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Ranking

A fundamental problem in a wide range of contexts

Applications: web search, recommendation systems, social
choice, sports competitions, voting, etc.

Efforts in developing various ranking algorithms

A variety of statistical models introduced for evaluating ranking
algorithms
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Ranking: An Example and Difficulties

Example: Web search

n = 109 websites(n
2

)
≈ n2 = 1018 comparisons

Do we really need Θ(n2)
comparisons?
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Large-Scale Ranking

Suppose that

we want a total ordering

pairwise comparisons are randomly given (probabilistically).

This indeed requires Θ(n2) comparisons

No way to identify the ordering between 1 and 2 without a direct
comparison, i.e., comparison must be made w.p. 1

Worse with noisy data

Adopt a Shannon-theoretic approach in our analyses
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Top-K Ranking Usually Suffices
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Statistical Model for Top-K Ranking: Part I

Adopt the Bradley-Terry-Luce or BTL model in which there is an
underlying unknown score vector

w = (w1, . . . ,wn) ∈ Rn
++,

where wi is the likeability of movie i.

Decide which items to compare via a comparison graph
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Statistical Model for Top-K Ranking: Part II

The outcome of the comparison between item 1 and 2 is

Y12 = I{item 1 � item 2} ∼ Bern
(

w1

w1 + w2

)
.

E.g., w1 = 0.9 and w2 = 0.1, then item 1 beats item 2 w.p. 90%.

We have L independent copies

Y(1)
ij , . . . ,Y(L)

ij

for each observed edge {i, j} ∈ E of the observation graph.

Determine fundamental limits on L (as a function of n and other
parameters) so that recovery of top-K set is successful.
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Top-K Ranking with Adversaries

Joint work with

Changho Suh (KAIST) Renbo Zhao (NUS)

C. Suh, VYFT and R. Zhao “Adversarial Top-K Ranking”, IEEE
Trans. on Inf. Theory, Apr 2017
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Ranking with Adversaries: Crowdsourced Setting

Yij ∼ Bern
(

wi

wi + wj

)

Yij ∼ Bern
(

1/wi

1/wi + 1/wj

)

= Bern
(

wj

wi + wj

)

Spammers provide answers in an adversarial manner

Yij ∼ Bern
(
η · wi

wi + wj
+ (1− η) ·

wj

wi + wj

)
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Related Work: Crowdsourced BTL [Chen et al. ’13]1

Given an observed pair, each sample has different distributions

Y(l)
ij ∼ Bern

(
ηl ·

wi

wi + wj
+ (1− ηl) ·

1/wi

1/wi + 1/wj

)
where ηl is a quality parameter of measurement l

Subsumes as a special case our adversarial BTL model when all
quality parameters are the same

The authors developed a ranking algorithm but without theoretical
guarantees

More difficult to analyze as there are many more parameters

1X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz, “Pairwise ranking
aggregation in a crowdsourced setting,” in WSDM, 2013

Vincent Y. F. Tan (NUS) Ranking Mcmaster University 13 / 51



Related Work: Crowdsourced BTL [Chen et al. ’13]1

Given an observed pair, each sample has different distributions

Y(l)
ij ∼ Bern

(
ηl ·

wi

wi + wj
+ (1− ηl) ·

1/wi

1/wi + 1/wj

)
where ηl is a quality parameter of measurement l

Subsumes as a special case our adversarial BTL model when all
quality parameters are the same

The authors developed a ranking algorithm but without theoretical
guarantees

More difficult to analyze as there are many more parameters

1X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz, “Pairwise ranking
aggregation in a crowdsourced setting,” in WSDM, 2013

Vincent Y. F. Tan (NUS) Ranking Mcmaster University 13 / 51



Related Work: Crowdsourced BTL [Chen et al. ’13]1

Given an observed pair, each sample has different distributions

Y(l)
ij ∼ Bern

(
ηl ·

wi

wi + wj
+ (1− ηl) ·

1/wi

1/wi + 1/wj

)
where ηl is a quality parameter of measurement l

Subsumes as a special case our adversarial BTL model when all
quality parameters are the same

The authors developed a ranking algorithm but without theoretical
guarantees

More difficult to analyze as there are many more parameters

1X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz, “Pairwise ranking
aggregation in a crowdsourced setting,” in WSDM, 2013

Vincent Y. F. Tan (NUS) Ranking Mcmaster University 13 / 51



Related Work: Crowdsourced BTL [Chen et al. ’13]1

Given an observed pair, each sample has different distributions

Y(l)
ij ∼ Bern

(
ηl ·

wi

wi + wj
+ (1− ηl) ·

1/wi

1/wi + 1/wj

)
where ηl is a quality parameter of measurement l

Subsumes as a special case our adversarial BTL model when all
quality parameters are the same

