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Transmission of Information
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Shannon’s Figure 1

m Information theory = Finding fundamental limits for reliable
information transmission

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014



Transmission of Information

INFORMATION

RECEIVER DESTINATION
SOURCE TRANSMITTER
——>| —
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE

NOISE
SOURCE

Shannon’s Figure 1

m Information theory = Finding fundamental limits for reliable
information transmission

m Channel coding: Concerned with the maximum rate of
communication in bits/channel use
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Channel Coding (One-Shot)
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Channel Coding (One-Shot)

_ " 0 e w dJ

m A code is an triple C = {M, e,d} where M is the message set and
b(e(m)) < S for some cost function b(-) and cost §

m The average error probability pe.(C) is
Perr(C) = Pr [M # M]
where M is uniform on M
m A non-asymptotic fundamental limit can be defined as

M*(W,e,8) :=sup{m € N|3C s.t. m=|M]|, pen(C) < e}
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Channel Coding (n-Shot) for AWGN

Y" 4 M

e wn

m Consider n independent uses of an additive white Gaussian
channel w”
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Channel Coding (n-Shot) for AWGN

M

_ " 0 e 1% d

m Consider n independent uses of an additive white Gaussian
channel w”

m Forvectors x = (x1,...,x,) € R"andy := (y1,...,y,) € R", with
Ix[13 < nS,
the channel law is

7 1 (i —Xi)z)
W(y|x) = exp | —————
v =117 p( 5
m Non-asymptotic fundamental limit for n uses of W

M*(W", &, 5)
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Single-User Asymptotic Evaluation

Theorem (Hayashi (2009), Polyanskiy-Poor-Verdu (2010),

Tan-Tomamichel (2014))

Foreveryc € (0,1), we have

log M*(W", e,8) = nC(S) + /nV(S)P™ —logn+0( )
where C(S) and V(S) are the capacity and dispersion defined as

S(S+2)
(S+1)? log?

C(s) = slog(1+5),  V($)=
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Foreveryc € (0,1), we have

log M*(W", e,8) = nC(S) + /nV(S)P™ —logn+0( )
where C(S) and V(S) are the capacity and dispersion defined as

S(S+2) log?

C(s) = slog(1+5),  V($)=

(S+1)2

M. Hayashi Polyanskiy-Poor-Verd( M. Tomamichel
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Single-User Asymptotic Evaluation: Interpretation

R*(W",&,5) :

_ log M*(W" ¢, S) _ o)+ @qu(g) +0(logn)

n n n

Gaussian approximation

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014 9/39



Single-User Asymptotic Evaluation: Interpretation

R*(W",&,5) :

_ log M*(W" ¢, S) _ o)+ wqu(g) +0(logn)

n n n

Gaussian approximation

m Interpretation: The backoff from C(S) at finite blocklength » and
tolerable error probability is approximately

V(S)
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m Small € implies large backoff
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Single-User Asymptotic Evaluation: Interpretation

R*(W",&,5) :

_ log M*(W" ¢, S) _ o)+ wqu(g) +0(logn)

n n n

Gaussian approximation

m Interpretation: The backoff from C(S) at finite blocklength » and
tolerable error probability is approximately

V(S)

(1 —¢)

m Small € implies large backoff
m Can compare to actual finite blocklength bounds

m Gaussian approximation is good for some n and ¢
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Background: Shannon’s Channel Coding Theorem

m Shannon’s noisy channel coding
theorem and

m Shannon’s (1959), Yoshihara’s (1964)
and Wolfowitz’s (1978) strong
converse state that
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Background: Shannon’s Channel Coding Theorem

m Shannon’s noisy channel coding
theorem and

m Shannon’s (1959), Yoshihara’s (1964)
and Wolfowitz’s (1978) strong
converse state that

Theorem (Shannon (1949), Shannon (1959))

1
lim —logM*(W", ¢,8) = C(S), Vee (0,1)

n—o0o n
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Background: Shannon’s Channel Coding Theorem

1 .
lim —logM*(W",¢,S) = C(S) bits/channel use

n—oo n

m Channel coding theorem for AWGN channels is independent of
ee€(0,1)

