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Abstract—We characterize second-order coding rates (or dis-
persions) for distributed lossless source coding (the Slepian-
Wolf problem). We introduce a fundamental quantity known
as the entropy dispersion matrix, which is analogous to scalar
dispersion quantities. We show that if this matrix is positive-
definite, the optimal rate region under the constraint of a
fixed blocklength and non-zero error probability has a curved
boundary compared to being polyhedral for the Slepian-Wolf
case. In addition, the entropy dispersion matrix governs the rate
of convergence of the non-asymptotic region to the asymptotic
one. As a by-product of our analyses, we develop a general
universal achievability procedure for dispersion analysis of some
other network information theory problems such as the multiple-
access channel. Numerical examples show how the region given by
Gaussian approximations compares to the Slepian-Wolf region.

Index Terms—Slepian-Wolf, Dispersion, Second-order Rates

I. INTRODUCTION

Distributed lossless source coding consists in separately
encoding two (or more) correlated sources (Xn

1 , X
n
2 ) ∼∏n

k=1 pX1,X2
(x1k, x2k) into a pair of rate-limited messages

(M1,M2). Subsequently, given these compressed versions of
the sources, a decoder seeks to reconstruct (Xn

1 , X
n
2 ). One of

the most remarkable results in information theory, proved by
Slepian and Wolf [1], states that the set of achievable rate pairs
(R1, R2) is equal to that when each of the encoders is given
knowledge of the other source, i.e., encoder 1 knows Xn

2 and
vice versa. The optimal rate region R∗ is the polyhedron

R1 ≥ H(X1|X2)

R2 ≥ H(X2|X1)

R1 +R2 ≥ H(X1, X2). (1)

As with most other statements in information theory, this result
is asymptotic in nature. In this paper, we take a step towards
non-asymptotic results by analyzing the second-order coding
rates of the Slepian-Wolf (SW) problem.

An two-sender SW code is characterized by four parame-
ters; the blocklength n, the rates of the first and second sources
(R1, R2) and the probability of error defined as

P (n)
e := P((X̂n

1 , X̂
n
2 ) 6= (Xn

1 , X
n
2 )), (2)

where X̂n
1 and X̂n

2 are the reconstructed versions of Xn
1 and

Xn
2 respectively. Traditionally, we require P (n)

e → 0 as n →
∞. In this paper, we fix n and require the code to be such
that P (n)

e ≤ ε. We then ask what the set of achievable pairs of
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rates as a function of (n, ε) is. The main tool that we use is a
multidimensional version of the Berry-Essèen theorem [2].

A. Main Contributions

This paper characterizes the (n, ε)-optimal rate region for
the SW problem R∗(n, ε) up to an O( logn

n ) factor. In the
course of doing so, we introduce a fundamental quantity called
the entropy dispersion matrix of pX1,X2 and show that if this
matrix is non-singular, the boundary of R∗(n, ε) is, unlike
that of SW, a smooth curve. We also demonstrate numerically
how our region compares to the SW region and to the problem
of finite blocklength source coding with side information also
at the encoder. While the SW problem is the focus of this
paper, our achievability technique is general enough to be
applicable to multi-terminal channel coding problems such as
the multiple-access, broadcast and interference channels. The
results for these other problems are not included this paper.
The interested reader may refer to [3] for more details.

B. Related Work

The redundancy of SW coding was discussed in [4]–[6].
However, the authors considered a single source X1 to be
compressed and side information X2 available only at the
decoder. Thus, X2 is neither coded nor estimated. They
showed that a scalar dispersion quantity governs the second-
order coding rate. He et al. [5] also analyzed a variable-length
variant of the SW problem and showed that the dispersion
is smaller than in the fixed-length setting. This dispersion
is similar to that for channel coding. Sarvotham et al. [7]
considered the SW problem with two sources to be compressed
but limited their setting to the case the sources are symmetric.
This work generalizes their setting in that we consider all
discrete sources. This paper is a network information theory
analogue of the works on second-order coding rates [8], [9]
and finite blocklength analysis [10]–[13]. We employ the
information spectrum method [14] in our converse proof. This
was also done in [9].

