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Graphical Models
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Marriage of probability theory and graph theory

Nodes correspond to random variables

Edges represent statistical dependence between variables

Graphical models encode conditional independence between variables

X2 and X3 are conditionally independent, given X1, i.e.,

P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x1)
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Graphical Models

In general, the distribution P, of a random vector X := [X1, . . . ,Xp],
with corresponding graph G = (V, E), satisfies the property:

P(xi |xV\i ) = P(xi |xnbd(i)),

where nbd(i) := {j ∈ V : {i , j} ∈ E} is the neighborhood of node i .

Graphical models have found extensive application in
I Image denoising
I Natural language processing
I Combinatorial optimization

Example: Lattice graphical model for image pixels
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Tree-structured Graphical Models

We study tree-structured graphical models over p nodes

In an undirected tree, we may assume that node 1 is the root node

So, if x := (x1, . . . , xp), then graphical model P factors as

P(x) = P1(x1)

p∏
i=2

Pi |pa(i)(xi |xpa(i)),

where pa(i) denotes the unique parent node of node i .

A simple example (biomedical):
Di nodes: Diseases
Sj nodes: Symptoms
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Part I: Exact asymptotics for homogeneous tree models

Part I
I Homogeneous tree model
I Identically distributed noise
I Exact asymptotics using strong large deviation theory

Part II
I Non-identically distributed noise
I Exact tree structure recovery may be impossible in some cases
I Robust Learning: Partial tree structure recovery (up to equivalence

class) under non-identical noise
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Tree-structured Graphical Models: System Model
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We consider binary random variables with alphabet X = {0, 1}

Graphical model P, for p > 2 nodes, has the following properties:

P1: Zero external field: The marginals are uniform, i.e.

Pi (0) = Pi (1) = 0.5, 1 ≤ i ≤ p.

P2: θ-Homogeneity: For every edge {i , j} ∈ EP , we have

Pi,j(0, 1) = Pi,j(1, 0) =
θ

2
, θ ∈ (0, 0.5).

I Corresponds to homogeneous Ising model with zero external field
I θ can be viewed as the crossover probability
I 0 < θ < 0.5 implies a positive correlation along the edges
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Problem: Tree Learning with Side Information

Given n i.i.d. p-dimensional samples xn := {x1, . . . , xn} from an
unknown P ∈ D(T p, θ), where

D(T p, θ) =

{
tree distributions on {0, 1}p satisfying

Zero external field & θ-Homogeneity

}
.

Problem: Given xn, learn the underlying tree structure of P with side
information that P satisfies Zero external field & θ-Homogeneity.

Error event:
AP(n) := {EML(xn) 6= EP}

Given xn, the ML estimator of the unknown distribution P is

PML(xn) := arg max
Q∈D(T p ,θ)

n∑
k=1

logQ(xk)
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Maximum Likelihood Estimation

Given xn, its empirical distribution (or joint type) is

P̂(x) :=
1

n

n∑
k=1

1{xk = x}, x ∈ X p,

We have

PML(xn) = arg max
Q∈D(T p ,θ)

∑
x∈X p

P̂(x) logQ(x)

= arg min
Q∈D(T p ,θ)

D(P̂‖Q)

Reverse I-Projection
�
�
�
�
�

�
�
�
�
�

w
w
D(T p, θ)

P̂

PML(xn)

When θ is known, {EML(xn) 6= EP} = {PML(xn) 6= P}
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Maximum Likelihood Estimation: Simplified formulation

Let P̂i ,j(xi , xj) denote the marginal of P̂(x) on the pair of nodes (i , j),

with i 6= j , and define Âi ,j as

Âi ,j := P̂i ,j(0, 0) + P̂i ,j(1, 1)

Âi ,j can be interpreted at the agreement of nodes i and j .

EML(xn) can be obtained as the edge set of a maximum weight
spanning tree (MWST)

Weights of the MWST are {Âi ,j}. Equivalently,

PML(xn) = arg max
Q∈D(T p ,θ)

∑
{i ,j}∈EQ

Âi ,j ,

where EQ denotes the edge set of the tree distribution Q
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Âi ,j can be interpreted at the agreement of nodes i and j .