O >

m Phase transition at capacity
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Background: Second-Order Coding Rates

m What happens at capacity?
m More precisely, what happens when
log |M,| ~ nC(S) + Lv/n
for some L € R?
m Here L is known as the second-order coding rate of the code

m Note that L can be negative (cf. Hayashi (2008), Hayashi (2009))
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Background: Second-Order Coding Rates

Assume rate of the code satisfies
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" log |[M,| = C(S) +

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014 13/39



Background: Second-Order Coding Rates

Assume rate of the code satisfies

1 L 1
praian e ol )
lim pe(Cy)
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Background: Second-Order Coding Rates

Assume rate of the code satisfies

1 L 1
;log IM,| = C(S) + 7 + 0(%)
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Background: Second-Order Coding Rates

Assume rate of the code satisfies

1 L 1
-1 = = —
n0g|./\/l| C(S)—i—\/ﬁ—i-o(\/ﬁ)
nlin;opm(cn)
A

0'5 mé(w) +o(l)
% L

For an error probability , the optimum second-order coding rate is

L*(e) :== /V($)2 1 (¢)
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Network Information Theory

[/ Network
> Information
Theory

Network Information Theory
by A. El Gamal and Y.-H. Kim

m Many problems unsolved

m My agenda is to understand second-order behavior of solved NIT
problems

m Gain new insights on second-order optimal coding schemes

m We study two simple NIT problems in the rest of the talk
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Gaussian Interference Channel with Very Strong Interference
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Gaussian Interference Channel

M, X7 ! M,
h o1
Wn
M, Xz Y} M,
f Y2

m Two-sender two-receiver GIC is given as
Yii = guXii + g12X0i + Zy, Y2i = g1 X1i + 82X0i + 2o
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m Two-sender two-receiver GIC is given as
Yii = guXii + g12X0i + Zy, Y2i = g1 X1i + 82X0i + 2o

m Channel inputs are power limited
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doxi<ns, j=1.2
i=1
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Gaussian Interference Channel

M, X7 ! M,
h o1
Wn
M, Xz Y} M,
f Y2

m Two-sender two-receiver GIC is given as
Yii = guXii + g12X0i + Zy, Y2i = g1 X1i + 82X0i + 2o

m Channel inputs are power limited
n
doxi<ns, j=1.2
i=1

m Capacity region is an gpen problem in NIT
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Very Strong Inference

m Define the signal-to-noise ratios as
snr; = g%lSl, snr, = g%zSz
m Define the interference-to-noise ratios as

: 2 : 2
inr| = g1,52, inr, = g5;51
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snr; = g%lSl, snr, = g%zSz
m Define the interference-to-noise ratios as

: 2 : 2
inr| = g1,52, inr, = g5;51

m A GIC is said to have strictly very strong interference (SVSI) if

inr, inr;
, snrp <
1 4 snrp 1 + snry

snryp <

m Equivalently

C(snry) + C(snrp) < min{C(snrj + inr;), C(snr; + inrp)}
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Very Strong Inference

m Define the signal-to-noise ratios as
snr; = g%lSl, snr, = g%zSz
m Define the interference-to-noise ratios as

: 2 : 2
inr| = g1,52, inr, = g5;51

m A GIC is said to have strictly very strong interference (SVSI) if

inr, inr;
, snrp <
1 4 snrp 1 + snry

snry <
m Equivalently

C(snry) + C(snrp) < min{C(snrj + inr;), C(snr; + inrp)}

m Intuition: Receiver 1 decodes interference M,, then uses that to
decode intended message M; (and vice versa)
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Capacity Region for GICs with SVSI

Ry 4
c, e(") '(iii)
oli)
o, H A. Carleial
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Capacity Region for GICs with SVSI

Ry 4
c, e(") '(iii)
oli)
o, H A. Carleial

m Carleial (1975) showed that the capacity region is

R; < Cy :=C(snry) R, < G, := C(snrp)
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Capacity Region for GICs with SVSI

