LEARNING GRAPHICAL MODELSFOR HYPOTHESISTESTING
Sujay Sanghavi, Vincent Tan, Alan Willsky

LIDS, MIT

ABSTRACT We propose a novel procedure to learn sparse graphical

) models, with the aim of developing models that are efficient
We propose a novel procedure for learning tractable graphy,sgifiersas opposed to efficiertpproximators In partic-

ical models from data samples. The traditional approach iﬁlar, we develop a new performance measure for model se-

to learn models that are generically good approximations qgction, and outline a procedure fimintly learning the two
the underlying distributions. In contrast, we are integdst . 4q|o usingpoththe training sets

in learning models for a specific purpose: binary hypothesis
testing. The distributions corresponding to the hypotbese

not available, instead we are given two labelled sets afitrai 2. THE PROBLEM
ing samples.

Our procedure learns two models, one for each hypoth\Ve are interested in the following hypothesis testing eobl
esis, which are then used in a likelihood ratio test for clasX = (X1, ..., X5) is a lengthn vector of random variables,

sifying a new unlabelled sample. Each model is learnt fronfach of which can take a finite number of valués.can be
both sets of training samples. Numerical simulations showgenerated from one of two hypotheses:

that our procedure has a lower probability of classificaion

ror, as compared to a procedure that learns each model using Ho : X ~p Hy » X~q

only its own training set. The gain is more significant when

the problem size is larger and the number of training sample5he distributiong andg, or even any parametric classes they
available is smaller. may lie in, are not available a-priori. Instead, we are gieen

belled training set; and77, consisting of’ samples each,
that are generated i.i.d. accordingitandq respectively. One
1. INTRODUCTION new unlabelled sampleis given, and the problem is to clas-

sify x as coming from one of the two hypothedés or H; .
Reduced-order approximate modelling of distributionsrove A natural approach to solving this problem is(&) gen-
high-dimensional spaces is an important problem with mangrate empiricalg. from T, andq. from T}, and(b) do like-
applications. Standard approaches to this problem aim-to déihood ratio testing using., ¢.. However, when the length
velop models that are good approximations of the underlyingf the vector is large, the number of possible sample vectors
distributions. In this paper we are motivated by the follegvi s very large: if eachX; is binary, this number i&". Now,
question: can modelling can be made more effective, and apmlesskK is at least of the same order 2 thep. andg. will
proached differently, if it is known a-priori what applica  be poor approximations gfandg, and will also be inefficient
the reduced-order model is to be used for? at classification.

The particular application we are interested in is binary It is thus important to efficiently learn tractable models
hypothesis testing (or equivalently, classification), Wwhere  from insufficient data. Sparse graphical models provide a
the two candidate distributions are not known a-priori. In-natural framework for this purpose, as was illustrated most
stead, we are given two labelled training sets, one from eadbeautifully in the seminal paper by Chow and Liu [1]. In
of the two distributions, which we can use to develop modelshat paper, they consider the problem of approximating
of the distributions. Once these models are developed, a newnknown distribution from its samples. They describe a pro-
unlabelled sample is given and a likelihood ratio test uiiey  cedure for learning the tree model that maximizes the lkikeli
two models is used to classify the new sample. The class ¢food of the training samples (among the set of all possible
lower-order models we are interested in are distributibas t tree models), making it a good approximation to the true dis-
are Markov with respect to sparse graphs. tribution. Their algorithm is very efficient in time and sgac

. _ usage, and the accuracy of the procedure depends on the ac-
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sparse graphical models. All of these papers have good afro andG; so as to maximize
proximation as their objective. In contrast, in this paper w

develop an alternative application-dependent objective. Z (pe(2) — qe(z)) log (éﬁ?)
xr q z
3. LEARNING GRAPHICAL MODELS The problem of finding the best pdify, G; decomposes into
SPECIFICALLY FOR HYPOTHESISTESTING two independent problems:
In this section we describe our novel model learning proce- ma ) — a. () log Bz 1
dure, and its underlying motivation. Given models and Goxzx:(pe( )~ 4(@) log plx) )

