Adversarial top-K ranking

Vincent Tan ECE and Mathematics, NUS

2016 Shannon Workshop, SJTU December 15, 2016

Changho Suh @KAIST

Renbo Zhao @NUS

One of the fundamental problems in a wide range of contexts.

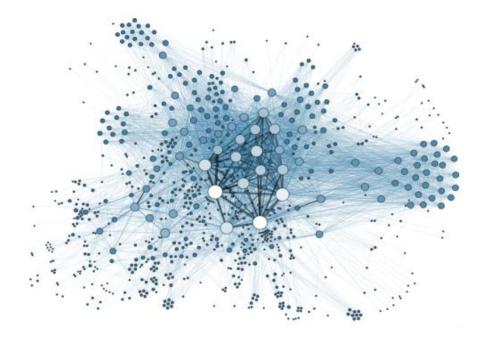
Applications: web search, recommendation systems, social choice, sports competitions, voting, etc

Lots of efforts made in developing ranking algorithms.

A variety of statistical **models** introduced for evaluating ranking algorithms.

Ranking : An Example and Difficulties

Example: web search



Google YAHOO! bing

$$n = 10^9$$
 websites

$$\binom{n}{2}pprox n^2=\mathbf{10^{18}}$$
 comparisons

Really need $\geq n^2$ comparisons?

Suppose (i) we want a total ordering &

- (ii) pairwise comparisons are randomly given (probabilistically).
- \rightarrow Requires $\geq n^2$ comparisons.

No way to identify the ordering between 1 and 2 without the direct comparison.

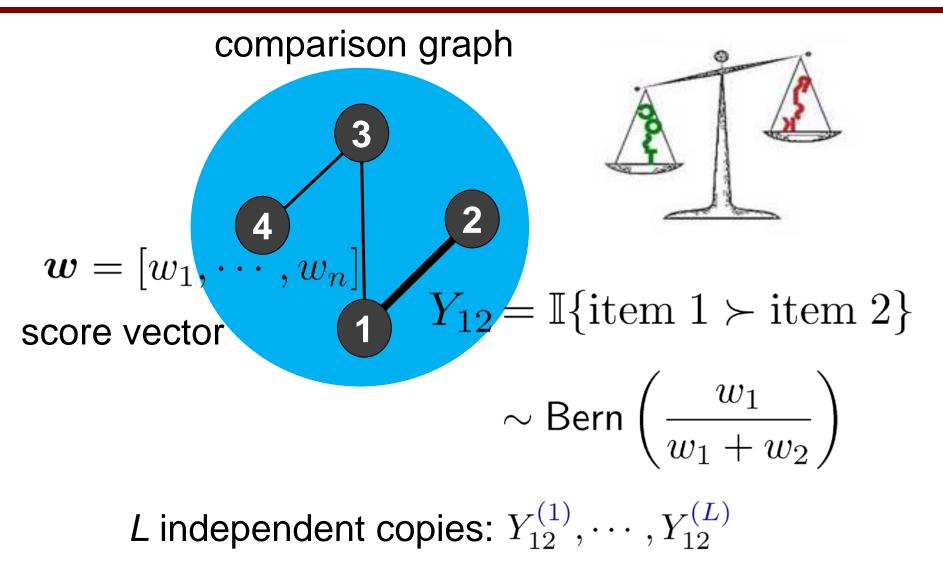
Comparison must be made with probability 1.

Things are even worse if one has noisy data.

Solution: Shannon-theoretic approach

A prominent model

Bradley-Terry-Luce '52



Challenge in crowdsourced settings

Spammers provide answers in an adversarial manner. The BTL does not respect the adversarial scenario. 5/22

Adversarial BTL model

Adapted from Chen et al. '13

faithful
population
$$\eta$$

portion
 $Y_{ij} \sim \text{Bern}\left(\frac{w_i}{w_i + w_j}\right) \quad \text{w.p. } \eta$
adversarial
population
 $1 - \eta$
portion
 $Y_{ij} \sim \text{Bern}\left(\frac{w_i}{w_i + w_j} + (1 - \eta) \cdot \frac{w_j}{w_i + w_j}\right)$.
 $Y_{ij} \sim \text{Bern}\left(\eta \cdot \frac{w_i}{w_i + w_j} + (1 - \eta) \cdot \frac{w_j}{w_i + w_j}\right)$