II. PROBLEM STATEMENT AND MAIN RESULTS

A. Notation

Random variables and the values they take on will be
denoted by upper case (e.g., X) and lower case (e.g., x)
respectively. Types (empirical distributions) will be denoted
by upper case (e.g., P ) and distributions by lower case
(e.g., p). For a sequence xn ∈ Xn, the type is denoted as
Pxn and conditional types are denoted similarly. The entropy



and conditional entropy are denoted as H(X1) = H(pX1
)

and H(X2|X1) = H(pX2|X1
|pX1

) respectively. For a pair
of sequences xn1 , x

n
2 , the notations Ĥ(xn1 ) := H(Pxn

1
) and

Ĥ(xn2 |xn1 ) := H(Pxn
2 |xn

1
|Pxn

1
) denote, respectively, the empir-

ical marginal and conditional entropies. For two vectors u,v ∈
Rd, the notation u ≤ v means ut ≤ vt for all t = 1, . . . , d.
We also use the notation [2nR] := {1, . . . , d2nRe}.

B. Definitions
Let (X1,X2, pX1,X2(x1, x2)) be a discrete memoryless

multiple source (DMMS). This means that (Xn
1 , X

n
2 ) ∼∏n

k=1 pX1,X2
(x1k, x2k). The alphabets X1,X2 are finite.

Definition 1. An (n, 2nR1 , 2nR2 , ε)-SW code consists of two
encoders fj,n : Xnj →Mj := [2nRj ], j = 1, 2, and a decoder
ϕn :M1×M2 → Xn1 ×Xn2 such that the the error probability
in (2) with (X̂n

1 , X̂
n
2 ) := ϕn(f1,n(Xn

1 ), f2,n(Xn
2 )) does not

exceed ε. The rates are defined as Rj := 1
n log |Mj |.

Definition 2. A rate pair (R1, R2) is (n, ε)-achievable if
there exists an (n, 2nR1 , 2nR2 , ε)-SW code for the DMMS
pX1,X2(x1, x2). The (n, ε)-optimal rate region R∗(n, ε) ⊂ R2

is the set of all (n, ε)-achievable rate pairs.

For a positive-semidefinite symmetric matrix V � 0, let the
random vector Z ∼ N (0,V). Define the set

S (V, ε) := {z ∈ R3 : P(Z ≤ z) ≥ 1− ε}. (3)

Note that S (V, ε) ⊂ R3 and is analogous to the cumulative
distribution function of a zero-mean Gaussian with covariance
matrix V. If ε ≤ 1

2 , S (V, ε) is a convex, unbounded set in the
positive orthant. The boundary of S (V, ε) is a differentiable
manifold if V is positive-definite (V � 0).

Definition 3. The entropy density vector is defined as

h(X1, X2) :=

− log pX1|X2
(X1|X2)

− log pX2|X1
(X2|X1)

− log pX1,X2
(X1, X2)

 . (4)

The mean of the entropy density vector is E[h(X1, X2)] =
H(pX1,X2) := [H(X1|X2), H(X2|X1), H(X1, X2)]T .

Definition 4. The entropy dispersion matrix V(pX1,X2
) is the

covariance of the random vector h(X1, X2).

We abbreviate the deterministic quantities H(pX1,X2
) and

V(pX1,X2) as H and V respectively. Observe that V is an
analogue of the scalar dispersion quantities that have gained
attention in recent years [10]–[13]. We will find it convenient
to define the rate vector R := [R1, R2, R1 +R2]T ∈ R3.

Definition 5. Define the region Rin(n, ε) ⊂ R2 to be the set
of rate pairs (R1, R2) that satisfy

R ∈ H +
1√
n

S (V, ε) +
ν log n

n
1, (5)

where ν := |X1||X2| + 1 and 1 := (1, 1, 1)T . Also let
Rout(n, ε) ⊂ R2 be the set of rate pairs (R1, R2) that satisfy

R ∈ H +
1√
n

S (V, ε)− log n

n
1. (6)

An illustration is provided in Fig. 1. Henceforth, ε ∈ (0, 1).

C. Main Result and Interpretation
Theorem 1. The (n, ε)-optimal rate region R∗(n, ε) satisfies

Rin(n, ε) ⊂ R∗(n, ε) ⊂ Rout(n, ε). (7)

for all n sufficiently large.
This theorem is proved for V � 0 in Section III. Sources for

which V is singular include those which are (i) independent,
i.e., I(X1;X2) = 0, (ii) either X1 or X2 is uniform over
their alphabets. The authors in [7] dealt with the specific case
where X1, X2 ∈ F2, X1 = Bern( 1

2 ), X2 = X1 ⊕ N with
N = Bern(q), q ∈ (0, 1

2 ), i.e., a discrete symmetric binary
source (DSBS). In Section IV, we comment on how the proof
can be adapted to derive R∗(n, ε) for a DSBS and all V � 0.