¢, the newz is classified according to a likelihood tesi, N
is declared ifp(z) > g(z), else H; is declared. Existing I%%XZ (ge(7) = pe(2)) log 4(x) (2)
methods for learning graphical models attempt to build good *
approximations to their underlying distributions. In oet-s wherep, 7 are the projections gf., ¢. onto Gy, G; respec-
ting, this means thagi would be generated using orily, and  tively. The fact thaip and g appear in the logarithm means
q using onlyT. In contrast, our method jointly learmsand  that we can decompose the expressions in (1)-(2) into terms
g, using bothTy andT;. Additionally, it is efficient in terms  that depend only on lower-order interactions.
of time and space complexity, and its accuracy depends pri- Suppose, for example, that we are interested in generating
amrily on lower-order interactions — i.e. joint distribmtis of  tree models, i.e. we require thalandg be markov on trees.
small sets of variables — that can be inferred more accyrateln this case the distributiop(x) can be factored into terms
from limited training data sets as compared to higher-ordegver the edge§;, j) and nodes of G,
interactions.

A natural performance measure to evaluate any choice of PN H Pe(®i, ;) H pelas) A3)

€qG

P, ¢ is the probability of error. Let, be the conditional error Pz) Pe(wi)pe () |

event thatt, is mistaken to b7, . Its probability is given by

P(eo) = >, p(¥)1{G(z)>p()}- LELe1 be the the conditional It follows that the expression in (1) can be rewrittencas
error event thatd; is mistaken forH. Ideally we would like E(i’j)ego w;;, where the edge weights are given by

to minimize P(eq) and P(e;), but we dont have access to the

(1,7)€Go

true distributionsp andg. We propose using the empirical o N . Pe(i, ;)
distributionsp, andg. in their place. The resulting expres- Wi = Z (pe (i, 25) = ge(wi, 7)) log e (73)pe (1)

. ~ . (xi,x5) p Pe\T;
sion P(eo) = >, Pe()1(5)>p(2)} COUNts thefraction of B (4)

samples il misclassified as coming froid,. We attempt

to learnp, g so as to have low(eo) and P(e1). choice ofGy. Thus, the problem in (1) of finding the bes

_Sel_ecting a graphical model invol_ves_ two inter-relateél$as p . .omes a max-weight spanning tree problem with the edge
(a) finding the graph structure, ai) finding the parameters. ;aiqhts given as above. This can be efficiently solved using

Ideally both tasks should be performed jointly, but thatioe ;oaqy algorithms like Prim or Kruskal. Note also that the
qot seem to be trgctable. So we instead concentrate on .fll’ Llue of each edge weight depends only on the joint distribu-
finding good candidates for graph structure, and then flndmgOn of (the variables corresponding to) its two endpoifs:
the parameters. reasonable values of sample sizethe empirical joint distri-
bution p.(z;, z;) will be a good approximation of their true

Learning Graph Structure joint p(z;, z;).

Note also that the space and time complexity of the above
tree-finding procedure is theameas the complexity of the
Chow-Liu procedure.

and the constant =}, > p(z;) does not depend on the

We now concentrate on learning the graph structGigs=
of the modelsp, g. Given any joint distributiorp of n vari-
ables, and any grap@ with n nodes, theprojection pg of
p onto G is the distribution that is the closest toin KL i
divergence among all distributions that are a markowon L€arning Model Parameters

D(pllpa) < D(p||p’) for any otherp’ that is also markov  For the purposes of learning the graph structure, the models

on G. For the purposes of learning grapfig, G1, we will 5 2 \were merely the projections of the respective empiricals
assume thap is the projection op. onto the grapto, and ), ', onto the graph&?y, G;. However, further reductions in
similarly g is the projection of;. ontoG. P(¢,) and P(&,) are possible by changing the parameters of

Given models, g, the log-likelihood ratio of a new ob- 5 & g that they remain markov on the same graphsG,
servationz is log(‘g&i)- In order to have lowP(ep) and  learned above but are no longer the projections.of. onto
P(e1), we would like this log-likelihhod ratio to be positive if these graphs. We now motivate and describe our method to
pe(x) > ¢.(x), and negative otherwise. We propose choosingbtain the new parameters.