The authors developed a ranking algorithm but without theoretical
guarantees

More difficult to analyze as there are many more parameters

1X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz, “Pairwise ranking
aggregation in a crowdsourced setting,” in WSDM, 2013

Vincent Y. F. Tan (NUS) Ranking Mcmaster University 13 / 51



Goal of Adversarial Top-K Ranking

Erdös-Rényi comparison graph
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Contribution #1: 1/2 < η < 1 known

η = Fraction of non-adversaries; ∆K � wK − wK+1

sample complexity 

η = 1 studied by Chen and Suh (2015)2

2Y. Chen and C. Suh, “Spectral MLE: Top-K rank aggregation from pairwise
comparisons,” in ICML 2015
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Contribution #1: 1/2 < η < 1 known

η = Fraction of non-adversaries; ∆K � wK − wK+1

sample complexity 

minimax optimal 

nearly-linear time  
algorithm 

η = 1 studied by Chen and Suh (2015)2

2Y. Chen and C. Suh, “Spectral MLE: Top-K rank aggregation from pairwise
comparisons,” in ICML 2015
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Contribution #1: 1/2 < η < 1 known

Experimental Results for n = 1000 and K = 10

Ŝ =

(
n
2

)
pL̂ave

Ŝnorm =
Ŝ

(n log n)/∆2
K
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Contribution #2: 1/2 < η < 1 unknown

η = Fraction of non-adversaries; ∆K � wK − wK+1

sample complexity 
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Contribution #2: 1/2 < η < 1 unknown
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sample complexity 

infeasible 
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Optimality

Minimax optimality: Construct “worst-case” score vectors

Translation to M-ary hypothesis testing: Construction of multiple
hypotheses

Information-theoretic ideas applied to statistical learning
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Optimality: Tools

Construction of M := min{K, n− K}+ 1 ≤ n/2 hypotheses:

Pr(σ([K]) = S) =
1
M
, for S = {2, . . . ,K} ∪ {i}, i = 1,K + 1, . . . , n

Bound mutual info. of permutation and “erased” version of Y(l)
ij :

I(σ; Z) ≤ p
M2

∑
σ1,σ2∈M

L∑
l=1

∑
i 6=j

D
(

P
Y(l)

ij |σ1

∥∥∥∥P
Y(l)

ij |σ2

)
Bound the divergence using reverse Pinsker’s inequality. Here is
where ∆K comes in∑

i 6=j

D
(

P
Y(l)

ij |σ1

∥∥∥∥P
Y(l)

ij |σ2

)
≤ n · (2η − 1)2 ·∆2

K

Fano’s inequality
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Ranking Algorithm for η Known: Part I

Scores determine the ranking

Adopt a two-step approach
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Ranking Algorithm for η Known: Part II

Key Message:

Small MSE =⇒ Small `∞ Error of ŵ =⇒ High Ranking Accuracy
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How to ensure small MSE for η = 1?

Recall η = 1 (no adversaries)

L independent copies Y(1)
ij ,Y(2)

ij , . . . ,Y(L)
ij

Convergence to stationary distribution

1
L

L∑
l=1

Y(l)
ij →

wi

wi + wj

Detailed balance equation:

πi ·
wj

wi + wj
= πj ·

wi

wi + wj

where π := [π1, π2, . . . , πn] is the stat. distn. of the chain.

Stationary distribution converges to w (up to constant scaling), i.e.,

lim
L→∞

π(L) = αw.
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Recall η = 1 (no adversaries)

L independent copies Y(1)
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ij , . . . ,Y(L)
ij

Convergence to stationary distribution

1
L
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How to ensure small MSE for η ∈ (1/2, 1]?

Arbitrary η ∈ (1/2, 1] (adversaries)

L independent copies Y(1)
ij ,Y(2)

ij , . . . ,Y(L)
ij

Redefine Markov chain

We instead have the following convergence:

1
L

L∑
l=1

Y(l)
ij → η

wi

wi + wj
+ (1− η)

wj

wi + wj
= (2η − 1)

wi

wi + wj
+ (1− η)

Redefine “shifted” samples with range scaled by 2η − 1:

Ỹij =
1

2η − 1

[
1
L

L∑
l=1

Y(l)
ij − (1− η)

]
→ wi

wi + wj

Construct Markov chain with transition probabilities {Ỹij}.
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Vincent Y. F. Tan (NUS) Ranking Mcmaster University 23 / 51



Ranking Algorithm for η Known: Summary

Use several concentraition inequalities (Hoeffding, Bernstein,
Tropp, etc.), we can show that if

sample size = L
(

n
2

)
p � n log n

(2η − 1)2∆2
K

=⇒ Feasible Top-K Ranking
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What if η is unknown?