The direct part of Theorem 1 is proved using the usual
random binning argument together with a multidimensional
Berry-Essèen theorem [2]. The converse is proved using an
information spectrum technique by Han [14]. Theorem 1
extends to the case where there are more than two senders.

By examining Rin(n, ε) and Rout(n, ε), it can be seen that
we have characterized the (n, ε)-rate region up to an O( logn

n )
factor. This residual is a consequence of (i) universal decoding
for the direct part and (ii) approximations resulting from using
the multidimensional Berry-Essèen theorem [2]. Observe that
as n→∞, the (n, ε)-rate region approaches the SW region [1]
at a rate of O( 1√

n
). This follows from the multidimensional

central limit theorem. However, somewhat unexpectedly, if
V � 0, the (n, ε)-rate region is not-polyhedral [cf. (1)]. Its
boundary is a smooth curve in R2. This curvature, given
by V, is due to the fact that the three empirical entropies
Ĥ(Xn

1 |Xn
2 ), Ĥ(Xn

2 |Xn
1 ) and Ĥ(Xn

1 , X
n
2 ) have to be jointly

smaller than some rate vector. By Taylor’s theorem, we see
that the empirical entropy vector behaves like a multivariate
Gaussian with mean H and covariance V.

III. PROOF OF THEOREM 1
A. Achievability (Inner Bound)

Proof: Let (R1, R2) be a rate pair such that R belongs
to the inner bound Rin(n, ε), defined in (5).
Codebook Generation: For j = 1, 2, randomly and indepen-
dently assign an index f1,n(xnj ) ∈ [2nRj ] to each sequence
xnj ∈ Xnj according to a uniform pmf. The sequences of
the same index form a bin, i.e., Bj(mj) := {xnj ∈ Xnj :
f1,n(xnj ) = mj}. Note that Bj(mj),mj ∈ [2nRj ] are random
sets. The bin assignments are revealed to all parties. In
particular, the decoder knows the bin rates Rj .
Encoding: Given xnj ∈ Xnj , encoder j transmits the bin index
fj,n(xnj ). Hence, for length-n sequence, the rates of m1 and
m2 are R1 and R2 respectively.
Decoding: The decoder, upon receipt of the bin indices
(m1,m2) finds the unique sequence pair (x̂n1 , x̂

n
2 ) ∈ B1(m1)×

B2(m2) such that the empirical entropy vector

Ĥ(x̂n1 , x̂
n
2 ) :=

Ĥ(x̂n1 |x̂n2 )

Ĥ(x̂n2 |x̂n1 )

Ĥ(x̂n1 , x̂
n
2 )

 ≤ R− δn1, (8)



where δn := (|X1||X2| + 1
2 ) log(n+1)

n . Define the empirical
entropy typical set T (R, δn) := {z ∈ R3 : z ≤ R − δn1}.
Then, (8) is equivalent to Ĥ(x̂n1 , x̂

n
2 ) ∈ T (R, δn). If there

is more than one pair or no such pair in B1(m1) × B2(m2),
declare a decoding error. Note that our decoding scheme is
universal [15], i.e., the decoder does not depend on knowledge
of the true distribution pX1,X2

.
Analysis of error probability: Let the sequences sent by the two
users be (Xn

1 , X
n
2 ) and let their corresponding bin indices be

(M1,M2). We bound the probability of error averaged over the
random code construction. Clearly, the ensemble probability
of error is bounded above by the sum of the probabilities of
the following four events:

E1 := {Ĥ(Xn
1 , X

n
2 ) /∈ T (R, δn)}

E2 := {∃ x̃n1 ∈ B1(M1) \ {Xn
1 } : Ĥ(x̃n1 , X

n
2 ) ∈ T (R, δn)}

E3 := {∃ x̃n2 ∈ B2(M2) \ {Xn
2 } : Ĥ(Xn

1 , x̃
n
2 ) ∈ T (R, δn)}

E4 := {∃ x̃n1 ∈ B1(M1) \ {Xn
1 }, x̃n2 ∈ B2(M2) \ {Xn

2 } :

