µ(·) is the prior distribution of ✓.

Recall that

(fn � Pn
X|✓)(y) =

X

xn2X n

Pn
X|✓(x

n) Pr[ f (xn) = y ]

and
'n � fn � Pn

X|✓ =
X

y2Yn

(fn � Pn
X|✓)(y)'n(y) 2 P(X n).
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Measuring Errors Between Distributions

Consider two commonly-used error criteria.

Variational distance

F(P,Q) = kP � Qk
1

= 2 sup

A⇢X
|P(A)� Q(A)| 2 [0, 2]

Relative entropy (Kullback-Leibler distance)

D(PkQ) =
X

x

P(x) log

P(x)
Q(x)

2 [0,1]

Pinsker’s inequality

log e
2

kP � Qk2

1

 D(PkQ)
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Minimum Compression Rate

Given a code Cn, denote its error under the variational distance
and relative entropy as "(1)(Cn) and "(2)(Cn) resp.

Denote its size as |Cn|.

Find smallest exponent r in |Cn| ⇣ nr subject to a bounded error.

Definition (Minimum Compression Rate)

Let � � 0. Define

R

(i)(�) := inf

{Cn}n2N

⇢
lim

n!1
log |Cn|
log n

: lim

n!1 "(i)(Cn)  �

�
, i = 1, 2.

lim

n!1
log |Cn|
log n

= r () |Cn| ⇣ nr
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: lim

n!1 "(i)(Cn)  �

�
, i = 1, 2.

lim

n!1
log |Cn|
log n

= r () |Cn| ⇣ nr
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Minimum Compression Rate: Interpretation

Suppose R

(i)(�) = r. Then for every ✏ > 0, there exists {Cn}n2N
whose asymptotic error under criterion i = 1, 2 is  � and

|Cn|  nr+✏.

Furthermore, no sequence of codes exists whose asymptotic error
under criterion i = 1, 2 is  � and whose size

|Cn|  nr�✏.

Note that � 2 [0, 2] for variational distance and � 2 [0,1] for
relative entropy.
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Minimum Compression Rate: Properties

Because � 7! R

(i)(�) is monotone

R

(i)(�0)  R

(i)(�), 8 0  �  �0.

Due to Pinsker’s inequality log e
2

kP � Qk2

1

 D(PkQ),

R

(1)(0)  R

(2)(0).

Our goal is to characterize R

(i)(�) for all values of � for statistical
models {PX|✓} under reasonable assumptions.

Typically for ⇥ ⇢ Rd,

R

(i)(�) =
d
2

.
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Outline

1 Sufficient Statistics, Motivation, and Main Contribution

2 Problem Setup

3 Main Result and Interpretation

4 Proof Ideas : Achievability

5 Proof Ideas : Converse (Impossibility)
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Assumptions

(i) Parameter space ⇥ ⇢ Rd is bounded and has positive Lebesgue
measure (in Rd).

(ii) Local approximation of relative entropy: As ✓0 ! ✓,

D
�
PX|✓

��PX|✓0
�
=

1

2

(✓ � ✓0)TJ(✓ � ✓0) + o(k✓ � ✓0k2)

where J is the Fisher information matrix.

(iii) Asymptotic efficiency: Exists a sequence of estimators ✓̂n(Xn) s.t.

E✓⇠µ

h
D
�
PX|✓̂n(Xn)

��PX|✓
�i

=
d
2n

+ o
✓

1

n

◆
.

(iv) Local asymptotic normality of MLE

(v) Local asymptotic sufficiency of MLE
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Main Result

Theorem (Hayashi-T. (2016))

1 Assume (i), (ii), (iv), and (v), under the variational distance

criterion

R

(1)(�) =
d
2

8 � 2 [0, 2).

2 Assume (i), (ii), and (iii), under the relative entropy criterion

R

(2)(�) =
d
2

8 � 2
hd

2

,1
⌘
.

3 If in addition {PX|✓}✓2⇥ is an exponential family,

R

(2)(�) =
d
2

8 � 2 [0,1).
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Main Result : Remarks

We construct codes Cn that achieve zero asymptotic error and
have memory size |Cn| ⇣ nd/2.

Compare to exact sufficient statistics in which |Cn| ⇣ nd.

But (this is more cool!), we show that even if the error is
non-vanishing, i.e.,

lim

n!1 "(1)(Cn)  �, for any � 2 [0, 2),

lim

n!1 "(2)(Cn)  �, for any � 2 [0,1),

the memory requirement d/2 is asymptotically the same.

This is known in information theory as a strong converse.
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Main Result : Strong Converse

-

6

d/2

lim

n!1
log |Cn|
log n0

+1

D(P kQ)

lim

n!1 "(1)(Cn)

vd/2

R

(1)( d
2

) = d
2

-

6

d/2

lim

n!1
log |Cn|
log n0

2

kP � Qk
1

lim

n!1 "(2)(Cn)
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Weak Achievability for Relative Entropy: R

(2)(d
2

)  d
2

J. Rissanen

Inventor of the minimum description length (MDL) principle for
model selection (among many other things).

Quantize the MLE similarly to Rissanen.
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Weak Achievability for Relative Entropy: R

(2)(d
2

)  d
2

Compute MLE ✓̂n from data Xn.

Encoder: Apply discretization to ✓̂n with span t/
p

n and store this
discretized parameter ✓̂0n 2 ⇥n,t in the memory ⇥n,t.

⇥

⇥n,t-�t/
p

n

t✓̂n
✓̂0nt

Memory is ⇥n,t = ⇥ \ tp
nZ

d and |⇥n,t| ⇣ nd/2.

