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ABSTRACT

We propose a novel procedure for learning tractable graph-
ical models from data samples. The traditional approach is
to learn models that are generically good approximations of
the underlying distributions. In contrast, we are interested
in learning models for a specific purpose: binary hypothesis
testing. The distributions corresponding to the hypotheses are
not available, instead we are given two labelled sets of train-
ing samples.

Our procedure learns two models, one for each hypoth-
esis, which are then used in a likelihood ratio test for clas-
sifying a new unlabelled sample. Each model is learnt from
both sets of training samples. Numerical simulations show
that our procedure has a lower probability of classificationer-
ror, as compared to a procedure that learns each model using
only its own training set. The gain is more significant when
the problem size is larger and the number of training samples
available is smaller.

1. INTRODUCTION

Reduced-order approximate modelling of distributions over
high-dimensional spaces is an important problem with many
applications. Standard approaches to this problem aim to de-
velop models that are good approximations of the underlying
distributions. In this paper we are motivated by the following
question: can modelling can be made more effective, and ap-
proached differently, if it is known a-priori what application
the reduced-order model is to be used for?

The particular application we are interested in is binary
hypothesis testing (or equivalently, classification), butwhere
the two candidate distributions are not known a-priori. In-
stead, we are given two labelled training sets, one from each
of the two distributions, which we can use to develop models
of the distributions. Once these models are developed, a new
unlabelled sample is given and a likelihood ratio test usingthe
two models is used to classify the new sample. The class of
lower-order models we are interested in are distributions that
are Markov with respect to sparse graphs.
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We propose a novel procedure to learn sparse graphical
models, with the aim of developing models that are efficient
classifiersas opposed to efficientapproximators. In partic-
ular, we develop a new performance measure for model se-
lection, and outline a procedure forjointly learning the two
models, usingboththe training sets.

2. THE PROBLEM

We are interested in the following hypothesis testing problem:
X = (X1, . . . ,Xn) is a lengthn vector of random variables,
each of which can take a finite number of values.X can be
generated from one of two hypotheses:

H0 : X ∼ p H1 : X ∼ q

The distributionsp andq, or even any parametric classes they
may lie in, are not available a-priori. Instead, we are givenla-
belled training setsT0 andT1, consisting ofK samples each,
that are generated i.i.d. according top andq respectively. One
new unlabelled samplex is given, and the problem is to clas-
sify x as coming from one of the two hypothesesH0 or H1.

A natural approach to solving this problem is to(a) gen-
erate empiricalspe from T0 andqe from T1, and(b) do like-
lihood ratio testing usingpe, qe. However, when the lengthn
of the vector is large, the number of possible sample vectors
is very large: if eachXi is binary, this number is2n. Now,
unlessK is at least of the same order as2n, thepe andqe will
be poor approximations ofp andq, and will also be inefficient
at classification.

It is thus important to efficiently learn tractable models
from insufficient data. Sparse graphical models provide a
natural framework for this purpose, as was illustrated most
beautifully in the seminal paper by Chow and Liu [1]. In
that paper, they consider the problem of approximatingone
unknown distribution from its samples. They describe a pro-
cedure for learning the tree model that maximizes the likeli-
hood of the training samples (among the set of all possible
tree models), making it a good approximation to the true dis-
tribution. Their algorithm is very efficient in time and space
usage, and the accuracy of the procedure depends on the ac-
curacy of learningpairwisemarginal distributions from data
(instead of higher-order interactions). There has been a lot of
other work (see e.g. [2, 3]) on exact/approximate learning of



sparse graphical models. All of these papers have good ap-
proximation as their objective. In contrast, in this paper we
develop an alternative application-dependent objective.

3. LEARNING GRAPHICAL MODELS
SPECIFICALLY FOR HYPOTHESIS TESTING

In this section we describe our novel model learning proce-
dure, and its underlying motivation. Given models fp̂ and
q̂, the newx is classified according to a likelihood test:H0

is declared ifp̂(x) > q̂(x), elseH1 is declared. Existing
methods for learning graphical models attempt to build good
approximations to their underlying distributions. In our set-
ting, this means that̂p would be generated using onlyT0, and
q̂ using onlyT1. In contrast, our method jointly learnŝp and
q̂, using bothT0 andT1. Additionally, it is efficient in terms
of time and space complexity, and its accuracy depends pri-
amrily on lower-order interactions – i.e. joint distributions of
small sets of variables – that can be inferred more accurately
from limited training data sets as compared to higher-order
interactions.