Adversarial BTL model is a mixture model

Obtaining global optimality guarantees for mixture model
problems is difficult in general

Recent developments:

Tensor methods: Jain and Oh3 and Anandkumar et al.4

Key idea: Exact 2nd and 3rd moments yield sufficient statistics

Our setting:

Can obtain estimates of 2nd and 3rd moments

Can estimate η

3P. Jain and S. Oh, “Learning mixtures of discrete product distributions using
spectral decompositions,” in COLT, 2014

4A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor
decompositions for learning latent variable models,” JMLR, 2014.
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Unknown η: High-Level Algorithm: Part I

1 Turn weights into distribution vectors

π0 =

[
· · · wi

wi + wj

wj

wi + wj

wi′

wi′ + wj′

wj′

wi′ + wj′
· · ·
]T

2 Estimate moments. Ground truth moment matrix and tensor are:

M2 := ηπ0 ⊗ π0 + (1− η)π1 ⊗ π1,

M3 := ηπ0 ⊗ π0 ⊗ π0 + (1− η)π1 ⊗ π1 ⊗ π1.

3 Solves a Least Squares Problem

Ĝ ∈ arg min
Z∈R2×2×2

∥∥∥∥PΩ3

(
Z
[
PM̂2

]
3
− 1
|I2|

∑
t∈I2

⊗3Y(t)
)∥∥∥∥2

F

4 Find leading eigenvalue λ1(Ĝ) of Ĝ which is related to η as follows:

η̂ = λ1(Ĝ)−2
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Unknown η: High-Level Algorithm: Part II

How does the quality of the estimation of η affect overall sample
complexity?
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Tradeoff Between |η̂ − η| and Sample Complexity

With very careful analysis, we can derive a meta-lemma

|η̂ − η| ≤ ε =⇒ Sample size = L
(

n
2

)
p � n log2 n

ε2

This implies that

|η̂ − η| ↓ implies that ‖ŵ− w‖∞ ↓ but sample size ↑

|η̂ − η| ↑ implies that sample size ↓ but ‖ŵ− w‖∞ ↑

Find a sweet spot to show that

sample size � n log2 n
(2η − 1)4∆4

K
, =⇒ Feasible Top-K ranking
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|η̂ − η| ↓ implies that ‖ŵ− w‖∞ ↓ but sample size ↑

|η̂ − η| ↑ implies that sample size ↓ but ‖ŵ− w‖∞ ↑
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Find a sweet spot to show that

sample size � n log2 n
(2η − 1)4∆4

K
, =⇒ Feasible Top-K ranking

Vincent Y. F. Tan (NUS) Ranking Mcmaster University 28 / 51



Conclusion for Adversarial Top-K Ranking

Explored a Top-K ranking problem for an adversarial setting

Characterized exact order-wise optimal sample complexity for
η-known case

Established an upper bound on the sample complexity for the
η-unknown case

Developed computationally efficient algorithms for both cases
(using state-of-the-art tensor methods for the η-unknown case)

C. Suh, VYFT and R. Zhao “Adversarial Top-K Ranking”, IEEE
Trans. on Inf. Theory, Apr 2017
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Outline

1 Introduction to Statistical Models for Ranking

2 Fundamental Limits of Top-K Ranking with Adversaries

3 Lower Bounds on the Bayes Risk of a Bayesian BTL Model
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Lower Bounds on the Risk of a Bayesian BTL Model

Joint work with

Mine Alsan Ranjitha Prasad
(NUS) (TCS Innovation Labs, Delhi)

M. Alsan, R. Prasad and VYFT, “Lower Bounds on the Bayes Risk
of the Bayesian BTL Model with Applications to Comparison
Graphs”, IEEE J. on Sel. Topics of Sig. Proc., Oct 2018
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Summary of contributions

Study the fundamental performance limits of ranking algorithms in
the Bradley-Terry-Luce model within a Bayesian framework:

1 Derive lower bounds on the Bayes Risk of estimators.

- A family of information-theoretic lower bounds

for norm-based distortion functions ‖·‖r
r, for any r ≥ 1.

- The Bayesian Cramér-Rao bound for the MSE, i.e., r = 2.

2 Explore optimal comparison graph structures to design
experiments minimizing distortion.
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Recall the BTL Model

BTL model: To each item i ∈ [n], a skill parameter wi ∈ R++ s.t.

Pij := Pr[item i � item j] =
wi

wi + wj
.