Ĥ(x̃n1 , x̃
n
2 ) ∈ T (R, δn)} (9)

We bound each of these in turn. Consider

P(E1) = 1− P(Ĥ(PXn
1 ,X

n
2

) ∈ T (R, δn)) (10)

where we made the dependence of the empirical entropy vector
on the type explicit. We now bound the probability in (10). Let
vec(pX1,X2

) ∈ R|X1||X2|
+ be a vectorized version of the joint

distribution pX1,X2 . Consider the Taylor series expansion:

Ĥ(PXn
1 ,X

n
2

)=H(pX1,X2) + J(vec(PXn
1 ,X

n
2
− pX1,X2)) + ∆.

(11)
where the Jacobian J ∈ R3×(|X1||X2|) is defined entry-wise as

[J]t,(x1,x2) =
∂gt(pX1,X2

)

∂pX1,X2(x1, x2)

∣∣∣
pX1,X2

(x1,x2)
, (12)

where g1(pX1,X2
) := H(X1|X2), g2(pX1,X2

) := H(X2|X1)
and g3(pX1,X2) := H(X1, X2). Because the gt’s are twice
continuously differentiable, each entry of the second order
correction term ∆ ∈ R3 in (11) is bounded above by
C‖ vec(PXn

1 ,X
n
2
− pX1,X2

)‖2 for some constant C > 0. Let
[J]t be the t-th row of the matrix J. Now, note that

[J]t vec(PXn
1 ,X

n
2

) =
∑
x1,x2

PXn
1 ,X

n
2

(x1, x2)[J]t,(x1,x2)

=
1

n

n∑
k=1

[J]t,(X1k,X2k) (13)

because the joint type PXn
1 ,X

n
2

places a probability mass
1/n on each sample (X1k, X2k). Define the random vector
Jk := ([J]1,(X1k,X2k), [J]2,(X1k,X2k), [J]3,(X1k,X2k))

T . On ac-
count of (10), (11) and (13), we have

P(Ec1)
(a)
= P

[
H +

1

n

n∑
k=1

(Jk − E[Jk]) + ∆ ≤ R− δn1

]
(b)

≥ P

[
H +

1

n

n∑
k=1

(Jk − E[Jk]) ≤ R− (δn + cn)1

]
− P[‖∆‖∞ ≥ cn]. (14)

where (a) follows from the definition T (R, δn) and (b)
follows from the probability relation

P(W + ∆ ≤ R′) ≥ P(W ≤ R′ − cn1)− P(‖∆‖∞ ≥ cn).

As is shown in [3], P(‖∆‖∞ ≥ cn) ≤ 1/n2 if cn = O(1/n).
With this choice of cn,

P(Ec1) ≥ P

[
1

n

n∑
k=1

(Jk − E[Jk]) ≤

z√
n

+
ν log n

n
1− (δn + cn)1

]
− 1

n2
(15)

because R−H = z√
n

+ ν logn
n 1 for some z such that P(Z ≤

z) ≥ 1−ε for Z ∼ N (0,V) [cf. definition of S (V, ε)]. Since
ν > |X1||X2|+ 1/2 (the coefficient of δn), we have

P(Ec1) ≥ P

[
1

n

n∑
k=1

(Jk − E[Jk]) ≤ z√
n

+ψn1

]
− 1

n2
(16)

where ψn = O( logn
n ). Now note that the summands above

are i.i.d. random vectors. These random vectors have zero
mean, covariance matrix V � 0 and finite third moment
ξ := E‖h(X1, X2)‖32 because X1,X2 are finite sets. Since the
set integrated over in (16) is convex, by the multidimensional
Berry-Essèen theorem [2] (dimension d = 3),

P(Ec1) ≥ P (Z ≤ z + ψn1)− 400d1/4ξ

λmin(V)3/2
√
n
− 1

n2

(a)

≥ 1− ε+O (ψn)− 530ξ

λmin(V)3/2
√
n
− 1

n2
, (17)

where (a) follows from Taylor’s approximation theorem. Be-
cause ψn = O( logn√

n
) dominates the O( 1√

n
) term resulting

from the Berry-Essèen approximation, we conclude that

P(E1) ≤ ε−O
(

log n√
n

)
. (18)

For the second event, by symmetry and uniformity, P(E2) =
P(E2|Xn

1 ∈ B1(1)). Now consider the chain of inequalities:

P(E2|Xn
1 ∈ B1(1))

(a)
=
∑
xn

1 ,x
n
2

p(xn1 , x
n
2 )P
[
∃ x̃n1 ∈ B1(1) \ {Xn

1 } :

Ĥ(x̃n1 , x
n
2 ) ∈ T (R, δn)

∣∣∣(Xn
1 , X

n
2 ) = (xn1 , x

n
2 ), Xn

1 ∈ B1(1)
]

(b)

≤
∑
xn

1 ,x
n
2

p(xn1 , x
n
2 )

∑
x̃n

1 6=xn
1 :Ĥ(x̃n

1 ,x
n
2 )∈T (R,δn)

P (x̃n1 ∈ B1(1))

(c)

≤
∑
xn

1 ,x
n
2

p(xn1 , x
n
2 )

∑
x̃n

1 6=xn
1 :Ĥ(x̃n

1 |xn
2 )≤R1−δn

P (x̃n1 ∈ B1(1))

(d)
=
∑
xn

1 ,x
n
2

p(xn1 , x
n
2 )

∑
x̃n

1 6=xn
1 :Ĥ(x̃n

1 |xn
2 )≤R1−δn

1

d2nR1e

(e)

≤
∑
Q

∑
(xn

1 ,x
n
2 )∈TQ

p(xn1 , x
n
2 )

∑
V ∈V (QX̄2

):

H(V |Pxn
2

)≤R1−δn

∑
x̃n

1∈TV (xn
2 )

2−nR1



(f)

≤
∑
Q

∑
(xn

1 ,x
n
2 )∈TQ

p(xn1 , x
n
2 )

∑
V ∈V (QX̄2

):

H(V |Pxn
2

)≤R1−δn

2
nH(V |Pxn

2
)
2−nR1

(g)

≤
∑
xn

1 ,x
n
2

p(xn1 , x
n
2 )(n+ 1)|X1||X2|2n(R1−δn)2−nR1 (19)

where (a) follows because for x̃n1 6= xn1 , the events {xn1 ∈
B1(1)}, {x̃n1 ∈ B1(1)} and {(Xn

1 , X
n
2 ) = (xn1 , x

n
2 )} are

mutually independent, (b) follows by the union bound and
(c) follows from {x̃n1 : Ĥ(x̃n1 , x

n
2 ) ∈ T (R, δn)} ⊂ {x̃n1 :

Ĥ(x̃n1 |xn2 ) ≤ R1 − δn}. Equality (d) follows from the
uniformity in the random binning. In (e), we partitioned the
sum over (xn1 , x

n
2 ) into type classes indexed by Q = QX̄1,X̄2

and x̃n1 ∈ Xn1 into sums over stochastic matrices V : X2 → X1

for which the V -shell of a sequence of type QX̄2
in Xn2 is not

empty (denoted as V ∈ V (QX̄2
)). In (f) we upper bounded

the cardinality of the V -shell as |TV (xn2 )| ≤ 2
nH(V |Pxn

2
) [15,

Lem. 1.2.5]. In (g), we used the Type Counting Lemma [15,
Eq. (2.5.1)]. By using the definition of δn, (19) gives P(E2) ≤
n−1/2. Similarly P(E3) ≤ n−1/2 and P(E4) ≤ n−1/2.

Combining this with (18), the error probability averaged
over the random binning is P(E) ≤ ε. Hence, there is a
deterministic code whose error probability is no greater than
ε if the rate pair (R1, R2) belongs to Rin(n, ε).

B. Converse (Outer Bound)

Proof: For the outer bound, [14, Lemma 7.2.2] asserts
that every (n, 2nR1 , 2nR2 , P

(n)
e )-SW code must satisfy

P (n)
e ≥ 1− P

[
1

n
h(Xn

1 , X
n
2 ) ≤ R + γ1

]
− 3(2−nγ), (20)

for all n and for any γ > 0. Recall that h(Xn
1 , X

n
2 ) is the

entropy density vector in (4) evaluated at (Xn
1 , X

n
2 ). Suppose

that, to the contrary, there exists a rate pair (R1, R2) such
that R /∈ Rout(n, ε) but (R1, R2) is (n, ε)-achievable. Then,
by (6), z :=