As a first step, note that for amy, A > 0, we have that Lemma3.3 Sy(a, \) is jointly concave in(a, A) for fixed6.
1{,>1} < a*, which gives us an upper bound 6t{e, ):
Thus, Sy can be efficiently minimized for a given fixed

P(&) < min Zpg(x) <§(:E) > A value oft;. Also, similar 'FOAO_ andS, abov_e, definell(e_ﬁ, 05,7)
A>0 p(x) andsS; (b, v), such thatS, is jointly convex inb and~ for fixed
0.

. . L o~ P
In thg follpwmg, we will optimize the parzimetersp;fq soas To find the best paif, ., we propose the following al-
to minimize the above upper bound 1), and a similar o nating procedure using, and S;: first fix 0; and find
bound onP(¢;). In doing so, we find it convenient to consider min(, ) So(a, A). Setfy = <, and findming, ) Sy (b, 7)
a, ) . ’ Y ’ .

p andg to be members of exponential families: let Setf, = % and fincimin, ) So(a, A), and so on. The values

Px) = expl(fs, bp(x)) — B(65)] (5) of 05,67 at convergence of these alternations are the output of

- ? the parameter update procedure.
and similarly forg. Hereg, (x) is a vector of functions (called

“features”) of z that characterize the graph structure(®y.
For example, ifX is binary andp is Markov on Gy, one

choice for¢,(x) could b_e that. it contain all functions of the Interestingly, the paramter learning procedure abovedasae
type ¢;(x) = x; for variablesi, and¢;;(x) = wz; forall 4, yhe error exponent of the hypothesis test. This connectio
edgei, j) € Go. The features characterize the family (in our gg 65 a5 additional motivation for the procedure. We now
example the family of all distributions Markov afj), and briefly describe the connection
the vector' of parametgn%ﬁ specifies the particular me_mber Suppose, as before, that we were intersted in declaring a
of the family. The functiorib(6), also called the log-partition hypothesis I, or H,) based on a likelihood ratio test using
function, is a normalization constant. In this exponeritiad- odelsp, 3. However, we are now give/ new samples
lly nota_tion, we are ?nterested in finding a good choice OtIenither aII7generated i.i.d. according o or all according to,
05, 03 given the families,, ¢,. The following lemma mo- q. Letel! be the (conditional) error event tha is declared
tivates the use of convex optimization to achieve this goaIWh en the truth wag,. It is reasonable to expect th&(el)

. 0

This conngction to convex optimi;ation is the reason we USHill decrease to 0 exponentially it/, and the corresponding
the formalism of exponential families. error exponents defined as

Connection to Error Exponents

. A
Lemma3.1 Let Ay(65,07,\) = log [pre(x) (%) ]

Then, A is convex irf; for fixedd; and A. Also, A is convex
in X for fixedf; and 6.

o 1
Eo(p,q) = Jim_——-log P(eg’)

The following lemma gives an expression (D, q).

Note thatlog x is an increasing function, and hence mini-

N ~ A
imizing Ay is equivalent to minimizing__ p.(z) (%) - Lemma34 Ey(5,§) = max —log [Zp(x) (qA(:v)) ]
However, note tha#l, may not bejointly convex in\ and A0 a: p(x)
05, for fixed 5. To enable efficient minimization, we now

construct an upper bound ofy, thatis jointly convex in its Note the close similarity between the above expression
parameters. As a first step to this upper bound, we prove tr@nd that of4, in Lemma 3.1. In particular, if we replage
following property for®, the log-partition function. with p. in the above expression, then the right hand side is

_ _ _ _ exactly—Aq (05, 05, A). Thus minimizingA, is equivalent to
Lemma 3.2 For any exponential family defined on a discrete minimizing (an empirical version of) the error exponent.
model and any, if 0 < A < 1then\®(f) < ®(\F) and if