⇒ Instead of Top-K ranking, now we want to estimate the vector

w := (w1, . . . ,wn) ∈ Rn
++

Given
m =

∑
(i,j):i6=j

mij ∈ N

indep. pairwise comparisons, we count:

1 mij: Num. of pairwise comparisons between items i & j,
2 bij: Num. of comparisons in which i is preferred over j.

⇒M := {mij} ∈ Nn×n and B := {bij} ∈ Nn×n.
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Induced Probabilities by BTL Model

We assume that the matrix M = {mij} is fixed a priori.

The BTL model induces the following distributions:

1 For fixed mij,

p(bij|wi,wj) = Bin(bij; mij,Pij).

2 For fixed M,

p(B|λ) =
∏

(i,j):i<j

Bin(bij; mij,Pij),
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Bayesian BTL Model

Adopt the Bayesian BTL framework by Caron & Doucet5:

1 Prior distribution: They assign

p(wi) = Gam(wi;αi, βi)

to each item i ∈ [n], where α = {αi}n
i=1,β := {βi}n

i=1 ∈ Rn
++.

2 Latent random variables: They introduce Z := {Zij} ∈ Rn×n

Zij = Zji :=

mij∑
s=1

min{Ysi,Ysj},

for i, j ∈ [n] such that i < j, where

Yi ∼ Exp(wi) & Yj ∼ Exp(wj) such that Pij = Pr[Yi < Yj].

Known as Thurstonian interpretation of the BTL model.

5F. Caron and A. Doucet, “Efficient Bayesian Inference for Generalized
Bradley-Terry Models", in JCGS, 2012
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Bayesian BTL Model

Adopt the Bayesian BTL framework by Caron & Doucet5:

1 Prior distribution: They assign

p(wi) = Gam(wi;αi, βi)

to each item i ∈ [n], where α = {αi}n
i=1,β := {βi}n

i=1 ∈ Rn
++.

2 Latent random variables: They introduce Z := {Zij} ∈ Rn×n
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Induced Probabilities by Bayesian BTL Model

1 Prior:

p(w) =

n∏
i=1

p(wi) =

n∏
i=1

Gam(wi;αi, βi),

2 Prior × Likelihood:

p(w,B) = p(w)p(B|w) =

n∏
i=1

Gam(wi;αi, βi)
∏
i<j

Bin
(

bij; mij,
wi

wi + wj

)
.

3 Latent Variable:

p(Zij|wi,wj) = Gam(Zij; mij,wi + wj).

4 Posterior:

p(w|B,Z) =

n∏
i=1

Gam(wi;αi + bi, βi + Zi).

where bi :=
∑

j 6=i bij and Zi :=
∑

j 6=i Zij.
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Bayes Risk

For any r ≥ 1, we define the family of Bayes risks for estimating w

1 from only B as

RB := inf
ϕ

E
[∥∥w−ϕ(B)

∥∥r
r

]
,

where ϕ(B) is an estimator of w.

2 from B and the latent variable Z as

R∗B := inf
ϕ∗

E
[∥∥w−ϕ∗(B,Z)

∥∥r
r

]
,

where ϕ∗(B,Z) is an estimator of w.

RB ≥ R∗B.
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Bayesian Network of All Variables

wi ∼ Gam(wi;αi, βi) Prior on wi

Vincent Y. F. Tan (NUS) Ranking Mcmaster University 38 / 51



Bayesian Network of All Variables

Pij =
wi

wi + wj
BTL model

Vincent Y. F. Tan (NUS) Ranking Mcmaster University 38 / 51



Bayesian Network of All Variables

Ysi ∼ Exp(wi) Latent “Arrival Times”
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Bayesian Network of All Variables

bij ∼ Bin (bij; mij,Pij) Num of times i beats j out of mij games
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Bayesian Network of All Variables

Zij =

mij∑
s=1

min{Ysi,Ysj} : Latent variables
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Bayesian Network of All Variables

ϕ(B) and ϕ∗(B,Z) : Functions to estimate w
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General Lower Bounds on the Bayes Risk

For r = 2, can compute the Bayesian Cramér-Rao bound on RB.

We compute a family of information-theoretic lower bounds:

1 Theorem 3 of Xu and Raginsky6 reads: For any r ≥ 1,

R∗B ≥
n
re

(
Vn · Γ

(
1 +

n
r

))−r/n

exp
[
− r

n

(
I(w; B,Z)− h(w)

)]
,

where Vn is the volume of the unit ball in (Rn, ‖·‖r).

2 Using Stirling’s approximation, we upper bound

I(w; B,Z)− h(w) = E [log p(w|B,Z)] .