√
n(R−H+ logn

n 1) /∈ S (V, ε). By the definition
of S (V, ε) in (3), z ∈ R3 is such that P(Z ≤ z) < 1 − ε.
Now consider the probability in (20), denoted as sn:

sn
(a)
= P

[
1√
n

n∑
k=1

(h(X1k, X2k)−H)≤z−
(

log n√
n
−
√
nγ

)
1

]
(b)

≤ P

[
Z ≤ z−

(
log n√
n
−
√
nγ

)
1

]
+

530ξ

λmin(V)3/2
√
n

(c)
< 1− ε−O

(
log n√
n

)
+O

(
1√
n

)
(21)

where (a) follows from the definition of z, (b) follows from the
multidimensional Berry-Essèen theorem [2] and (c) follows by
taking γ := logn

2n and using Taylor’s approximation theorem.
Uniting (20) and (21) yields P (n)

e > ε, contradicting the (n, ε)-
achievability of (R1, R2) for all n sufficiently large.

C. Comments on the proof

Instead of the universal decoder in (8), one could use a
non-universal one by comparing the entropy density vector
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SW

(n,ε)−SW

(n,ε)−SI−ED

Fig. 1. Plots of the SW boundary, the (n, ε)-SI-ED boundary (sharp corners)
and the (n, ε)-SW boundary (curved) for ε = 0.01 neglecting the O( logn

n
)

terms in Theorem 1. The legend applies to both plots. Notice that R∗(n, ε)
and R∗

SI−ED(n, ε) are quite different near the equal rate and corner points
when n is small. Plots of R∗(n, ε) and R∗

SI−ED(n, ε) as functions of n
along the equal rate and corner point slices of R∗

SI−ED(n, ε)) are given in
Figs. 2 and 3. These are indicated by the black N and the green ×.

with the rate vector. This is likened to maximum-likelihood
decoding. Taylor expansion in (11) would not be required.
Under this decoding strategy, there is symmetry between
the error probabilities in the direct and converse parts. Also
see [14, Lem. 7.2.1-2]. The rate penalty of using a universal
decoder is of the order O( logn

n ). This is insignificant compared
to the dispersion term which is of the order O( 1√

n
).

IV. SINGULAR ENTROPY DISPERSION MATRICES

When V is rank-deficient, consider the set S (V, ε). Sup-
pose for the moment that rank(V) = 1. This is the case
considered in [7] where the source is a DSBS(q). For such
a DSBS, V = v13×3 for v = Var(− log pX1|X2

(X1|X2)) =
Var(− log pX2|X1

(X2|X1)) = Var(− log pX1,X2
(X1, X2)).

As such, all the probability mass of the degenerate Gaussian
N (0,V) lies in a subspace of dimension one. Therefore, the
set S (V, ε) = {z ∈ R3 : z ≥

√
vQ−1(ε)1} is axis-aligned.

The quantity
√

v
nQ
−1(ε) is the rate redundancy [4]–[7] for

fixed-length SW coding in the finite blocklength regime for
a DMMS for which rank(V) = 1. In this case, the bounds
in (5) and (6) (up to O( logn

n ) factors) degenerates to

R ≥ H +
√

(v/n)Q−1(ε) 1, (22)

where the scalar dispersion v := q(1−q)[log((1−q)/q)]2. This
reduces to results in previous works [4]–[7]. Our analysis, of
course, applies to all sources. Furthermore, we improve on
the residual term, which is now of the order O( logn

n ). The
case where rank(V) = 2 follows analogously. All the proba-
bility mass of N (0,V) is concentrated on a two-dimensional
subspace in R3 and the boundary of the set S (V, ε) are not
differentiable. As such only one of the “corners” of S (V, ε)
will be curved and this will be reflected in a result similar
to (22). This argument can be formalized and is done in the
extended version of this work [3].

V. NUMERICAL EXAMPLES

In this section, we present examples to illustrate R∗(n, ε).
We neglect the O( logn

n ) terms throughout; thus we are just
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Fig. 2. Comparison between the (n, ε)-SW equal rate point and the (n, ε)-
SI-ED equal rate point and their difference as functions of n. The right plot
shows that the difference decays exponentially.

concerned about Gaussian approximations. The source is taken
to be pX1,X2 = [1−3a, a; a, a] where a = 0.1. This source has
a positive-definite dispersion. In Fig. 1, we plot the boundaries
of the SW region [1] and the boundary of R∗(n, ε) for ε =
0.01. We also plot the boundary of the (n, ε)-region for coding
with side information at encoders and decoder (SI-ED). This
region R∗SI−ED(n, ε) ⊂ R2 is the set of (R1, R2) satisfying

R ≥ H +

√
diag(V(pX1,X2))

n
Q−1(ε). (23)

From Fig. 1, we see that R∗(n, ε) has a curved boundary,
reflecting the correlations among the entropy densities. Also,
it approaches the SW boundary as n grows. The boundaries of
R∗(n, ε) and R∗SI−ED(n, ε) coincide if R2 meets the condition
in (23) with equality and R1 is large (and vice versa).