A natural performance measure to evaluate any choice of
p̂, q̂ is the probability of error. Lete0 be the conditional error
event thatH0 is mistaken to beH1. Its probability is given by
P (e0) =

∑
x p(x)1{bq(x)≥bp(x)}. Let e1 be the the conditional

error event thatH1 is mistaken forH0. Ideally we would like
to minimizeP (e0) andP (e1), but we dont have access to the
true distributionsp and q. We propose using the empirical
distributionspe andqe in their place. The resulting expres-
sion P (ẽ0) =

∑
x pe(x)1{bq(x)≥bp(x)} counts thefraction of

samples inT0 misclassified as coming fromH1. We attempt
to learnp̂, q̂ so as to have lowP (ẽ0) andP (ẽ1).

Selecting a graphical model involves two inter-related tasks:
(a) finding the graph structure, and(b) finding the parameters.
Ideally both tasks should be performed jointly, but that does
not seem to be tractable. So we instead concentrate on first
finding good candidates for graph structure, and then finding
the parameters.

Learning Graph Structure

We now concentrate on learning the graph structuresG0, G1

of the modelŝp, q̂. Given any joint distributionp of n vari-
ables, and any graphG with n nodes, theprojectionpG of
p onto G is the distribution that is the closest top in KL
divergence among all distributions that are a markov onG:
D(p||pG) ≤ D(pe||p

′) for any otherp′ that is also markov
on G. For the purposes of learning graphsG0, G1, we will
assume that̂p is the projection ofpe onto the graphG0, and
similarly q̂ is the projection ofqe ontoG1.

Given modelŝp, q̂, the log-likelihood ratio of a new ob-
servationx is log( bp(x)

bq(x) ). In order to have lowP (ẽ0) and
P (ẽ1), we would like this log-likelihhod ratio to be positive if
pe(x) > qe(x), and negative otherwise. We propose choosing

G0 andG1 so as to maximize

∑

x

(pe(x) − qe(x)) log

(
p̂(x)

q̂(x)

)

The problem of finding the best pairG0, G1 decomposes into
two independent problems:

max
G0

∑

x

(pe(x) − qe(x)) log p̂(x) (1)

max
G1

∑

x

(qe(x) − pe(x)) log q̂(x) (2)

wherep̂, q̂ are the projections ofpe, qe onto G0, G1 respec-
tively. The fact that̂p and q̂ appear in the logarithm means
that we can decompose the expressions in (1)-(2) into terms
that depend only on lower-order interactions.

Suppose, for example, that we are interested in generating
tree models, i.e. we require thatp̂ andq̂ be markov on trees.
In this case the distribution̂p(x) can be factored into terms
over the edges(i, j) and nodesi of G0

p̂(x) =
∏

(i,j)∈G0

pe(xi, xj)

pe(xi)pe(xj)

∏

i∈G0

pe(xi) (3)

It follows that the expression in (1) can be rewritten asc +∑
(i,j)∈G0

wij , where the edge weights are given by

wij =
∑

(xi,xj)

(pe(xi, xj) − qe(xi, xj)) log
pe(xi, xj)

pe(xi)pe(xj)

(4)
and the constantc =

∑
i

∑
xi

pe(xi) does not depend on the
choice ofG0. Thus, the problem in (1) of finding the bestG0

becomes a max-weight spanning tree problem with the edge
weights given as above. This can be efficiently solved using
greedy algorithms like Prim or Kruskal. Note also that the
value of each edge weight depends only on the joint distribu-
tion of (the variables corresponding to) its two endpoints.For
reasonable values of sample sizeK, the empirical joint distri-
bution pe(xi, xj) will be a good approximation of their true
joint p(xi, xj).

Note also that the space and time complexity of the above
tree-finding procedure is thesameas the complexity of the
Chow-Liu procedure.

Learning Model Parameters

For the purposes of learning the graph structure, the models
p̂, q̂ were merely the projections of the respective empiricals
pe, qe onto the graphsG0, G1. However, further reductions in
P (ẽ1) andP (ẽ2) are possible by changing the parameters of
p̂, q̂, so that they remain markov on the same graphsG0, G1

learned above but are no longer the projections ofpe, qe onto
these graphs. We now motivate and describe our method to
obtain the new parameters.