A > 1thenA®(0) > & (\0).
4. NUMERICAL SIMULATIONS
Note now that4, can be written as

log l S pe@)a(e) e )
x

Lemma 3.2 implies thatfox < 1, Ay (05, 05, A) < So(A05, A)
where for anyu and\ > 0, Sp(a, ) is given by

In this section, we present numerical results to validage th
theory and algorithm presented in the preceding section. In
our simulationsX is a binary vector of length, and the true
distributionsp andgq are tree-structured distributions. For the
selection ofp, first a random tree structurg; onn nodes is
chosen as followsi = 1 is the root, anty(x1) is bernoulli
with parameter chosen uniformly at random frfgml]. Each

So(a, \) = log [ Zpe(x)[a(x)}ke<“’¢P(m)>+q’(“)1 node2 < i < n chooses a “parent}(i) uniformly from

x the set{1,...,i — 1}. Then, for eachi > 2 the conditional




distributionp(z; |z ;(;)) is chosen to be bernoulli, with the pa- performance for new samples. Figure 1 indicates that this
rameters of the bernoulli distribution chosen randomlyrfro generalization may not hold. Figure 2 plots the average of

[0,1]. p is then given by P(¢ép) and P(e1) as a function ofK for different sizesn.
We see that the alternating parameter learning procathes
p(z) = pla1) [[ p(ilz;a) lead to lowerP(¢y) and P(¢;), the purpose for which it was
i>2 designed.

Note thatp is markov with respect to the tr&&}, which has

as its edgesi, j(4)) for all i > 2. This form of specification 5. CONCLUSION AND DISCUSSION

for p enables easy generation of samples. The distribytion . ]

corresponding to hypothesi, is also generated by a similar !N this paper we motivate and develop a novel procedure for
procedure. For the training set&, samples are generated learning tractable graphical models specifically for the-pu

from each ofp andg. The resulting empirical distributions POS€ Of binary hypothesis testing. The novelty arises fien t
from the training sets ang. andg,. fact that each model is learnt using samples drawn fiooth

In our simulations, the class of sparse graphical mode@andidate distributions. Numerical simulations show kbarn-

we are interested in learning are those that are markov dR9 €ach model from both sets of samples leads to a lower
trees. The graph structuré, G, of j, g are chosen accord- clasification error as compqred to Igarn!ng each modgl_from
ing to the rules (1)-(2). This means that, as explained lefor NIy one set of samples. This reduction in error probabisity
the graphG,, for p is the max-weight spanning tree when the ©Specially evident for larger problem sizes and fewer ingin
edge weights are as given by (4). Similarly the gréhtfor ¢ samples, WhICh is often the scenario of mterest._Adanign_a
will be a max-weight spanning tree with edge weights simila2n altérnating paramter-learning procedure, which hasefnig

to (4), but withp. andg, interchanged. complexity, is shown to reduce the number of misclassified
Figure 1 depicts the first set of simulation results, plot-training samples. _ _ _ _
ting the probability of classification error for new sampées We believe this work raises many interesting questions.

a function of the numbek of training samples for three dif- Primary among them is the odd dichotomy in the performance
ferent problem sizesz = 20, 60, 100. Each figure has three of _the parameter learning procedure: it leads to h|gher—prob
curves: one is the “CL” curve, where classification is done bybility of error for new samples, but lower for the training
learning models according to the classical Chow-Liu proceS@mples. This suggests that it is somehow “overfitted” to the
dure (i.e.p is learnt only fromT, andg only from T}). The t_ra_mmg data. A qu|f|cat|on of this m_ethod t_o pre_vent__over-
next curve is the “LGMHT-proj” curve, wherefor which we fitting would be of interest. Another interesting directiisn
setp, g to just be the projections gk, ¢. ontoGy, G, repsec- the problem where there are multiple hypotheses.
tively, without further optimizing the paramters pfg. That
is, we assume that is as given by (3). Note that the com- 6. REFERENCES
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Fig. 1. Classification ohewsamples. Probability of error is
fraction of misclassified samples from a set of 1000 sample
500 of each distribution

Fig. 2. Classification of training samples. Probability of error
¥s the average oP(ey) andP(ey).



