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Transmission of Information

Shannon’s Figure 1
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SOURCE

Shannon abstracted away information meaning, “semantics”
• treat all data equally — bits as a “universal currency”
• crucial abstraction for modern communication and computing systems

Also relaxed computation and delay constraints to discover a 
fundamental limit: capacity, providing a goal-post to work toward

Saturday, June 11, 2011

Shannon’s Figure 1

Information theory ≡ Finding fundamental limits for reliable
information transmission

Channel coding: Concerned with the maximum rate of
communication in bits/channel use
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Channel Coding (One-Shot)

- - - -
M X Ye W d M̂

A code is an triple C = {M, e, d} whereM is the message set and
b(e(m)) ≤ S for some cost function b(·) and cost S

The average error probability perr(C) is

perr(C) := Pr
[
M̂ 6= M

]
where M is uniform onM

A non-asymptotic fundamental limit can be defined as

M∗(W, ε, S) := sup
{

m ∈ N
∣∣∃ C s.t. m = |M|, perr(C) ≤ ε

}
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Channel Coding (n-Shot) for AWGN

- - - -
M Xn Yn

e Wn d M̂

Consider n independent uses of an additive white Gaussian
channel Wn

For vectors x = (x1, . . . , xn) ∈ Rn and y := (y1, . . . , yn) ∈ Rn, with

‖x‖2
2 ≤ nS,

the channel law is

Wn(y|x) =

n∏
i=1

1√
2π

exp
(
−(yi − xi)

2

2

)
Non-asymptotic fundamental limit for n uses of W

M∗(Wn, ε, S)

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014 7 / 39



Channel Coding (n-Shot) for AWGN

- - - -
M Xn Yn

e Wn d M̂

Consider n independent uses of an additive white Gaussian
channel Wn

For vectors x = (x1, . . . , xn) ∈ Rn and y := (y1, . . . , yn) ∈ Rn, with

‖x‖2
2 ≤ nS,

the channel law is

Wn(y|x) =

n∏
i=1

1√
2π

exp
(
−(yi − xi)

2

2

)

Non-asymptotic fundamental limit for n uses of W

M∗(Wn, ε, S)

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014 7 / 39



Channel Coding (n-Shot) for AWGN

- - - -
M Xn Yn

e Wn d M̂

Consider n independent uses of an additive white Gaussian
channel Wn

For vectors x = (x1, . . . , xn) ∈ Rn and y := (y1, . . . , yn) ∈ Rn, with

‖x‖2
2 ≤ nS,

the channel law is

Wn(y|x) =

n∏
i=1

1√
2π

exp
(
−(yi − xi)

2

2

)
Non-asymptotic fundamental limit for n uses of W

M∗(Wn, ε, S)

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014 7 / 39



Single-User Asymptotic Evaluation

Theorem (Hayashi (2009), Polyanskiy-Poor-Verdú (2010),
Tan-Tomamichel (2014))

For every ε ∈ (0, 1), we have

log M∗(Wn, ε, S) = nC(S) +
√

nV(S)Φ−1(ε) +
1
2

log n + O(1)

where C(S) and V(S) are the capacity and dispersion defined as

C(S) =
1
2

log(1 + S), V(S) =
S(S + 2)

(S + 1)2 log2 e

M. Hayashi Polyanskiy-Poor-Verdú M. Tomamichel
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Single-User Asymptotic Evaluation: Interpretation

R∗(Wn, ε, S) :=
log M∗(Wn, ε, S)

n
= C(S) +

√
V(S)

n
Φ−1(ε)︸ ︷︷ ︸

Gaussian approximation

+O
( log n

n

)

Interpretation: The backoff from C(S) at finite blocklength n and
tolerable error probability is approximately√

V(S)

n
Φ−1(1− ε)

Small ε implies large backoff

Can compare to actual finite blocklength bounds

Gaussian approximation is good for some n and ε
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Background: Shannon’s Channel Coding Theorem

Shannon’s noisy channel coding
theorem and

Shannon’s (1959), Yoshihara’s (1964)
and Wolfowitz’s (1978) strong
converse state that

Theorem (Shannon (1949), Shannon (1959))

lim
n→∞

1
n

log M∗(Wn, ε, S) = C(S), ∀ ε ∈ (0, 1)
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Background: Shannon’s Channel Coding Theorem

lim
n→∞

1
n

log M∗(Wn, ε, S) = C(S) bits/channel use

Channel coding theorem for AWGN channels is independent of
ε ∈ (0, 1)

-

6

C(S)
R0

1

lim
n→∞

perr(Cn)

Phase transition at capacity
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Background: Second-Order Coding Rates

What happens at capacity?