There are two interesting “slices” of the plots in Fig. 1.
These are the equal rate slice (along the 45◦ line) and the slice
passing through the origin and a corner point (R∗1,n, R

∗
2,n) of

R∗SI−ED(n, ε), defined as follows:

R∗2,n := inf{R2 : (R1, R2) ∈ R∗SI−ED(n, ε) for some R1}
R∗1,n := inf{R1 : (R1, R

∗
2,n) ∈ R∗SI−ED(n, ε)}. (24)

These two slices are indicated by the markers (×,N) in Fig. 1.
The sum rates along both slices are plotted as functions of n in
Figs. 2 and 3 respectively. We observe from Fig. 2 that the two
sum rates on the 45◦ equal rate line approach each other as n
grows. Moreover, empirically we observe (and can prove) that
their difference decays as exp(−Θ(n)), which is subsumed
by the O( logn

n ) term, i.e., the dispersions are the same. Thus,
when n ≥ 103, there is essentially no loss in performing SW
coding versus cooperative encoding if we wish to optimize
the sum rate. On the other hand, from Fig. 3, we see that the
corresponding difference in corner points decays at a much
slower rate of Θ(n−1/2). Thus, the corner rate dispersions
are different and if we wish to operate at this point, SW loses
second-order coding rate relative to the cooperative scenario.
See [3] for further analysis of this point.
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Fig. 3. Comparison between the corner rates and their difference. Note that
the x-axis is log10(n) and the difference decays as Θ(n−1/2).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we quantified the second-order coding rates
of the Slepian-Wolf problem. We showed that these rates are
governed by a so-called entropy dispersion matrix. Admittedly,
our results cannot be described as being finite blocklength. We
seek to work towards such results in the future and to compare
the accuracy of the Gaussian approximation in Theorem 1 to
upper and lower bounds on the blocklength required to achieve
a target error probability.

REFERENCES

[1] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. on Inf. Th., vol. 19, pp. 471–80, 1973.

[2] V. Bentkus, “On the dependence of the Berry-Esseen bound on dimen-
sion,” J. Stat. Planning and Inference, vol. 113, pp. 385 – 402, 2003.

[3] V. Y. F. Tan and O. Kosut, “On the dispersions of three network
information theory problems,” arXiv:1201.3901, Feb 2012, [Online].

[4] D. Baron, M. A. Khojastepour, and R. G. Baraniuk, “Redundancy rates
of Slepian-Wolf coding,” in Allerton Conf., 2004.

[5] D.-K. He, L. A. Lastras-Montaño, E.-H. Yang, A. Jagmohan, and
J. Chen, “On the redundancy of Slepian-Wolf coding,” IEEE Trans. on
Inf. Th., vol. 55, no. 12, pp. 5607–27, Dec 2009.

[6] S. Watanabe, R. Matsumoto, and T. Uyematsu, “Strongly secure privacy
amplification cannot be obtained by encoder of Slepian-Wolf code,”
IEICE Trans. on Fund. Elec., Comms. and Comp. Sciences, vol. E93.A,
no. 9, pp. 1650–1659, 2010.

[7] S. Sarvotham, D. Baron, and R. G. Baraniuk, “Non-asymptotic perfor-
mance of symmetric Slepian-Wolf coding,” in Conference on Informa-
tion Sciences and Systems, 2005.

[8] V. Strassen, “Asymptotische Abschätzungen in Shannons Informations-
theorie,” in Trans. Third. Prague Conf. Inf. Th., 1962, pp. 689–723.

[9] M. Hayashi, “Second-order asymptotics in fixed-length source coding
and intrinsic randomness,” IEEE Trans. on Inf. Th., vol. 54, pp. 4619–
37, Oct 2008.

[10] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding in the finite
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