EML(xn) can be obtained as the edge set of a maximum weight
spanning tree (MWST)

Weights of the MWST are {Âi ,j}. Equivalently,

PML(xn) = arg max
Q∈D(T p ,θ)

∑
{i ,j}∈EQ
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Classical Chow-Liu alogorithm

In the absence of the side information—Zero external field and
θ-Homogeneity—tree can be learned via the Chow-Liu algorithm
[IT’68] where

ECL(xn) = arg max
E is a tree

∑
{i ,j}∈E

Îi ,j ,

where Îi ,j is the empirical mutual information

Îi ,j = I (P̂i ,j) :=
∑

(xi ,xj )∈X 2

P̂i ,j(xi , xj) log
P̂i ,j(xi , xj)

P̂i (xi )P̂j(xj)

Agreement Âi ,j simplifies Îi ,j with side information.

Âi ,j := P̂i ,j(0, 0) + P̂i ,j(1, 1)
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Agreement Âi ,j simplifies Îi ,j with side information.
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Error Exponent
The error exponent (using the ML algorithm) is defined as

KP := lim
n→∞

−1

n
logP (EML(xn) 6= EP)

KP characterizes the exponential decay rate of error probability with n, i.e.,

P (EML(xn) 6= EP) ≈ exp
(
− nKP

)
.

Theorem 1 (Tandon, T. and Zhu (2020))

For P ∈ D(T p, θ), we have

KP = log
1

1− θ
(
1−

√
4θ(1− θ)

) and KP = KCL
P .

KCL
P = KP =⇒ No advantage (from the error exponent perspective)

in having the side information of zero external field and Homogeneity.

When the sample size is extremely small, side information yields
smaller error probabilities over the vanilla Chow-Liu procedure
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Related Work: Bresler and Karzand [Ann. Statist. 2020]

Bresler and Karzand considered general Ising tree models, that
allowed for different correlations along the edges

Provided a non-asymptotic upper bound on the error probability

P (EML(xn) 6= EP) ≤ 2p2 exp
(
− nKBK

P

)
,

where the exponent KBK
P , upon specializing to our model, is

KBK
P =

θ (1− 2θ)2

8

For any P ∈ D(T p, θ), we have

KBK
P <

KP

3

Implies that BK’s upper bound on the error probability is rather loose
asymptotically
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Exact Asymptotics: 3 nodes

Let P ∈ D(T 3, θ), and define

����X1

����
θ
�
�
�

X2 ����A
A
A θ

X3

f̃ (n) :=
exp(−nKP)√

2πσ2n

[
1 +

1− 3σ2

8σ2n

]
,

f (n) :=
f̃ (n)

1− z

[
1− z(1 + z)

2(1− z)2σ2n

]
,

z :=

√
θ

1− θ
,

σ2 := θ
√

4θ(1− θ) exp(KP)

Theorem 2 (Tandon, T. and Zhu (2020))

When ties are randomly broken in an MWST algorithm, then

P (EML(xn) 6= EP) =
(
2f (n)− f̃ (n)

)(
1 + o(n−1)

)
Strong large deviations by Blackwell and Hodges [Ann. Math. Statist.’59]
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Main Result: Exact Asymptotics (p nodes)

For P ∈ D(T p, θ), let di denote the degree of node i in the tree
corresponding to P, and define

ζP :=

p∑
i=1

di (di − 1)

2

When ties are randomly broken in an MWST algorithm, then we have

P (EML(xn) 6= EP) = ζP
(
2f (n)− f̃ (n)

)(
1 + o(n−1)

)
ζP accounts for the number of 3-node sub-trees of TP that contribute
to dominant errors

f (n) and f̃ (n) do not depend on the particular choice of P, but the
multiplicative factor ζP depends on the underlying tree structure
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Extension: Noisy Samples Setting

Observed samples are noise-corrupted versions of the samples
generated from the underlying tree-structured graphical model

����Y1

����X1

����
θ
�
�
�

X2 ����A
A
A θ

X3����Y2 ����Y3
q q

q

Observe samples from (Y1,Y2,Y3) instead of (X1,X2,X3).