As a first step, note that for anya, λ ≥ 0, we have that
1{a≥1} ≤ aλ, which gives us an upper bound onP (ẽ0):

P (ẽ0) ≤ min
λ≥0

∑

x

pe(x)

(
q̂(x)

p̂(x)

)λ

In the following, we will optimize the parameters ofp̂, q̂ so as
to minimize the above upper bound onP (ẽ0), and a similar
bound onP (ẽ1). In doing so, we find it convenient to consider
p̂ andq̂ to be members of exponential families: let

p̂(x) = exp[〈θbp, φp(x)〉 − Φ(θbp)] (5)

and similarly forq̂. Hereφp(x) is a vector of functions (called
“features”) ofx that characterize the graph structure ofG0.
For example, ifX is binary andp̂ is Markov onG0, one
choice forφp(x) could be that it contain all functions of the
type φi(x) = xi for variablesi, andφij(x) = xixj for all
edges(i, j) ∈ G0. The features characterize the family (in our
example the family of all distributions Markov onG0), and
the vector of parametersθbp specifies the particular member
of the family. The functionΦ(θ), also called the log-partition
function, is a normalization constant. In this exponentialfam-
ily notation, we are interested in finding a good choice of
θbp, θbq given the familiesφp, φq. The following lemma mo-
tivates the use of convex optimization to achieve this goal.
This connection to convex optimization is the reason we use
the formalism of exponential families.

Lemma 3.1 Let A0(θbp, θbq, λ) = log

[∑
x pe(x)

(
bq(x)
bp(x)

)λ
]
.

Then,A0 is convex inθbp for fixedθbq andλ. Also,A0 is convex
in λ for fixedθbp andθbq.

Note thatlog x is an increasing function, and hence mini-

imizing A0 is equivalent to minimizing
∑

x pe(x)
(

bq(x)
bp(x)

)λ

.

However, note thatA0 may not bejointly convex inλ and
θbp, for fixed θbq. To enable efficient minimization, we now
construct an upper bound onA0 that is jointly convex in its
parameters. As a first step to this upper bound, we prove the
following property forΦ, the log-partition function.

Lemma 3.2 For any exponential family defined on a discrete
model and anyθ, if 0 ≤ λ ≤ 1 thenλΦ(θ) ≤ Φ(λθ) and if
λ ≥ 1 thenλΦ(θ) ≥ Φ(λθ).

Note now thatA0 can be written as

log

[
∑

x

pe(x)[q̂(x)]λe−λ〈θbp,φp(x)〉+λΦ(θbp)

]

Lemma 3.2 implies that forλ ≤ 1, A0(θbp, θbq, λ) ≤ S0(λθbp, λ)
where for anya andλ ≥ 0, S0(a, λ) is given by

S0(a, λ) = log

[
∑

x

pe(x)[q̂(x)]λe−〈a,φp(x)〉+Φ(a)

]

Lemma 3.3 S0(a, λ) is jointly concave in(a, λ) for fixedθbq.

Thus,S0 can be efficiently minimized for a given fixed
value ofθbq. Also, similar toA0 andS0 above, defineA1(θbp, θbq, γ)
andS1(b, γ), such thatS1 is jointly convex inb andγ for fixed
θbp.

To find the best pairθbp, θbq, we propose the following al-
ternating procedure usingS0 and S1: first fix θbq and find
min(a,λ) S0(a, λ). Setθbp = a

λ
, and findmin(b,γ) S1(b, γ).

Setθbq = b
γ

, and findmin(a,λ) S0(a, λ), and so on. The values
of θbp, θbq at convergence of these alternations are the output of
the parameter update procedure.

Connection to Error Exponents

Interestingly, the paramter learning procedure above is related
to the error exponent of the hypothesis test. This connection
serves as additional motivation for the procedure. We now
briefly describe the connection.

Suppose, as before, that we were intersted in declaring a
hypothesis (H0 or H1) based on a likelihood ratio test using
modelsp̂, q̂. However, we are now givenM new samples,
either all generated i.i.d. according top, or all according to
q. Let eM

0 be the (conditional) error event thatH1 is declared
when the truth wasH0. It is reasonable to expect thatP (eM

0 )
will decrease to 0 exponentially inM , and the corresponding
error exponentis defined as

E0(p̂, q̂) = lim
M→∞

−
1

M
log P (eM

0 )

The following lemma gives an expression forE0(p̂, q̂).

Lemma 3.4 E0(p̂, q̂) = max
λ≥0

− log

[
∑

x

p(x)

(
q̂(x)

p̂(x)

)λ
]

Note the close similarity between the above expression
and that ofA0 in Lemma 3.1. In particular, if we replacep
with pe in the above expression, then the right hand side is
exactly−A0(θbp, θbq, λ). Thus minimizingA0 is equivalent to
minimizing (an empirical version of) the error exponent.