6A. Xu and M. Raginsky, “Information-Theoretic Lower Bounds on Bayes Risk in
Decentralized Estimation," in IEEE Trans. on Inf. Theory, 2017.
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Family of Information-Theoretic Lower Bounds

Theorem

For all i ∈ [n], let

mi :=
1
2

∑
j6=i

mij. half the total num. of games i plays

Then, the Bayes risk is asymptotically lower bounded by

RB &
n
re

(
Vn · Γ

(
1 +

n
r

))−r/n

exp
[
− r E(B,α,β)

]
,

where

E(B,α,β) :=
n∑

i=1

(
− 1

2
log (2π) + logβi − ψ(αi) +

1
2

log (αi + mi)

)
.
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Information-Theoretic Lower Bounds

Take αi = α and βi = β, for each i ∈ [n].

For the L1 norm (r = 1),

R∗B &

√
π

2
exp

[
− (logβ − ψ(α) + 1)

] n√
α/n + m

,

For the squared L2 norm (r = 2),

RB & exp
[
− 2(logβ − ψ(α))− 1

] n
α/n + m

.
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Performance of Lower Bounds: L1 error
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Figure: L1 error of the EM algo. and the information-theoretic lower bound (for
n = 100, α = 5 and β = αn− 1).
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Perf. of Lower Bounds: MSE (squared L2 error)
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Figure: L2 error of the EM algo., the IT lower bound and the BCRB (for
n = 100, α = 5, and β = αn− 1).
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Application to General Comparison Graphs

Given a fixed budget of m =
∑

i 6=j mij games,

how to allocate games among n players to minimize the bounds?

Corollary (Optimal Connected Graphs)

Regular Connected Graphs are Optimal!
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Application to General Comparison Graphs

Proof:
Minimizing the lower bound is equivalent to maximizing

f ({mi}i∈[n]) :=

n∑
i=1

1
2

log (αi + mi)

subject to
∑n

i=1 mi = m and mi ∈ N.

Solution given by water-filling formula:

mi = |µ− αi|+, ∀ i ∈ [n],

where µ > 0 is chosen such that
n∑

i=1

|µ− αi|+ = m.

But when αi = α for all i, mi are all equal.
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The Gamma Distribution with Fixed β = 1

αi ↑ =⇒ Greater belief that wi ↑
=⇒ Games i plays with others mi ↓
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Application to Comparison Graphs: Restricted to Trees

Corollary (Optimal Tree Graphs)

1 Best: Minimizes the (lower bound on the) Bayes Risk

2 Worst: Maximizes the (lower bound on the) Bayes Risk
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Application to Comparison Graphs: Restricted to Trees

Proof for Star:
Maximizing the lower bound on Bayes risk equivalent to

min
m:

∑
i mi=m

g(m) :=
1
2

log

α+ 2m +
∑
i′ 6=i∗

mi′

+
∑

i

1
2

log(α+ mi)

where m = {mi}i∈[n] and i∗ = 1 is the central node.

Shift part of weight of an edge m1j > 0, for j 6= 1, to create a new
edge with weight mji such that i 6= 1. Can show that

∂g(m1, . . . ,mn)

∂mi
> 0

implying that f will be increased by the new configuration.
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Effect of Tree Graph Structure on IT Bound
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Figure: IT bounds for diff. graph structures (for n = 100, α = 5, β = αn− 1).
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Effect of Tree Graph Structure on BCRB
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Figure: BCRB for diff. graph structures (for n = 100, α = 5, β = αn− 1).
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Final Remarks

Also derived lower bounds for the home-field advantage scenario:

Pij =


Qij :=

θλi

θλi + λj
, if i is home,

Qij :=
λi

λi + θλj
, if j is home,

where θ ∈ R++ models the strength of advantage (θ > 1)

Future works: Matching information-theoretic upper bounds

Other questions related to comparing graph structure, e.g.,
“Does the fully-connected graph outperform a simple cycle?"

M. Alsan, R. Prasad and VYFT, “Lower Bounds on the Bayes Risk
of the Bayesian BTL Model with Applications to Comparison
Graphs”, IEEE J. on Sel. Topics of Sig. Proc., Oct 2018
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Final Remarks

Also derived lower bounds for the home-field advantage scenario:

Pij =


Qij :=

θλi

θλi + λj
, if i is home,

Qij :=
λi

λi + θλj
, if j is home,

where θ ∈ R++ models the strength of advantage (θ > 1)

Future works: Matching information-theoretic upper bounds

Other questions related to comparing graph structure, e.g.,
“Does the fully-connected graph outperform a simple cycle?"
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