Noise crossover probability q constant across nodes.
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Extension: Noisy Samples Setting

Observe noisy sample y = [y1, . . . , yp] ∼ P(q), where y is the output
when each component of x is passed through a BSC with crossover
probability 0 ≤ q < 0.5

The distribution of the noisy samples P(q) is

P(q)(y) =
∑
x∈X p

qδx,y(1− q)p−δx,yP(x), y ∈ Yp = {0, 1}p,

where δx,y denotes the Hamming distance between x and y

Extend our results for the tree learning problem with noisy samples,
providing an explicit characterization of the error exponent and exact
error asymptotics
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Numerical Results: Comparing Error Exponents
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Comparison of error exponents using (a) noiseless samples, and (b) noisy samples

− KBK
P is the exponent by Bresler and Karzand [Ann. Statist.’20]

− K
NKS(q)
P is the exponent by Nikolakakis, Kalogerias, and Sarwate [AISTATS’19]
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Numerical Results: Error Asymptotics (p = 3)
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Comparison of the theoretical error asymptotics for the noiseless and noisy sample

setting, for a 3-node tree, with corresponding simulation results
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Extremal Tree Structures
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u u u u u
Markov chain

For a given p, ζP =
∑p

i=1
di (di−1)

2 is maximized (resp. minimized)
when the underlying tree structure is a star (resp. Markov chain)

Specifically, ζstarP = (p − 1)(p − 2)/2 and ζMC
P = p − 2.

Error prob. is also max (resp. min) when tree is a star (resp. MC)

An intermediate tree-structure:

u u u u u u
u
u
u

�
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u@
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Hybrid tree

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 19 / 52



Extremal Tree Structures

u
u
u
u
u

Star tree

u u u u u
Markov chain

For a given p, ζP =
∑p

i=1
di (di−1)

2 is maximized (resp. minimized)
when the underlying tree structure is a star (resp. Markov chain)

Specifically, ζstarP = (p − 1)(p − 2)/2 and ζMC
P = p − 2.

Error prob. is also max (resp. min) when tree is a star (resp. MC)

An intermediate tree-structure:

u u u u u u
u
u
u

�
��

u@
@@

Hybrid tree

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 19 / 52



Extremal Tree Structures

u
u
u
u
u

Star tree

u u u u u
Markov chain

For a given p, ζP =
∑p

i=1
di (di−1)

2 is maximized (resp. minimized)
when the underlying tree structure is a star (resp. Markov chain)

Specifically, ζstarP = (p − 1)(p − 2)/2 and ζMC
P = p − 2.

Error prob. is also max (resp. min) when tree is a star (resp. MC)

An intermediate tree-structure:

u u u u u u
u
u
u

�
��

u@
@@

Hybrid tree

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 19 / 52



Extremal Tree Structures

u
u
u
u
u

Star tree

u u u u u
Markov chain

For a given p, ζP =
∑p

i=1
di (di−1)

2 is maximized (resp. minimized)
when the underlying tree structure is a star (resp. Markov chain)

Specifically, ζstarP = (p − 1)(p − 2)/2 and ζMC
P = p − 2.

Error prob. is also max (resp. min) when tree is a star (resp. MC)

An intermediate tree-structure:

u u u u u u
u
u
u

�
��

u@
@@

Hybrid tree

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 19 / 52



Numerical Results: Error Asymptotics (p = 10)
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Comparison of theoretical and simulation results for the noiseless (q = 0) and noisy

sample setting (q = 0.02) for 10-node trees with θ = 0.4

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 20 / 52



Conclusions

Strong large deviations approach to compute the exact asymptotics
for learning trees given noiseless and noisy samples

Refined estimates of the error probability in learning graphical models

I For the noiseless and noisy cases respectively, we significantly improved
on the error exponents derived by Bresler-Karzand [Ann. Statist.’20]
and Nikolakakis-Kalogerias-Sarwate [AISTATS’19]

I Our theoretical results were in keen agreement with numerical
simulations at relatively small sample sizes

Future work: High-dimensional setting where p grows with n
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Part II: Partial tree recovery under non-identical noise

Part I
I Homogeneous tree model
I Identically distributed noise
I Exact asymptotics using strong large deviation theory