Ry 4
c e(") '(iii)
oli)
o, T h A. Carleial

m Carleial (1975) showed that the capacity region is

R; < Cy :=C(snry) R, < G, := C(snrp)

m Examine deviations of order ﬁ away from the boundary
m Three distinct regions.
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Second-Order Coding Rate Region

m (L, L) is an (¢, R}, R;)-achievable second-order coding rate pair if
there exists a sequence of (n, My,, M2, €,)-codes such that the
code sizes M;, satisfy

l}ln_légf\?(logM]n nRj*) Lj, j=1,2
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Second-Order Coding Rate Region

m (L, L) is an (¢, R}, R;)-achievable second-order coding rate pair if
there exists a sequence of (n, My,, M2, €,)-codes such that the
code sizes M;, satisfy

l}ln_légf\?(logM]n nRj*) Lj, j=1,2

and the average error probabilities ¢, satisfy

limsupe, <¢
n—o0

m If (L, L,) is (¢, R}, R;)-achievable, then there exists a sequence of
codes such that

log Mj, > nR; 4 /nLj 4 o(v/n)

and
en <e+o(l).
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Optimum Second-Order Coding Rate Region

m The set of all (¢, R}, R;)-achievable second-order coding rate pairs
is called the (¢, R}, R;)-optimum second-order coding rate region

L(e; R}, R)
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Optimum Second-Order Coding Rate Region

m The set of all (¢, R}, R;)-achievable second-order coding rate pairs
is called the (¢, R}, R;)-optimum second-order coding rate region

L(e; R}, R)

m Note: In the single-user case,
L*(e) == sup L(&; R} = C1) = /V(S1)® ' (¢)

m This follows from Hayashi’s work (2009)
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Characterize L(¢; R}, R})

m This is joint work with

> v
S.-Q.Le (NUS) M. Motani (NUS)

m We want to characterize L(e; R}, R;) for all points (R}, R5) on the
boundary of the capacity region
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Characterize L(¢; R}, R})

m This is joint work with

= \
S-Q.Le (NUS) M. Motani (NUS)
m We want to characterize L(¢; R}, R3) for all points (R}, R;) on the
boundary of the capacity region
m For all (R}, R;) in the interior of the capacity region
L(e; R}, R;) = R?
m For all (R}, R;) in the exterior of the capacity region
L(g;R,R5) =10
implying the strong converse
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Main Result: Vertical Boundary

R, |

(&}

‘Rl

Ci

m In case (i), we are far from the horizontal boundary R, < C,
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Ci

m In case (i), we are far from the horizontal boundary R, < C,

m Error event for user 2 vanishes (large deviations)
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Main Result: Vertical Boundary

R, 1

(&}

- R
G !

m In case (i), we are far from the horizontal boundary R, < C,
m Error event for user 2 vanishes (large deviations)
m Hence second-order asymptotics only pertains to user 1

L(;R},Ry) = {(Li, L) : Li < VVi® ()}
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Main Result: Corner Point

R, 4

C2 i)

> R,

G

m In case (iii), we are operating near both boundaries
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Main Result: Corner Point

R, 4

C2 i)

- R
C !

m In case (iii), we are operating near both boundaries

m So both constraints are active and we see L, and L, in the
optimum second-order coding rate region is

L(e:RE,R) = {(Ll,Lz) : <I>(— \/L‘%)@(— \/L‘%) > 1 —a}.
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Heuristic Derivation of Case (iii)

m Let G; := {M; = M} be the event that message j = 1,2 is decoded
correctly
Pr(GiNGy) >1-¢
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Heuristic Derivation of Case (iii)

m Let G; := {M; = M} be the event that message j = 1,2 is decoded
correctly
Pr(GiNGy) >1-¢

m Assuming independence (which does not hold generally),

Pr(gl)Pr(gg) > 1—¢

m But we know from the single-user result that the error probability
Prig)~®(——) = Pr(G)~®( - —=).
Do) == )
So the set of all (¢, C;, C,)-achievable second-order coding rates is

@(—\%)@(—Lz) >1—¢
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lllustration of Case (iii)

