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Sufficient Statistics

m Random variable X € X has distribution Py, which depends on a
parameter 6 € ©.

m To estimate 6, we often don’t need X but some function of X, say
Y = f(X) € Y is sufficient.

m Y = f(X) is called sufficient statistics for the family {Pxg}.

m In this case, X —— Y —— 6 forms a Markov chain. Equivalently,

Pyp(x) ZPX\Y (x]y) PY\G ZPX Y\e x,y) V(x,0)
yey yeY

m In information theory language,
1(0;X) = 1(0:f(X)) = 1(6; Y).
Y provides as much information about 6 as X does.
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mX"=(X,...,X,) € {0,1}"is i.i.d. Bernoulli with parameter
0 = Pr[X; = 1]. Then

1
X"—o—;ZXi—o—Q

i=1

forms a Markov chain so Y = f(X") = % >, X; is a sufficient
statistic for the family {Py» ¢}
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mX"=(X,...,X,) € {0,1}"is i.i.d. Bernoulli with parameter
0 = Pr[X; = 1]. Then

1
X"—o—;ZXi—o—Q

i=1

forms a Markov chain so Y = f(X") = % >, X; is a sufficient
statistic for the family {Py» ¢}

m Exponential family with natural parameter 6 = (6, ...,6,)
Yo (") = PR exp [(Y (x"),0) — nA(0)].

Vector of sufficient statistics ¥ (x*) = (Y (x), ..., ¥{" (x")) with

vy =3 Vi), i=1,....d
j=1
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Another Interpretation : Exact Reproduction of Py

XNPX|9 Y XNPX|Y:PX|Y79
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m If Y is a sufficient statistic relative to {Px}, can find f and ¢ s.t.
Px|9 can be reproduced exactly using the code (f, ¢).
m Pyjy—, ¢ does not depend on 0 because X —— ¥ —— 6. Can set

decoder as
©(y) = Pxjy=y = Px|y=y

m Denote (o Pxjp)(y) = Xrex Pxjo(x) Prlf(x) = y].
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Another Interpretation : Exact Reproduction of Py

X ~ Pyjp Y X ~ Pyjy = Pxjy g

m If Y is a sufficient statistic relative to {Px}, can find f and ¢ s.t.
Px|9 can be reproduced exactly using the code (f, ¢).

m Pyjy—, ¢ does not depend on 0 because X —— ¥ —— 6. Can set

decoder as
©(¥) = Pxjy=y = Px|y=y0
= Denote (f o Pyy)(y) = Xyex Pxiolx) Prlf(x) = y1. Hence,
pofoPxg=> (foPxp)y)e(y)
yey
= ZPX|9{X € X : f(x) = y}Pxjy=y,0 = Pxjo-

yey

ECE, NUS 6/35
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- )ge{”}
n n n n n
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m How much memory to store the sufficient statistics?

m Example 1: Binomial case. Since X = {0, 1}, the sufficient statistic
1« 012

- )ge{”}

n nnn n

can take on n + 1 ~ n! values.

m Example 2: k-nomial case, i.e., X = {0,1,...,k— 1} and we have
n samples. Size of sufficient statistics Y (x") satisfies

+k—1 nk1
Y(n) nY L e XM = n ~
(™) 2" € A7) ( k—1 ) k—1)
so the size of the memory is < nf~1.

m Example 3: § € © = [0, 1] is the unknown mean of a Gaussian.
Sufficient statistics can take uncountable number of values.
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Our Contribution

m Reduce the exponent d in n? by relaxing exact recovery condition

on generating distribution P}

Vincent Tan (NUS)
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Jn

©n
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Our Contribution
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on generating distribution P§|e-

X" ~ P" Y Py
. (VAN fa ©n

m Now instead of exact recovery Py, = ¢, o fy o Py, for every n € N,
we only require that
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for some § > 0.
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Our Contribution

m Reduce the exponent d in n? by relaxing exact recovery condition
on generating distribution P§|e-

X" ~ P! Y P
_~x[o ] fa ©n

m Now instead of exact recovery Py, = ¢, o fy o Py, for every n € N,
we only require that

i [ F (P, onofuo Py n(do) <6

n—oo <)
for some § > 0.

m Most of the time, we can reduce the exponent to d/2 and this is
optimal.
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Definition of Code

X" ~ P}

Definition (Code)

A size-M,, code C, = (f,, pn) consists of

P Xn

m A possibly stochastic encoder f, : X" — Y, = {1,...,M,};

m A decoder ¢, : ), — P(X") (set of distributions on X™)
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Definition of Error

Definition (Average Error)

The average error is a code C, = (f,, ¢n) is defined as

(€)= [ F (vnotyo Pl Phe) n(c8)
= Eonp [F (0n 00 Pligs Piio)]

where wu(-) is the prior distribution of 6.
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Definition of Error

Definition (Average Error)

The average error is a code C, = (f,, ¢n) is defined as

€<Cn) = / F (‘Pn ofno P§‘97P§\9> M(d@)
e
=Koy {F (SOn o fuo P§|97P§l(|9)}
where wu(-) is the prior distribution of 6.