Part II
I Non-identically distributed noise
I Exact tree structure recovery may be impossible in some cases
I Robust Learning: Partial tree structure recovery (up to equivalence

class) under non-identical noise
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Ising Models with Non-Identical Noisy Observations

Random variables are zero mean with alphabet X = {+1,−1}
The joint distribution of X = (X1, . . . ,Xp) is given by

PX(x) =
1

Z
exp

( ∑
{i ,j}∈E

βi ,j xixj

)
,

where Z is a normalization factor called the partition function

For a tree, if {i , j} ∈ E then

ρi ,j = E[XiXj ] = tanh(βi ,j)

Noise Model: Observe Yi = XiNi , where

Pr(Ni = −1) = qi and Pr(Ni = +1) = 1− qi

with 0 ≤ qi < 0.5

Observations are corrupted by independent, non-identical noise
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Ising Models with Non-Identical Noisy Observations

����Y1

����X1

����
θ
�
�
�

X2 ����A
A
A θ

X3����Y2 ����Y3
q2 q3

q1

The qi ’s need not be the same!
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Classical Chow-Liu algorithm fails in general!

Chow and Liu [IT’68] gave an elegant algorithm for learning a tree

ECL(xn) = arg max
E is a tree

∑
{i ,j}∈E

Îi ,j ,

Also works when qi = q for all 1 ≤ i ≤ p – Error exponent optimal!

However, with non-identical noise, the Chow-Liu algorithm may not
be able to recover the structure of the tree

Note noisy correlation is ρ̃i ,j = (1− 2qi )(1− 2qj)ρi ,j

Example:
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Îi ,j ,

Also works when qi = q for all 1 ≤ i ≤ p – Error exponent optimal!

However, with non-identical noise, the Chow-Liu algorithm may not
be able to recover the structure of the tree

Note noisy correlation is ρ̃i ,j = (1− 2qi )(1− 2qj)ρi ,j

Example:

����X1

ρ1,2 = 0.9 ����X2

ρ2,3 = 0.85����X3

����Y2

q2 = 0.1

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 25 / 52



Classical Chow-Liu algorithm fails in general!

Chow and Liu [IT’68] gave an elegant algorithm for learning a tree

ECL(xn) = arg max
E is a tree

∑
{i ,j}∈E
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Example:

����X1

ρ1,2 = 0.9 ����X2

ρ2,3 = 0.85����X3
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q2 = 0.1[
ρ̃1,2 = 0.72

] [
ρ̃2,3 = 0.68

]

[
ρ̃1,3 = ρ1,3 = 0.765

]
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Partial Tree Recovery under Non-Identical Noise

Katiyar, Shah, and Caramanis [arXiv, Jun 2020] proposed an
algorithm for partial tree structure recovery under non-identical noise
for different nodes

Extension of previous work for Gaussian tree models [ICML’19].
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Equivalent Tree-Structures

Partial tree structure ⇐⇒ Trees in an equivalence class

The equivalence relation is defined as follows:

Tp = set of trees on p nodes

LT = set of leaf nodes of T

ST = {S ⊂ LT : no two nodes in S have the same neighbor}

For all S ∈ ST, let TS be the tree obtained by in interchanging the
nodes in S with their corresponding neighbor node in T

[T] = {TS : S ∈ ST} is our desired equivalence class.
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Equivalent Tree-Structures: An Example

15

14

6 13

12

10 11

9

7 8

5

3 40 1

2

T0

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 28 / 52



Equivalent Tree-Structures: An Example

15

14

6 13

12

10 11

9

7 8

5

3 40 1

2

T0

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 28 / 52



Equivalent Tree-Structures: An Example

14

15

6 13

12

10 11

9

7 8

5

3 40 1

2

T1

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 28 / 52



Equivalent Tree-Structures: An Example
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Equivalent Tree-Structures: An Example

14

15

6 13

12

10 11

8

7 9

5

3 42 1

0

T3

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 28 / 52



Equivalent Tree-Structures: An Example
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Equivalent Tree-Structures: An Example
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Theorem 3 (Informal version of Katiyar, Shah, Caramanis (2020))

For arb. noise {qi}pi=1, the “best one can do” is to learn trees up to [T].
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Partial Tree Recovery under Non-Identical Noise