L; (nats/+/use)
I
o

[ —V =Vo =2

-=-V,=1,=3

-75 -7 -65 -6 -55
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Intuition Gleaned from GIC with SVSI

m Carleial (1975) mentioned that

“Very strong interference is as innocuous as no
interference at all”
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Intuition Gleaned from GIC with SVSI

m Carleial (1975) mentioned that

“Very strong interference is as innocuous as no
interference at all”

m We show that SVSI is innocuous in the sense that the capacities
C; and dispersions V; are not affected

m Error events are approximately independent

m Intuition that the GIC with SVSI is analogous to 2 independent
direct channels carries over, even in the finer second-order sense
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Gaussian MAC with Degraded Message Sets

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014 27 /39



Gaussian MAC with Degraded Message Sets

Xi

M, Nil

Y" (M, M>)

wn p

M) f

m Channel law is
Yi =X+ X2+ Z
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Gaussian MAC with Degraded Message Sets

Xi

M, Nil

Y" (M, M>)

wn p

M) f

m Channel law is
Yi =X+ X2+ Z

m Channel inputs are power limited

n
D Xi<ns,  j=12
i=1
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Capacity Region

m Capacity region is an exercise in NIT

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014 29/39



Capacity Region

m Capacity region is an exercise in NIT
m The capacity region is the set of all (R, R,) such that

Ry < C(81(1 - p%)
Ri + R, < C(S1 + 82+ 2pVS152)

forsome 0 < p < 1.
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Capacity Region

m Capacity region is an exercise in NIT
m The capacity region is the set of all (R, R,) such that

Ry < C(81(1 - p%)
Ri + R, < C(S1 + 82+ 2pVS152)

forsome 0 < p < 1.

m Uses superposition coding (Cover (1972))
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Capacity Region

The Capacity Region
T T

0.8

T T
= CR Boundary
““““ p=0
- = p=1/3

0.7F -~ ———p—2/3

06} ~

o
0
T

o
IS
T

R, (nats/use)

0.3

0.2r

I i) i

i i i I i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Ry (nats/use)
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Characterize L(¢; R}, R})

m This is joint work with
|

~

=22A

Jon Scarlett

m We want to characterize L(e; R}, R;) for all points (R}, R3) on the
boundary of the capacity region
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Jon Scarlett

m We want to characterize L(e; R}, R;) for all points (R}, R3) on the
boundary of the capacity region

m For all (R}, R;) in the interior of the capacity region
L(e; R}, R;) = R?
m For all (R}, R;) in the exterior of the capacity region
L(e;R},R5) =10
implying the strong converse
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Some Basic Definitions

m Mutual informations

_ [0 _[  cla-ms)
I(p) := [112(0)] o [C(Sl + 5 +2P\/’W)}
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Some Basic Definitions

m Mutual informations

_ [hp)| _ C(( )S1)
I(p) = [hz(ﬂ)] B [C(Sl + 8+ ZPVSISZ)}
m Derivative of mutual informations

9 —Sip 5
148, (1—
D(p) == 5 X(p) = [ s ]
P 175115, +2p/5153

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014 32/39



Some Basic Definitions

m Mutual informations

L2(p) C(S1 4 $2 +2pVS515,)
m Derivative of mutual informations
9 —Sip
D(p) = 5-X(p) = [ s ]
P 1551152 12pv/5153

m Dispersions V(x,y) := wﬁ% and V(x) := V(x,x)

_ [ Vilp)  Vinlp)
Vip) = [Vuz(p) V12,12(p)]

where
Vi(p) == V((1 - ,02)51), Viz,2(p) == V(81 + S2 4 2p/S152)
Vii2(p) :== V((1 = p*)S1, 51 + $2 4+ 2p/S15,)
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Generalization of Inverse CDF of a Gaussian

m For a positive semi-definite matrix V,

U(z1,22,V / / N(0,V)d
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Generalization of Inverse CDF of a Gaussian

m For a positive semi-definite matrix V,

U(z1,22,V / / N(0,V)d

m Givene € (0,1),

p=05 p=0.995
0.05 0.05
............................................... -

< 3

“ \

0 H 0 1

1 1

1 1

-0.05 .