Recall that
(fu © Py x‘g prw ) Prf(x") = y]

xneXxn
and

©n0fuoPyg =D (a0 Pyg) 0)en(y) € P(X").

YEVn
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Measuring Errors Between Distributions

m Consider two commonly-used error criteria.
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Measuring Errors Between Distributions

m Consider two commonly-used error criteria.

m Variational distance

F(P,Q) =[P —Qlli =2 sup |P(A) — Q(A)| € [0,2]
ACX

m Relative entropy (Kullback-Leibler distance)

D(P|Q) = ZP log € [0, o]

m Pinsker’s inequality

1
L)
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m Given a code C,, denote its error under the variational distance
and relative entropy as £(1)(C,) and ?(C,) resp.

m Denote its size as |C,|.
m Find smallest exponent r in |C,| < n" subject to a bounded error.

Definition (Minimum Compression Rate)
Let § > 0. Define

ROG) = inf { Tm Gl fm 0y <ol iz12
{Cr}nen | P00 1ogn n—00
log |C,
lim —2 Gl _ ro <<= |G| =n"
n—oo logn
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Minimum Compression Rate: Interpretation

m Suppose R (§) = r. Then for every ¢ > 0, there exists {C, } e
whose asymptotic error under criterion i = 1,2 is < § and

|C,| < n'te.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 14/35



Minimum Compression Rate: Interpretation

m Suppose R (§) = r. Then for every ¢ > 0, there exists {C, } e
whose asymptotic error under criterion i = 1,2 is < § and

|C,| < n'te.

m Furthermore, no sequence of codes exists whose asymptotic error
under criterion i = 1,2 is < § and whose size

|Cul < n"°.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 14/35



Minimum Compression Rate: Interpretation

m Suppose R (§) = r. Then for every ¢ > 0, there exists {C, } e
whose asymptotic error under criterion i = 1,2 is < § and

|C,| < n'te.

m Furthermore, no sequence of codes exists whose asymptotic error
under criterion i = 1,2 is < § and whose size

|Cul < n"°.

m Note that ¢ € [0, 2] for variational distance and § € [0, oo] for
relative entropy.
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Minimum Compression Rate: Properties

m Because ¢ — R (§) is monotone

RO (8") <RD(5), VO<§<d.
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Minimum Compression Rate: Properties

m Because ¢ — R (§) is monotone

RO (8") <RD(5), VO<§<d.

m Due to Pinsker’s inequality '¢¢||P — 0|} < D(P||0),

RM(0) < R®(0).

m Our goal is to characterize R()(5) for all values of ¢ for statistical
models {Pxs} under reasonable assumptions.

m Typically for © C R?,

RO (§) = g.
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Main Result and Interpretation
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(i) Parameter space © c R? is bounded and has positive Lebesgue
measure (in RY).
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where J is the Fisher information matrix.
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(i) Local approximation of relative entropy: As 6’ — 6,
1
D(Pxjo || Pxjor) = 5(9 —0"7J(0—0") +o(|0 —0'|*)
where J is the Fisher information matrix.

(i) Asymptotic efficiency: Exists a sequence of estimators 6, (X") s.t.

Py :20;+0<i>.

(iv) Local asymptotic normality of MLE

Eop [D (Pyja,xm

(v) Local asymptotic sufficiency of MLE
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Main Result

Theorem (Hayashi-T. (2016))

Assume (i), (ii), (iv), and (v), under the variational distance
criterion

RO (5) = g V5 e [0,2).
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Main Result

Theorem (Hayashi-T. (2016))

Assume (i), (ii), (iv), and (v), under the variational distance
criterion

RO (5) = g V5 e [0,2).

Assume (i), (ii), and (iii), under the relative entropy criterion

R®)(8) zg Vo€ [g,oo>.