Let the conditional independence among noiseless variables
X1, . . . ,Xp be encoded by an unknown tree T

Let yn1 = [y1, . . . , yn] denote n independent noisy observations

yi = (yi ,1, . . . , yi ,p) with yi ,j denoting the ith observation
corresponding to the jth node, where yi ,j ∈ Y , {+1,−1}

Given yn1, a learning algorithm (or estimator)

Ψ : Yp×n → Tp

provides an estimate of the underlying tree structure T

Noise statistics are completely unknown to the learning algorithm

Interested in partial tree recovery (up to equivalence class [T]), and
an error is declared in the event

Error =
{
Ψ(yn1) /∈ [T]

}
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Algorithm for Partial Tree Structure Recovery

Katiyar, Shah, and Caramanis presented an algorithm for partial tree
structure recovery using yn1 assuming

(i) 0 < ρmin ≤ |ρi ,j | ≤ ρmax < 1 (ii) 0 ≤ qi ≤ qmax < 0.5

Classification of any set of 4 distinct nodes as non-star or star

Definition 4 (Non-star and star)

I Any set of 4 distinct nodes forms a non-star if there exists at least one edge
in E which, when removed, splits the tree into two sub-trees such that
exactly 2 of the 4 nodes lie in one sub-tree and the other 2 nodes lie in the
other sub-tree. The nodes in the same sub-tree form a pair.

I If the set is not a non-star, it is categorized as a star.

Non-star Star
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Procedure for declaring Non-star or Star

Given noisy samples yn1, algorithm calculates the empirical correlations

ρ̂i ,j ,
1

n

n∑
k=1

yk,i yk,j

1: procedure Is-Non-star . Let the set of 4 nodes be {X1,X2,X3,X4}
2: α =

1+ρ2
max

2

3: if
ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< α and

ρ̂1,3 ρ̂2,4

ρ̂1,4 ρ̂2,3
> α then

4: Declare Non-star where {X1,X2} forms a pair

5: else if
ρ̂1,2 ρ̂3,4

ρ̂1,3 ρ̂2,4
< α and

ρ̂1,2 ρ̂3,4

ρ̂1,4 ρ̂2,3
> α then

6: Declare Non-star where {X1,X3} forms a pair

7: else if
ρ̂1,2 ρ̂3,4

ρ̂1,4 ρ̂2,3
< α and

ρ̂1,2 ρ̂3,4

ρ̂1,3 ρ̂2,4
> α then

8: Declare Non-star where {X1,X4} forms a pair
9: else
10: Declare Star
11: end if
12: end procedure
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Intuition behind the Non-star/Star procedure

Consider 4 nodes that form a Markov-chain

X1 X2 X3 X4

If the noisy correlations are denoted ρ̃i ,j , E[YiYj ], then we have

ρ̃1,3 ρ̃2,4

ρ̃1,2 ρ̃3,4
≤ ρ2

max, and
ρ̃1,3 ρ̃2,4

ρ̃1,4 ρ̃2,3
= 1

Hence we would expect empirical correlations to satisfy

ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< α and

ρ̂1,3 ρ̂2,4

ρ̂1,4 ρ̂2,3
> α where α =

1 + ρ2
max

2
.

If all sets of 4 nodes are correctly declared as star or non-star (with
appropriate pairing of nodes), then the equivalence class [T] is successfully
detected, i.e., no error Ψ(yn1) ∈ [T].
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Achievability Result by Katiyar, Shah, and Caramanis

Theorem 5 (Katiyar, Shah, and Caramanis (Jun 2020))

The equivalence class [T] can be correctly recovered with probability at
least 1− τ if the number of samples satisfies

n ≥ Ω

(
log(p/τ)

(1− ρmax)2(1− 2qmax)18ρ24
min

)
.

As qmax → (1/2)−, learning becomes more difficult because nodes
suffer from too much noise.

As ρmin → 0+, learning also becomes more difficult as minimum
correlation is too small.