More precisely, what happens when

log |Mn| ≈ nC(S) + L
√

n

for some L ∈ R?

Here L is known as the second-order coding rate of the code

Note that L can be negative (cf. Hayashi (2008), Hayashi (2009))
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Background: Second-Order Coding Rates

Assume rate of the code satisfies
1
n

log |Mn| = C(S) +
L√
n

+ o
( 1√

n

)

-

6

0

0.5

1

L

lim
n→∞

perr(Cn)

perr(Cn) = Φ
(

L√
V(S)

)
+ o(1)

For an error probability ε, the optimum second-order coding rate is

L∗(ε) :=
√

V(S)Φ−1(ε)
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Network Information Theory

Network Information Theory
by A. El Gamal and Y.-H. Kim

Many problems unsolved

My agenda is to understand second-order behavior of solved NIT
problems

Gain new insights on second-order optimal coding schemes

We study two simple NIT problems in the rest of the talk
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Gaussian Interference Channel

- -

- -

-
M2

M1

Xn
2

Xn
1

f2

f1

Wn

Yn
2

Yn
1

M̂2

M̂1

-

-

-

-

ϕ2

ϕ1

Two-sender two-receiver GIC is given as

Y1i = g11X1i + g12X2i + Z1i, Y2i = g21X1i + g22X2i + Z2i

Channel inputs are power limited
n∑

i=1

X2
ji ≤ nSj, j = 1, 2

Capacity region is an open problem in NIT
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Very Strong Inference

Define the signal-to-noise ratios as

snr1 = g2
11S1, snr2 = g2

22S2

Define the interference-to-noise ratios as

inr1 = g2
12S2, inr2 = g2

21S1

A GIC is said to have strictly very strong interference (SVSI) if

snr1 <
inr2

1 + snr2
, snr2 <

inr1

1 + snr1

Equivalently

C(snr1) + C(snr2) < min{C(snr1 + inr1),C(snr2 + inr2)}

Intuition: Receiver 1 decodes interference M2, then uses that to
decode intended message M1 (and vice versa)
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Capacity Region for GICs with SVSI

-

6

R1

R2

(iii)

(i)

(ii)t t
t

C2

C1 A. Carleial

Carleial (1975) showed that the capacity region is

R1 ≤ C1 := C(snr1) R2 ≤ C2 := C(snr2)

Examine deviations of order 1√
n away from the boundary

Three distinct regions.
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Second-Order Coding Rate Region

(L1,L2) is an (ε,R∗1,R
∗
2)-achievable second-order coding rate pair if

there exists a sequence of (n,M1n,M2n, εn)-codes such that the
code sizes Mjn satisfy

lim inf
n→∞

1√
n

(log Mjn − nR∗j ) ≥ Lj, j = 1, 2

and the average error probabilities εn satisfy

lim sup
n→∞

εn ≤ ε

If (L1,L2) is (ε,R∗1,R
∗
2)-achievable, then there exists a sequence of

codes such that

log Mjn ≥ nR∗j +
√

nLj + o(
√

n)

and
εn ≤ ε+ o(1).
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Optimum Second-Order Coding Rate Region

The set of all (ε,R∗1,R
∗
2)-achievable second-order coding rate pairs

is called the (ε,R∗1,R
∗
2)-optimum second-order coding rate region

L(ε; R∗1,R
∗
2)

Note: In the single-user case,

L∗(ε) := supL(ε; R∗1 = C1) =
√

V(S1)Φ−1(ε)

This follows from Hayashi’s work (2009)
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Characterize L(ε;R∗1,R∗2)

This is joint work with

S.-Q. Le (NUS) M. Motani (NUS)