If in addition {Px|g }eco is an exponential family,

RO)(5) = g V5 € [0,00).
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Main Result : Remarks

m We construct codes C, that achieve zero asymptotic error and
have memory size |C,| < n?/>.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 19/35



Main Result : Remarks

m We construct codes C, that achieve zero asymptotic error and
have memory size |C,| < n?/>.

m Compare to exact sufficient statistics in which |C,| < n¢.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 19/35



Main Result : Remarks

m We construct codes C, that achieve zero asymptotic error and
have memory size |C,| < n?/>.

m Compare to exact sufficient statistics in which |C,| < n¢.

m But (this is more cool!), we show that even if the error is
non-vanishing, i.e.,

lim £(V(C,) <46, foranyé e [0,2),

n—oo
Iim ¢?(c,) <46, foranyd e [0, ),

n—oo

the memory requirement d/2 is asymptotically the same.
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Main Result : Remarks

m We construct codes C, that achieve zero asymptotic error and
have memory size |C,| < n?/>.

m Compare to exact sufficient statistics in which |C,| < n¢.

m But (this is more cool!), we show that even if the error is
non-vanishing, i.e.,
lim eWe,) <6, foranyselo,2),

Iim ¢?(c,) <46, foranyd e [0, ),

n—oo

the memory requirement d/2 is asymptotically the same.

m This is known in information theory as a strong converse.
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Main Result : Strong Converse

Iim £V(C,)

A n—o0

D(P[| Q)

— 1
| lim 0g |Gl
/2 n—oo logn

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 20/35



Main Result : Strong Converse

Iim £V(C,)

A n—o0

D(P[| Q)

— log|C
0 lim 08 |G|
d/2 n—oo logn

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 20/35



Main Result : Strong Converse

Iim £V(C,)

A

n—0o0
F 00 e
D(P|[ Q)
d/2 EEEEEEEsEEEEEEEE —
ROy =d
0 (2) 2 im 0g |Cy|
d/2 n—oo logn
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Main Result : Strong Converse

Iim £V(C,)

A

n—oo
T OO0 e ___
D(P| Q)
d/2 --------------- —
R(l)(%) = %l fim log |Cy|
0 d/2 n—00 logn
lim £ (C,)
n—oo
0
1P = Qllx
l  Tm log |Cy|
0 ‘d/2 n—00 logn
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Main Result : Strong Converse

Iim £V(C,)

A

n—00
F 00 e
D(P| Q)
d/2 --------------- —
R(l)(%) - %l fim log‘cn‘
0 d/2 n—o00 logn
lim £ (C,)
n—00
2
1P = Qllx
1
. . T oelGl
/2 n—oo logn
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Proof Ideas : Achievability
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Weak Achievability for Relative Entropy: R (‘5)
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Weak Achievability for Relative Entropy: R?(£) <

Universal Coding, Information,
Prediction, and Estimation

JORMA RISSANEN

1—A connection between universal cotes and the problems of - Gaussian ,
Mum ot M olmRIon s SR, A Ko b woud vl 3 detersaaed by the tniormation in e data.
for the mean length of universal codes |5 shaspened nd generalized, and

aptinum universal codes constructed. “The bound is deflned o give the L INTRODUCTION
information in strings relative fo the considered class of processes. The
earlier derived mininum description length criterion for estimation of HERE are three main problems in signal processing:
|m':r;wl'r:fmz':;e;°m‘m;:ﬂ -m‘m-il;mlhl ;:uﬂlmlm prediction, data compression, and estimation. In the
v i that s estimators achiere the informa: ey i i .
ion In e strings. Tt s also ot one <amnot 4o prediction '",5‘ we are given a string of ohserved data points x,,
o t=1---,n one after another, and the objective is 1o

predict for each ¢ the next outcome x,,, from what we
et o i 15 103 s Ty 1, 984 T ok have seen so far. In the data compression problem we are .
wis presented in part al the [EEE International Symposium on Informa-  given a similar sequence of observations, each truncated to J R issanen
tion Theosy, St. Jovite, Canads, Septemoe 26-30, 1963 some finite precision, and the objective is to redescribe the .
sork was done while the author was Visiting Professor at the . °
Depariment of Syctem Scimen, Usicarsty of Califocnis, Log Angeles, AtD With @ suitably designed code es efficiently as possi-
while on leave from the [BM Research Laboratory, San Jose, CA 95193, ble, i.e., with a short code length,
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Weak Achievability for Relative Entropy: R

Universal Coding, Information,
Prediction, and Estimation

JORMA RISSANEN

—A connection between universal codes and the problems of  Gaussian

Mum et Al simion s oAbl A Ko loner ot
for the mean length of universal codes |5 shaspened nd generalized, and
optimun universal codes constructed. The bound is defined o ghe the
information in strings relative to the considered class of processes. The
earlier derived mininums description length criterion for estimation of
parameters, including their mmber, s given a fundamental information.
thearetic justification by showing that ifs extimators achieve the informa:
tion in the strings. Tt is also shown that one camnot do prediction i