Polynomial orders (18, 24) very large! Can we improve?
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Our Contributions

Significantly improved analysis of algorithm by Katiyar, Shah, and
Caramanis (KSC)

Significantly improved algorithm – Symmetrized Geometric Averaging
(SGA)

I Provable improvement of sample complexity vis-à-vis KSC’s algorithm
via error exponents

I Much superior experimental results
I Applicable to Gaussian graphical models

Novel impossibility result in terms on the minimax error probability
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Improved Achievability Result

Theorem 6 (Tandon, Han and T., Jan 2021)

Using KSC’s algorithm, the equivalence class [T] can be correctly
recovered with probability at least 1− τ if the number of samples satisfy

n ≥ Ω

(
log(p/τ)

(1− ρmax)2(1− 2qmax)6ρ8
min

)
.

Refined probability bounds for events such as

ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< α and

ρ̂1,3 ρ̂2,4

ρ̂1,4 ρ̂2,3
> α.

Polynomial orders (6, 8) still very large. Can we do better?

Yes: We can get a better algorithm.

No: Cannot reduce the polynomial orders analytically but can provide
a distribution-dependent bound via error exponents.
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SGA Procedure to declare Non-star or Star

1: procedure SGA-Is-Non-star . The 4 nodes are {X1,X2,X3,X4}
2: α = (1 + ρ2

max)/2

3: v2 =

√
|ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,2 ρ̂3,4| , v3 =

√
|ρ̂1,2 ρ̂3,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,3 ρ̂2,4| , v4 =

√
|ρ̂1,2 ρ̂3,4 ρ̂1,3 ρ̂2,4|
|ρ̂1,4 ρ̂2,3|

4: Let v = min
2≤i≤4

vi and i∗ = arg min
2≤i≤4

vi

5: if v < α then
6: Declare Non-star where {X1,Xi∗} forms a pair
7: else
8: Declare Star
9: end if

10: end procedure

Advantages of SGA over KSC’s procedure

Symmetry: Invariant to permutation of the node indices

Averaging: Takes the Geometric Mean of the empirical statistics√∣∣∣∣ ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4

∣∣∣∣ · ∣∣∣∣ ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4

∣∣∣∣ =

√
|ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,2 ρ̂3,4|
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SGA Procedure to declare Non-star or Star

1: procedure SGA-Is-Non-star . The 4 nodes are {X1,X2,X3,X4}
2: α = (1 + ρ2

max)/2

3: v2 =

√
|ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,2 ρ̂3,4| , v3 =

√
|ρ̂1,2 ρ̂3,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,3 ρ̂2,4| , v4 =

√
|ρ̂1,2 ρ̂3,4 ρ̂1,3 ρ̂2,4|
|ρ̂1,4 ρ̂2,3|

4: Let v = min
2≤i≤4

vi and i∗ = arg min
2≤i≤4

vi

5: if v < α then
6: Declare Non-star where {X1,Xi∗} forms a pair
7: else
8: Declare Star
9: end if

10: end procedure

Advantages of SGA over KSC’s procedure

Symmetry: Invariant to permutation of the node indices

Averaging: Takes the Geometric Mean of the empirical statistics√∣∣∣∣ ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4

∣∣∣∣ · ∣∣∣∣ ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4
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√
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Intuition behind the SGA procedure

Intuition behind SGA can be highlighted by an example where
{X1,X2,X3,X4} forms a non-star with pair {X1,X2}

I If ρ̃i,j , E[YiYj ], then

ρ̃1,3 ρ̃2,4

ρ̃1,2 ρ̃3,4
≤ ρ2

max, and
ρ̃1,4 ρ̃2,3

ρ̃1,2 ρ̃3,4
≤ ρ2

max

I Hence, we would expect the following metrics, based on empirical
correlations, to satisfy

(i)
ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< α, and (ii)

ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4
< α.

I KSC checks (i) but ignores (ii)
I SGA compares the geometric average of the metrics in (i) and (ii)

against the threshold α

Folklore theorem: “Averaging cannot hurt and generally helps”

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 37 / 52



Intuition behind the SGA procedure

Intuition behind SGA can be highlighted by an example where
{X1,X2,X3,X4} forms a non-star with pair {X1,X2}

I If ρ̃i,j , E[YiYj ], then

ρ̃1,3 ρ̃2,4

ρ̃1,2 ρ̃3,4
≤ ρ2

max, and
ρ̃1,4 ρ̃2,3

ρ̃1,2 ρ̃3,4
≤ ρ2

max

I Hence, we would expect the following metrics, based on empirical
correlations, to satisfy

(i)
ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< α, and (ii)

ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4
< α.