4. NUMERICAL SIMULATIONS

In this section, we present numerical results to validate the
theory and algorithm presented in the preceding section. In
our simulationsX is a binary vector of lengthn, and the true
distributionsp andq are tree-structured distributions. For the
selection ofp, first a random tree structureG∗

0 on n nodes is
chosen as follows:i = 1 is the root, andp(x1) is bernoulli
with parameter chosen uniformly at random from[0, 1]. Each
node2 ≤ i ≤ n chooses a “parent”j(i) uniformly from
the set{1, . . . , i − 1}. Then, for eachi ≥ 2 the conditional



distributionp(xi|xj(i)) is chosen to be bernoulli, with the pa-
rameters of the bernoulli distribution chosen randomly from
[0, 1]. p is then given by

p(x) = p(x1)
∏

i≥2

p(xi|xj(i))

Note thatp is markov with respect to the treeG∗
0, which has

as its edges(i, j(i)) for all i ≥ 2. This form of specification
for p enables easy generation of samples. The distributionq

corresponding to hypothesisH1 is also generated by a similar
procedure. For the training sets,K samples are generated
from each ofp andq. The resulting empirical distributions
from the training sets arepe andqe.

In our simulations, the class of sparse graphical models
we are interested in learning are those that are markov on
trees. The graph structuresG0, G1 of p̂, q̂ are chosen accord-
ing to the rules (1)-(2). This means that, as explained before,
the graphG0 for p̂ is the max-weight spanning tree when the
edge weights are as given by (4). Similarly the graphG1 for q̂

will be a max-weight spanning tree with edge weights similar
to (4), but withpe andqe interchanged.

Figure 1 depicts the first set of simulation results, plot-
ting the probability of classification error for new samplesas
a function of the numberK of training samples for three dif-
ferent problem sizes:n = 20, 60, 100. Each figure has three
curves: one is the “CL” curve, where classification is done by
learning models according to the classical Chow-Liu proce-
dure (i.e. p̂ is learnt only fromT0 and q̂ only from T1). The
next curve is the “LGMHT-proj” curve, wherefor which we
setp̂, q̂ to just be the projections ofpe, qe ontoG0, G1 repsec-
tively, without further optimizing the paramters ofp̂, q̂. That
is, we assume that̂p is as given by (3). Note that the com-
plexity of the LGMHT-proj procedure is identical to that of
the Chow-Liu procedure.

From Figs 1(b) and 1(c), we observe that the LGMHT-
proj algorithm has a lower probability of error than the Chow-
Liu algorithm, especially for smaller values of the numberK

of training samples and larger sizen of the problem instance.
For instance, for the 100 node example with 40 training sam-
ples, thePr(err) was reduced from 0.35 to 0.12-3, a threefold
improvement. Large problems with small samples sizes are
frequently the setting of interest in many practical situations
e.g.seismic or medical data.

The final curve in Figure 1 is “LGMHT-altmax”, where
we optimize the paramters using the procedure described in
the last section. It is seen that performance of the alternat-
ing minimization procedure is actually worse than the perfor-
mance of LGMHT-proj, which just used the paramters from
pe. Interestingly however, its performance is starkly different
when applied to the training samples.

Recall that the alternating minimization procedure was
developed with the aim of reducingP (ẽ0) and P (ẽ1), the
fraction of misclassified samplesin the training data, with
the hope that the new parameters would generalize to better

performance for new samples. Figure 1 indicates that this
generalization may not hold. Figure 2 plots the average of
P (ẽ0) and P (ẽ1) as a function ofK for different sizesn.
We see that the alternating parameter learning proceduredoes
lead to lowerP (ẽ0) andP (ẽ1), the purpose for which it was
designed.

5. CONCLUSION AND DISCUSSION

In this paper we motivate and develop a novel procedure for
learning tractable graphical models specifically for the pur-
pose of binary hypothesis testing. The novelty arises from the
fact that each model is learnt using samples drawn fromboth
candidate distributions. Numerical simulations show thatlearn-
ing each model from both sets of samples leads to a lower
clasification error as compared to learning each model from
only one set of samples. This reduction in error probabilityis
especially evident for larger problem sizes and fewer training
samples, which is often the scenario of interest. Additionally,
an alternating paramter-learning procedure, which has higher
complexity, is shown to reduce the number of misclassified
training samples.

We believe this work raises many interesting questions.
Primary among them is the odd dichotomy in the performance
of the parameter learning procedure: it leads to higher prob-
ability of error for new samples, but lower for the training
samples. This suggests that it is somehow “overfitted” to the
training data. A modification of this method to prevent over-
fitting would be of interest. Another interesting directionis
the problem where there are multiple hypotheses.
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Fig. 1. Classification ofnewsamples. Probability of error is
fraction of misclassified samples from a set of 1000 samples,
500 of each distribution
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Fig. 2. Classification of training samples. Probability of error
is the average ofP (ẽ0) andP (ẽ1).