Masuscript received July 13, 1983; revised Tanuary 16, 1984, This work
was presented in part at the IEEE International Symposium on Informa-
tion Theory, St. Jovite, Canada, September 26-30, 1983,

‘This work was done while the author was Visiting Professor at the
Department of Sytem, Scionce. Univeraty of Caiforns, Lot Angs
while on leave: from the TBM Research Laboratory, San Jose, CA 95163

which 15 determined by the ioTmATion in the data.
L. InTrRODUCTION

HERE are three main problems in signal processing:
prediction, data compression, and estimation, In the
first, we are given a string of observed data points x,
=1,-+,n one after another, and the objective is to
predict for each ¢ the next outcome x,,, from what we
have seen so far. In the data compression problem we are
piven a similar sequence of observations, each truncated to
some finite precision, and the objective is to redescribe the
data with a suitably designed code as efficiently as possi-
ble, i.e., with a short code length.

J. Rissanen

m Inventor of the minimum description length (MDL) principle for
model selection (among many other things).

m Quantize the MLE similarly to Rissanen.
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m Compute MLE 6, from data X".

m Encoder: Apply discretization to 6, with span t/,/n and store this
discretized parameter ¢, € ©,,, in the memory ©,,,.

t/\/?l @n,t R é;z
L q 1 e
1 ] 1

m Memoryis ©,, =0nN ﬁZd and |0,,| =< n¥/2.

m Decoder is the deterministic map from #/, to distribution P§|é"
m Can show that
im £?(C,) <

n—oo

by eventually taking ¢ | 0. But error is non-vanishing. :(

N
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B (i) 1= {in + Bi() =1, } -
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m Decoder: Uniform mixture of conditional distributions whose
moment parameter is discretized to 7,:

(P(ﬁ;l) - ‘,B ( )| Z PX”\Y nn
)

where

B (i) 1= {in + Bi() =1, } -

B (i)
m Asymptotic error under relative entropy is zero and |H,,,| = n?/2.
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Achievability for Variational Distance: R (0) < 4

m Need to assume local asymptotic normality and local asymptotic
sufficiency of MLE.

m Discretize MLE with span //n.
m Variational distance is a norm = triangle inequality

m Uniform mixture idea.
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L TRANSACTIONS OGN INFORMATION THEOKY. VoL, 36, 0. 3, My 1990

Information-Theoretic Asymptotics
of Bayes Methods

BERTRAND S. CLARKE AND ANDREW R. BARRON, MEMBER, IEEE

Absiract —1n the absence of knowledge of the rue demsity function,
Bayesian models take the joint density function for a sequence of 1
randam variabkes to be an average of densilies with respect to a prior
We cxamine the relative entropy distance D, between the Irue density
at the asymplotic distance is

the dimension of the parameter veclar
he relative entropy rate D, /n converges o zeru af rate
(log n)/ . The constant c, which we explicidy identiy. depends only an
the prior density function and the Fisher information matrix evaluated
at the teue paraimeter value, Conscquences are given for density csi
tion, universal data compression, composite hypothesis. te
stock-market portlolio selection.

ling, and

L. INTRODUCTION

FJHE RELATIVE entropy is a mathematical expres-
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we identify, We note that if the mixture excludes a
neighborhood of the true density, then the behavior of
the relative entropy is, asymptotically, of the order of the
sample size; in addition, if the prior is discrete and assigns
positive mass at d,, the relative entropy then asymptoti-
cally tends to a constant

The relative entropy rate between the true distribution
and the mixture of distributions has been examined by
Barron [4]. It is shown that if the prior assigns positive
mass to the relative entropy neighborhoods {8: DEP, || P,)
<e), e >0, then

=0 (.1
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Absiract —In the absence of knowledge of the true density function,
Bayesian modsls take the joint density function for a sequence of 1t
randam variables (o be an average of densitics with respect to a prior
We examine the relative entropy distance 0, between the true density
and the Bayesian densify and show thal the asymptotic distance is
(d/2Kiogm)+ c, where d is the dimension of the parameter veclor.
Therelore, the relative entropy rate D,
(log n)/n. The constant ¢, which we ex) en
the prier density function and the Fisher information marrix eval
at the true parameter valus. Consequences are given for density estimar
tion, universal data compression, composite hypothésis festing, and
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Weak Converse Variational Distance: R'V(0) >

m Can obtain a weak converse R()(0) > ¢ by using Clarke and
Barron’s asymptotic formula:

D( X|0

d
/ ’)1(‘9/ M(d9/)> = *IOgl’l‘i‘O(l)
o 2
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Weak Converse Variational Distance: R'V(0) >

m Can obtain a weak converse R()(0) > ¢ by using Clarke and
Barron’s asymptotic formula:

D( X|0

m Additionally use the fact that

d
/ ’)1(‘9/ M(d9/)> = *IOgl’l‘i‘O(l)
o 2

£De,) =0
and the uniform continuity of mutual information, i.e.,
[15(A; B) — Ipr(A; B)| < 3vlog(|A|[B] — 1) + 3H(v)
where

1
= Z||P P/ .
_2H Hl
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Strong Converse Variational Distance : R()(27)

m We want to show that for any sequence of codes {C, },cn such that

Iim £(M(C,) <2

n—oo

the memory size cannot be smaller than nG=) for any v > 0.
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m We want to show that for any sequence of codes {C, },cn such that

Iim £(M(C,) <2

n—o00
the memory size cannot be smaller than nG=) for any v > 0.

m Assume, to the contrary, that there exists a code C, with error
Eoo [IP4s — (22N O)],] <2

with memory size M, = O(n%ﬂ) for some v > 0.
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Strong Converse Variational Distance : R()(27)

m We want to show that for any sequence of codes {C, },cn such that

Iim £(M(C,) <2

n—o00
the memory size cannot be smaller than nG=) for any v > 0.

m Assume, to the contrary, that there exists a code C, with error
Eoo [IP4s — (22N O)],] <2

with memory size M, = O(n%ﬂ) for some v > 0.

m Define S = {0 € ©: [Py, — (vof)(0)1 <2— §}. Markov
inequality says

wS) = 4
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m Assume A < p. Then A(S) > 0.
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Strong Converse Variational Distance : R™)(27) >

m Assume A < p. Then A(S) > 0.

m Can choose 2M, points {6; : i =1,...,2M,} C S such that

. el 5 !
Py~ (oD@l <25, 1001 > xS) (2m,)

S
0 0
e 6
Q(n=217)

m Because separation is Q(n*%“), there exists disjoint D; C X",
i=1,...,2M, such that

ho (D) > 1—c.
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m Note that 3||P — Q|1 = sup, |P(A) — Q(A)|.
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m Take P = (pof(#;)) and Q = P10,
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m Note that 3||P — Q|1 = sup, |P(A) — Q(A)|.
m Take P = (pof(#;)) and Q = P10,

m This implies
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Strong Converse Variational Distance : R™)(27) >

m Note that 3||P — Q|1 = sup, |P(A) — Q(A)|.
m Take P = (pof(#;)) and Q = P10,

m This implies

1= 2 (00 f(0))(DE) — Py, (DF) = (0 £(6)(DF) — ¢

m We have

(QD Of(@,))(D,) > — €, Vi= 1,...,§Mn.

AR
o
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M, M,
M, > (<p(j))< U Dl) [¢(j) is a prob. meas.]
=1 i=1
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M, M,
M, > Z((p(j))( Dl) [¢(j) is a prob. meas.]
j=1 i=1
M, u,
_ (Z(‘P@)(Df)> (D are disjoint
i=1 N j=1
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v

Qo ~. Qlwn
< IM:
3
(o]
\

v

M, M,
(w(i))( Di) [¢(j) is a prob. meas.]
j=1 i=1
M, M,
(Z(@O))(Q)) [D; are disjoint]
i=1 N j=1
(0:))(Dy) [p ofis acvx. comb. of p(j)]

/N
&~ 2
|
(@)
N—
Il
Qlw
<
/N
|0
|
(@)}
N—

Il
—
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M, M,
m,=> 0 (U ) (4 is a prob. meas

j=1 i=1
M, M,

-3 (i) 1D, are disjoint]
i=1 N j=1
S,

> (pof(6:))(Di) ¢ of is a cvx. comb. of o(j)]
i=1
5 Mn

>3 (G-9=am (59
Contradiction if 0 < e < 5.
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Concluding Remarks

X"~ Py Y Px»
In “n

m Approximate sufficient statistics and minimum size of memory Y.

Vincent Tan (NUS) Approximate Sufficient Statistics ECE, NUS 35/35



Concluding Remarks

X"~ P;le r
n

Y

©n

13 xn

m Approximate sufficient statistics and minimum size of memory Y.

m The optimal rate ¢ (exponent in n%/2) is reduced from d (cf. exact
sufficient statistics) for multinomial distributions.
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m Weak results (weak converse and weak achievability) follow from
the results by Rissanen and Clarke-Barron.

m Achievability and strong converse parts do not follow from them.
We invented new methods.
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