I KSC checks (i) but ignores (ii)
I SGA compares the geometric average of the metrics in (i) and (ii)

against the threshold α

Folklore theorem: “Averaging cannot hurt and generally helps”

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 37 / 52



Intuition behind the SGA procedure

Intuition behind SGA can be highlighted by an example where
{X1,X2,X3,X4} forms a non-star with pair {X1,X2}

I If ρ̃i,j , E[YiYj ], then

ρ̃1,3 ρ̃2,4

ρ̃1,2 ρ̃3,4
≤ ρ2

max, and
ρ̃1,4 ρ̃2,3

ρ̃1,2 ρ̃3,4
≤ ρ2

max

I Hence, we would expect the following metrics, based on empirical
correlations, to satisfy

(i)
ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< α, and (ii)

ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4
< α.

I KSC checks (i) but ignores (ii)
I SGA compares the geometric average of the metrics in (i) and (ii)

against the threshold α

Folklore theorem: “Averaging cannot hurt and generally helps”

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 37 / 52



Katiyar’s Algorithm: Error Exponent for Chains

Consider a 4-node Markov chain structure

X1 X2 X3 X4,

and let P̃ denote the joint distribution of the noisy samples

Two events that lead to error using Katiyar’s algorithm are

E1 =

{
ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
≥ α

}
and E2 =

{
ρ̂1,3 ρ̂2,4

ρ̂1,4 ρ̂2,3
≤ α

}
I Using Sanov’s theorem, we have

e1 = minQ∈P(Y4)

{
D(Q‖P̃) :

ρ
(Q)
1,3 ρ

(Q)
2,4

ρ
(Q)
1,2 ρ

(Q)
3,4

≥ α
}

, where ρ
(Q)
i,j , EQ [YiYj ]

I e2 = minQ∈P(Y4)

{
D(Q‖P̃) :

ρ
(Q)
1,3 ρ

(Q)
2,4

ρ
(Q)
1,4 ρ

(Q)
2,3

≤ α
}

The overall error exponent for Katiyar’s algorithm is given by

E (ΨKA, P̃) , lim
n→∞

−1

n
log Pr

(
E1 ∪ E2

)
= min{e1, e2}
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SGA Algorithm: Error Exponent for Chains

Error events using SGA:

E3 =

{√
|ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,2 ρ̂3,4|

≥ α

}
E4 = {|ρ̂1,3 ρ̂2,4| ≥ |ρ̂1,2 ρ̂3,4|} , and E5 = {|ρ̂1,4 ρ̂2,3| ≥ |ρ̂1,2 ρ̂3,4|} .

The corresponding error exponents are given by:

I e3 = minQ∈P(Y4)

{
D(Q‖P̃) :

√
|ρ(Q)

1,3 ρ
(Q)
2,4 ρ

(Q)
1,4 ρ

(Q)
2,3 |

|ρ(Q)
1,2 ρ

(Q)
3,4 |

≥ α

}
I e4 = minQ∈P(Y4)

{
D(Q‖P̃) : |ρ(Q)

1,3 ρ
(Q)
2,4 | ≥ |ρ

(Q)
1,2 ρ

(Q)
3,4 |
}

I e5 = minQ∈P(Y4)

{
D(Q‖P̃) : |ρ(Q)

1,4 ρ
(Q)
2,3 | ≥ |ρ

(Q)
1,2 ρ

(Q)
3,4 |
}

The overall error exponent using SGA algorithm is given by

E (ΨSGA, P̃) , lim
n→∞

−1

n
log Pr

(
E3 ∪ E4 ∪ E5

)
= min{e3, e4, e5}
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Numerical Results: Error Exponent for a 4 node chain

0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0 0.1 0.2 0.3 0.4 0.5

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Error exponents for a 4-node homogeneous chain with edge correlation ρ

Vincent Y. F. Tan (NUS) Learning Tree Models in Noise Feb 2021 40 / 52



Numerical Results: Error Exponent for a 4 node star
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Simulation Results: 12-node chain tree structure

Edge correlation ρ = 0.6
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Simulation Results: 12-node hybrid tree structure

Edge correlation ρ = 0.6
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Simulation Results: 12-node star tree structure

Edge correlation ρ = 0.6
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Extension to Gaussian tree models

Observe Yi = Xi + Ni , where noise Ni ∼ N (0, σ2
i ) for some σi > 0.