Decoder is the deterministic map from ✓̂0n to distribution Pn
X|✓̂0n

.

Can show that
lim

n!1 "(2)(Cn)  d
2

by eventually taking t # 0. But error is non-vanishing. :(
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Encoder: Apply discretization to ✓̂n with span t/
p

n and store this
discretized parameter ✓̂0n 2 ⇥n,t in the memory ⇥n,t.

⇥

⇥n,t-�t/
p

n

t✓̂n
✓̂0nt

Memory is ⇥n,t = ⇥ \ tp
nZ

d and |⇥n,t| ⇣ nd/2.

Decoder is the deterministic map from ✓̂0n to distribution Pn
X|✓̂0n

.

Can show that
lim
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2
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Exponential Families yield Stronger Result: R

(2)(0)  d
2

Assume that {PX|✓} is an exponential family

PX|✓(x) = PX(x) exp [h✓, Y(x)i � A(✓)] .

Moment parametrization:

⌘(✓) = r✓A(✓) = E✓[Y(X)].

Set of feasible moment parameters H := {⌘(✓) : ✓ 2 ⇥}.

⌘̂n = 1

n
Pn

j=1

Y(Xj) is a sufficient statistic for Xn ⇠ Pn
X|✓.

Encoder: Apply discretization to ⌘̂ with span t/
p

n, i.e.,

⌘̂0n = �t(⌘̂n) = arg min

⌘02Hn,t

k⌘0 � ⌘̂nk2

, where Hn,t = H \ tp
n
Zd

H
Hn,t-�t/

p
n

t⌘̂n
⌘̂0nt
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Exponential Families yield Stronger Result: R

(2)(0)  d
2

Decoder: Uniform mixture of conditional distributions whose
moment parameter is discretized to ⌘̂0n:

'(⌘̂0n) =
1

|��1

t (⌘̂0n)|
X

⌘2��1

t (⌘̂0n)

PXn|Y=n⌘

where
��1

t (⌘̂0n) :=
�
⌘̂n : �t(⌘̂n) = ⌘̂0n

 
.

Hn,t-�t/
p

n

H
⌘̂0nt

- �
⇣ 1/n

.......|{z}
.......��1

t (⌘̂0n)

Asymptotic error under relative entropy is zero and |Hn,t| ⇣ nd/2.
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Achievability for Variational Distance: R

(1)(0)  d
2

Need to assume local asymptotic normality and local asymptotic
sufficiency of MLE.

Discretize MLE with span t/
p

n.

Variational distance is a norm ) triangle inequality

Uniform mixture idea.
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Outline

1 Sufficient Statistics, Motivation, and Main Contribution

2 Problem Setup

3 Main Result and Interpretation

4 Proof Ideas : Achievability

5 Proof Ideas : Converse (Impossibility)

6 Conclusion
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Weak Converse Variational Distance: R

(1)(0) � d
2

B. Clarke A. Barron

D
✓

Pn
X|✓

����
Z

⇥
Pn

X|✓0 µ(d✓
0)

| {z }
mixture

◆
=??
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Weak Converse Variational Distance: R

(1)(0) � d
2

Can obtain a weak converse R

(1)(0) � d
2

by using Clarke and
Barron’s asymptotic formula:

D
✓

Pn
X|✓

����
Z

⇥
Pn

X|✓0 µ(d✓
0)
◆

=
d
2

log n + O(1).

Additionally use the fact that

"(1)(Cn) ! 0

and the uniform continuity of mutual information, i.e.,

|IP(A;B)� IP0(A;B)|  3⌫ log(|A||B|� 1) + 3H(⌫)

where

⌫ =
1

2

kP � P0k
1

.
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Strong Converse Variational Distance : R

(1)(2�) � d
2

We want to show that for any sequence of codes {Cn}n2N such that

lim

n!1 "(1)(Cn) < 2

the memory size cannot be smaller than nd( 1

2

��) for any � > 0.

Assume, to the contrary, that there exists a code Cn with error

E✓⇠µ

h��Pn
X|✓ � (' � f )(✓)

��
1

i
 2 � ↵,

with memory size Mn = O(n
1

2

��) for some � > 0.

Define S =
�
✓ 2 ⇥ : kPn

X|✓ � (' � f )(✓)k
1

 2 � ↵
2

 
. Markov

inequality says
µ(S) � ↵

4 � ↵
> 0.
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Strong Converse Variational Distance : R

(1)(2�) � d
2

Assume � ⌧ µ. Then �(S) > 0.

Can choose 5

↵Mn points {✓i : i = 1, . . . , 5

↵Mn} ⇢ S such that

kPn
X|✓i

� (' � f )(✓i)k1

 2 � ↵

2

, |✓i � ✓j| > �(S)
✓

5

↵
Mn

◆�1

⇥

" #S
t t t t t t t t✓i ✓j

-�
⌦(n�

1

2

+�)

Because separation is ⌦(n�
1

2

+�), there exists disjoint Di ⇢ X n,
i = 1, . . . , 5

↵Mn such that

Pn
X|✓i

(Di) � 1 � ✏.
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Concluding Remarks

- - -Xn ⇠ Pn
X|✓ Y P̂Xn

fn 'n

Approximate sufficient statistics and minimum size of memory Y.

The optimal rate d
2

(exponent in nd/2) is reduced from d (cf. exact
sufficient statistics) for multinomial distributions.

Weak results (weak converse and weak achievability) follow from
the results by Rissanen and Clarke-Barron.

Achievability and strong converse parts do not follow from them.
We invented new methods.

arXiv 1612.02542 and submitted to the IEEE Trans. on Inform. Th.
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