We want to characterize L(ε; R∗1,R
∗
2) for all points (R∗1,R

∗
2) on the

boundary of the capacity region

For all (R∗1,R
∗
2) in the interior of the capacity region

L(ε; R∗1,R
∗
2) = R2

For all (R∗1,R
∗
2) in the exterior of the capacity region

L(ε; R∗1,R
∗
2) = ∅

implying the strong converse
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Main Result: Vertical Boundary

-

6

R1

R2

(i)t
C2

C1

In case (i), we are far from the horizontal boundary R2 < C2

Error event for user 2 vanishes (large deviations)

Hence second-order asymptotics only pertains to user 1

L(ε; R∗1,R
∗
2) =

{
(L1,L2) : L1 ≤

√
V1Φ−1(ε)

}
.
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Main Result: Corner Point

-

6

R1

R2

(iii)tC2

C1

In case (iii), we are operating near both boundaries

So both constraints are active and we see L1 and L2 in the
optimum second-order coding rate region is

L(ε; R∗1,R
∗
2) =

{
(L1,L2) : Φ

(
− L1√

V1

)
Φ
(
− L2√

V2

)
≥ 1− ε

}
.
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Heuristic Derivation of Case (iii)

Let Gj := {M̂j = M̂} be the event that message j = 1, 2 is decoded
correctly

Pr(G1 ∩ G2) ≥ 1− ε

Assuming independence (which does not hold generally),

Pr(G1) Pr(G2) ≥ 1− ε

But we know from the single-user result that the error probability

Pr(Gc
j ) ≈ Φ

( Lj√
Vj

)
=⇒ Pr(Gj) ≈ Φ

(
− Lj√

Vj

)
.

So the set of all (ε,C1,C2)-achievable second-order coding rates is

Φ
(
− L1√

V1

)
Φ
(
− L2√

V2

)
≥ 1− ε
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Illustration of Case (iii)
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V1 = V2 = 2
V1 = V2 = 3
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Intuition Gleaned from GIC with SVSI

Carleial (1975) mentioned that
“Very strong interference is as innocuous as no
interference at all”

We show that SVSI is innocuous in the sense that the capacities
Cj and dispersions Vj are not affected

Error events are approximately independent

Intuition that the GIC with SVSI is analogous to 2 independent
direct channels carries over, even in the finer second-order sense
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Outline

1 Motivation, Background and History

2 Gaussian Interference Channel with Very Strong Interference

3 Gaussian MAC with Degraded Message Sets

4 Conclusion
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Gaussian MAC with Degraded Message Sets

- -�
�
�
�
�
�
��
- -

-M2

M1

Xn
2

Xn
1

f2

f1

Wn
Yn (M̂1, M̂2)
- -ϕ

Channel law is

Yi = X1i + X2i + Zi

Channel inputs are power limited
n∑

i=1

X2
ji ≤ nSj, j = 1, 2
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Capacity Region

Capacity region is an exercise in NIT

The capacity region is the set of all (R1,R2) such that

R1 ≤ C(S1(1− ρ2))

R1 + R2 ≤ C(S1 + S2 + 2ρ
√

S1S2)

for some 0 ≤ ρ ≤ 1.

Uses superposition coding (Cover (1972))
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Capacity Region
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Characterize L(ε;R∗1,R∗2)

This is joint work with

Jon Scarlett

We want to characterize L(ε; R∗1,R
∗
2) for all points (R∗1,R

∗
2) on the

boundary of the capacity region

For all (R∗1,R
∗
2) in the interior of the capacity region

L(ε; R∗1,R
∗
2) = R2

For all (R∗1,R
∗
2) in the exterior of the capacity region

L(ε; R∗1,R
∗
2) = ∅

implying the strong converse
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Some Basic Definitions

Mutual informations

I(ρ) :=

[
I1(ρ)
I12(ρ)

]
=

[
C
(
(1− ρ2)S1

)
C
(
S1 + S2 + 2ρ

√
S1S2

)]

Derivative of mutual informations

D(ρ) :=
∂

∂ρ
I(ρ) =

[ −S1ρ
1+S1(1−ρ2)√

S1S2
1+S1+S2+2ρ

√
S1S2

]

Dispersions V(x, y) := x(y+2)
2(x+1)(y+1) and V(x) := V(x, x)

V(ρ) :=

[
V1(ρ) V1,12(ρ)

V1,12(ρ) V12,12(ρ)