Experiment Setup:
I Choose a tree structure TP = (V, EP) with p = 10 nodes

I Generate the inverse covariance matrix (Σ∗)−1 as follows

[(Σ∗)−1]i,j =


w , if {i , j} ∈ EP ;

1, if i = j ;

0 otherwise

for some parameter w ∈ R. Invert (Σ∗)−1 to obtain Σ∗

I The correlation matrix K∗ is calculated from Σ∗ using the formula

K∗ = (diag(Σ∗))−
1
2 Σ∗(diag(Σ∗))−

1
2

I For the noisy case, [D∗]i,i = 2 for i ∈ {1, 3, 5, 7, 9}
I Generate samples from distribution N (0,Σ∗ + D∗)
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Gaussian Results: 10-node hybrid tree with w = 0.38
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Converse: Number of necessary samples

For a given tree T = (V, E), let PT(ρmin, ρmax) denote the set of all
tree structured Ising models that satisfy

0 < ρmin ≤ |ρi ,j | ≤ ρmax < 1 ∀ {i , j} ∈ E

The minimax error probability for partial tree structure recovery up to
equivalence class [T] is

Mn(qmax, ρmin, ρmax) , inf
Ψ

sup
T∈Tp ,

P∈PT(ρmin,ρmax),
0≤ qi ≤qmax< 0.5

PP

(
Ψ(Yn

1) /∈ [T]
)

where PP(·) denotes the probability when tree distribution is P, and
noise crossover probabilities are given by {qi}pi=1.
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Impossibility Result/Necessary Number of Samples

Theorem 7 (Tandon, Han and T., Jan 2021)

Let ρq , (1− 2qmax)ρmin. If p > 32, and the number of samples n satisfy

n <
log p

4 (1− ρmax) ρq tanh−1(ρq)

then we have Mn(qmax, ρmin, ρmax) ≥ 1/2.

In other words, the optimal sample complexity

n∗(ρmin, ρmax, qmax) = Ω

(
log p

(1− ρmax)1(1− 2qmax)2ρ2
min

)
.

Compare to improved analysis of Katiyar et al.’s algorithm and SGA:

n∗(ρmin, ρmax, qmax) = O

(
log(p/τ)

(1− ρmax)2(1− 2qmax)6ρ8
min

)
.
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Ingredients in Impossibility Proof

Choice of large t2 = O(p2) number of trees, close to each other and
respective equivalence classes are disjoint for an t2-ary hypothesis test.

Xt

X3

X2

X1

X2t

Xt+3

Xt+2

Xt+1

X2t+1

ρmin

ρmin

ρmax

ρmax

Tree structure T0
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Converse Result: Discussion

Nikolakakis et al. [AISTATS-2019] presented a bound on the
necessary number of samples required for exact tree structure
recovery for identical noise setting (i.e., qi = q, ∀i)

Impact of noise gets manifested as a multiplicative factor

[1− (4q(1− q))p]−1.

Implies that if q 6= 0, 1 impact of noise becomes negligible because

lim
p→∞

[1− (4q(1− q))p]−1 = 1.

In contrast, our result for non-identical noise

n∗(ρmin, ρmax, qmax) = Ω

(
log(p/τ)

(1− ρmax)2(1− 2qmax)2ρ2
min

)
.

shows that the necessary n for qmax > 0 is greater that for the
noiseless setting by a factor of at least (1− 2qmax)−2, regardless of p.
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Conclusions

Improved sufficient sample complexity result compared to Katiyar,
Shah and Caramanis (2020)

Presented a modified procedure SGA for partial tree recovery

Improved error exponents and numerical results for both discrete and
Gaussian graphical models

Novel converse result for partial tree structure recovery up to
equivalence class under non-identical noise
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