1 !

1 & 1

! -0.1 !

1 !

! !

1 -0.15 !

1 1

=001 .

1 == £=0.80 !
-0.2 : -0.2

0.2 -015 -01 -0.05 0 0.05 02 -015 -01 -0.05 0 0.05
z1 z1
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The Main Result: Vertical Boundary

Points on vertical boundary reduce to scalar dispersion as sum rate
constraint is in error exponents regime

L(e; R, Ry) = {(L1,L2) : L < /Vi(0)@7 ()}

0.4 (RT ? R;)

0 0.05 0.1 0.15 0.2 0.25 03 0.35
Ry (nats/use)
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The Main Result: Vertical Boundary

Points on vertical boundary reduce to scalar dispersion as sum rate
constraint is in error exponents regime

L(e; R, Ry) = {(L1,L2) : L < /Vi(0)@7 ()}

m Following expansion holds for
cardinality of first codebook

log M Vi (0
EMin 1y (0) + /1
n n

! (e)
m Far from sum rate constraint

.1
lim —log(M,M>,) < I12(0)

n—oo n

0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 1 ) 2
Ry (nats/use)
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The Main Result: Curved Boundary

Different behavior in the curved region

clesrinrg) = { @t | 1, Le Ui + v o)

BER

The Capacity Region

0 005 01 015 02 025 03 035 04
Ry (nats/use)
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The Main Result: Curved Boundary

Different behavior in the curved region

clesrinrg) = { @t | 1, Le Ui + v o)

BER

The Capacity Region

m D(p) doesn’t appear usually

m U (V(p),e): corresponds using
Gaussian with covariance matrix

S JAVAYBY)
> =
() L?\/ $152 AY)

0 005 01 015 02 025 03 035 04
Ry (nats/use)
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Achieving all Second-Order Rate Pairs

cemim = {wm: |5 Ui rervio.a)
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Achieving all Second-Order Rate Pairs

cerirg) = {1 | e SEC v (V(o),e) |

m Non-empty regions in CR not in trapezium achievable by

S1 PV 8182
N( [p\/SISZ \Y) >
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Achieving all Second-Order Rate Pairs

cerir) = {1 e U i)+ (vG Vo))
m Non-empty regions in CR not in trapezium achievable by

S1 PV 8182
N( [p\/SISZ \Y) >

m Use the above distribution dependent on blocklength:

pn:p"i‘\fﬁ

m By a Taylor expansion,

L(pn) = L(p) + (pn — p)D(p) = L(p) + T

explaining the slope term.
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lllustration of Second-Order Coding Rates

1.5
1P~
@os Si=S=1andp=3
20
::“—0.5 L(e;R},R;) isa
4l half-space
-2 s 0 05 0

L, (nats/ /use)
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m Second-order rates achieved using a single input distribution
N(0,X(p)) is not optimal
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lllustration of Second-Order Coding Rates

1P~
@05 51:S2:1andp:%
20
::“—0.5 L(e;R},R;) isa
4l half-space
-2 s 0 05 0

L, (nats/ /use)

m Second-order rates achieved using a single input distribution
N(0,X(p)) is not optimal

m Need to vary input distribution with blocklength to achieve all
points in L(e; R}, R3)
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Conclusion
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Conclusion

m Asymptotic expansions for NIT problems with non-vanishing error
probabilities is a very fertile area of research
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Quasi-static MIMO fading channels (Yang-Durisi-Koch-Polyanskiy)
Channels with discrete state (Tomamichel-Tan)
Dirty-paper coding (Scarlett)
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Conclusion

m Asymptotic expansions for NIT problems with non-vanishing error
probabilities is a very fertile area of research

m Other single-user that are solved include:

Quasi-static MIMO fading channels (Yang-Durisi-Koch-Polyanskiy)
Channels with discrete state (Tomamichel-Tan)
Dirty-paper coding (Scarlett)

m Shameless self-promotion:

V.Y.F Tan

Asymptotic expansions in IT with non-vanishing
error probabilities

Now Publishers

Foundations and Trends in Comms and Inf. Th.
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