]
where

V1(ρ) := V
(
(1− ρ2)S1

)
, V12,12(ρ) := V

(
S1 + S2 + 2ρ

√
S1S2

)
V1,12(ρ) := V

(
(1− ρ2)S1, S1 + S2 + 2ρ

√
S1S2

)
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Generalization of Inverse CDF of a Gaussian

For a positive semi-definite matrix V,

Ψ(z1, z2,V) =

∫ z1

−∞

∫ z2

−∞
N (0,V) du

Given ε ∈ (0, 1),

Ψ−1(V, ε) = {(z1, z2) : Ψ(−z1,−z2,V) ≥ 1− ε} .
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The Main Result: Vertical Boundary

Points on vertical boundary reduce to scalar dispersion as sum rate
constraint is in error exponents regime

L(ε; R∗1,R
∗
2) = {(L1,L2) : L1 ≤

√
V1(0)Φ−1(ε)}
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The Capacity Region

 

 
CR Boundary
ρ = 0
ρ = 1/3
ρ = 2/3

u
(R∗1,R

∗
2)

@
@I

Following expansion holds for
cardinality of first codebook

log M1n

n
≈ I1(0) +

√
V1(0)

n
Φ−1(ε)

Far from sum rate constraint

lim
n→∞

1
n

log(M1nM2n) < I12(0)

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014 34 / 39



The Main Result: Vertical Boundary

Points on vertical boundary reduce to scalar dispersion as sum rate
constraint is in error exponents regime

L(ε; R∗1,R
∗
2) = {(L1,L2) : L1 ≤

√
V1(0)Φ−1(ε)}

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R1 (nats/use)

R
2

(n
a
ts

/
u
se

)

The Capacity Region

 

 
CR Boundary
ρ = 0
ρ = 1/3
ρ = 2/3

u
(R∗1,R

∗
2)

@
@I

Following expansion holds for
cardinality of first codebook

log M1n

n
≈ I1(0) +

√
V1(0)

n
Φ−1(ε)

Far from sum rate constraint

lim
n→∞

1
n

log(M1nM2n) < I12(0)

Vincent Tan (NUS) IT with Non-Vanishing Errors Chalmers University 2014 34 / 39



The Main Result: Curved Boundary

Different behavior in the curved region

L(ε; R∗1,R
∗
2) =

{
(L1,L2) :

[
L1

L1 + L2

]
∈
⋃
β∈R

βD(ρ) + Ψ−1(V(ρ), ε)

}
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CR Boundary
ρ = 0
ρ = 1/3
ρ = 2/3

u(R∗1,R
∗
2)

D(ρ) doesn’t appear usually

Ψ−1(V(ρ), ε): corresponds using
Gaussian with covariance matrix

Σ(ρ) =

[
S1 ρ

√
S1S2

ρ
√

S1S2 S2

]
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Achieving all Second-Order Rate Pairs

L(ε; R∗1,R
∗
2) =

{
(L1,L2) :

[
L1

L1 + L2

]
∈
⋃
β∈R

βD(ρ) + Ψ−1(V(ρ), ε)

}

Non-empty regions in CR not in trapezium achievable by

N
(

0,
[

S1 ρ
√

S1S2
ρ
√

S1S2 S2

])
Use the above distribution dependent on blocklength:

ρn = ρ+
β√
n

By a Taylor expansion,

I(ρn) ≈ I(ρ) + (ρn − ρ)D(ρ) = I(ρ) +
βD(ρ)√

n

explaining the slope term.
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Illustration of Second-Order Coding Rates
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Second-order rates achieved using a single input distribution
N (0,Σ(ρ)) is not optimal

Need to vary input distribution with blocklength to achieve all
points in L(ε; R∗1,R

∗
2)
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Conclusion

Asymptotic expansions for NIT problems with non-vanishing error
probabilities is a very fertile area of research

Other single-user that are solved include:

1 Quasi-static MIMO fading channels (Yang-Durisi-Koch-Polyanskiy)

2 Channels with discrete state (Tomamichel-Tan)

3 Dirty-paper coding (Scarlett)

Shameless self-promotion:

V. Y. F. Tan
Asymptotic expansions in IT with non-vanishing
error probabilities
Now Publishers
Foundations and Trends in Comms and Inf. Th.
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