WLOG assume $\eta \in (0.5, 1]$

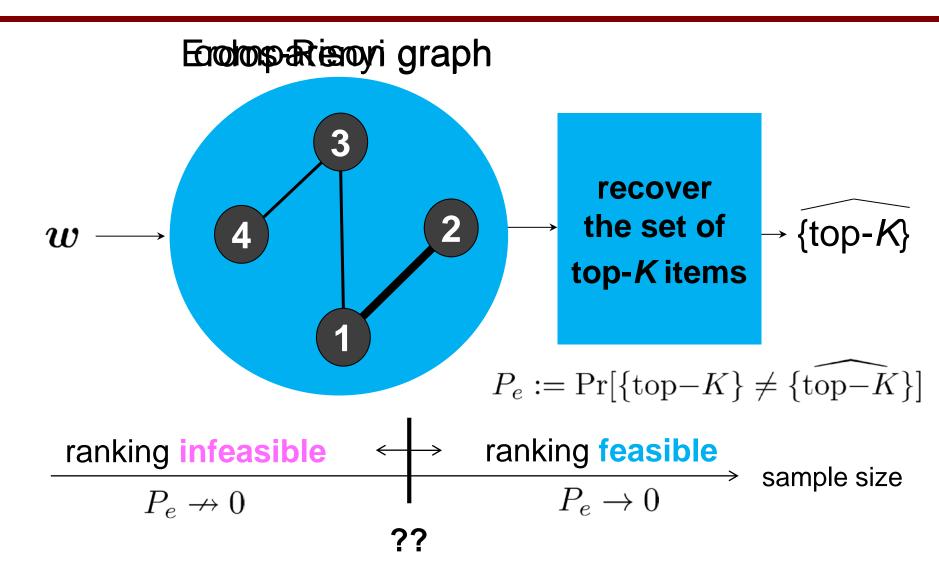
Given an observed pair, each sample has different distributions.

$$\begin{split} Y_{ij}^{(\ell)} \sim & \mathsf{Bern} \left(\frac{\eta_{\ell}}{\sqrt{\ell}} \cdot \frac{w_i}{w_i + w_j} + (1 - \eta_{\ell}) \cdot \frac{w_j}{w_i + w_j} \right) \\ & \swarrow \end{split} \\ \mathsf{quality parameter} \end{split}$$

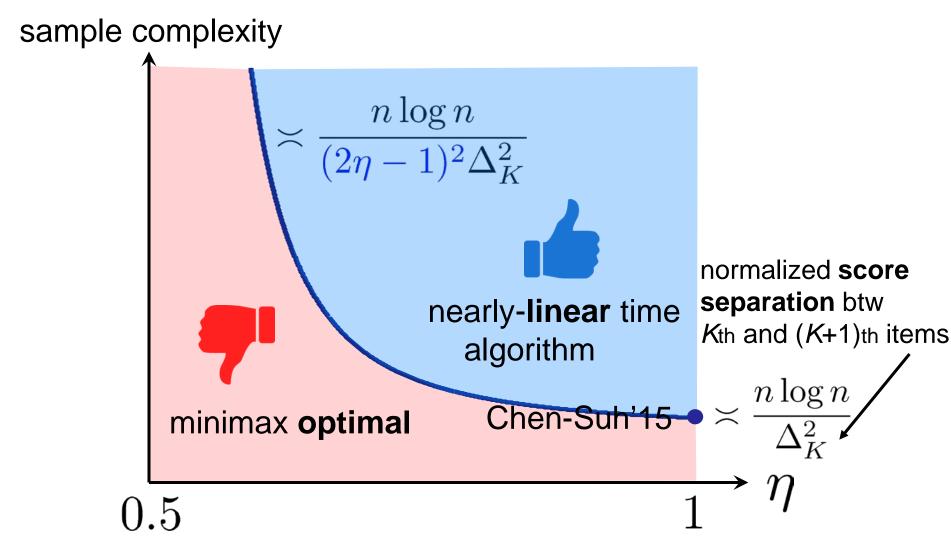
Subsumes as a special case our adversarial BTL model.

Developed a ranking algorithm **but without theoretical** guarantees.

Top-K ranking

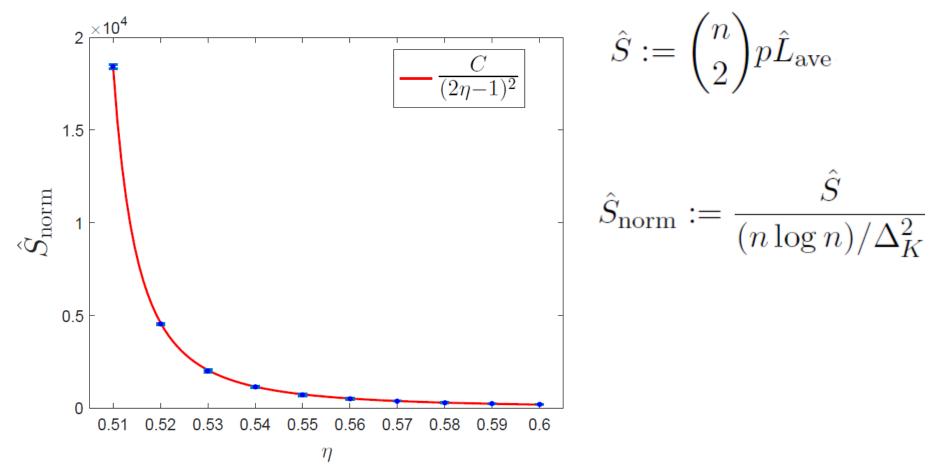


Contribution #1 η -known

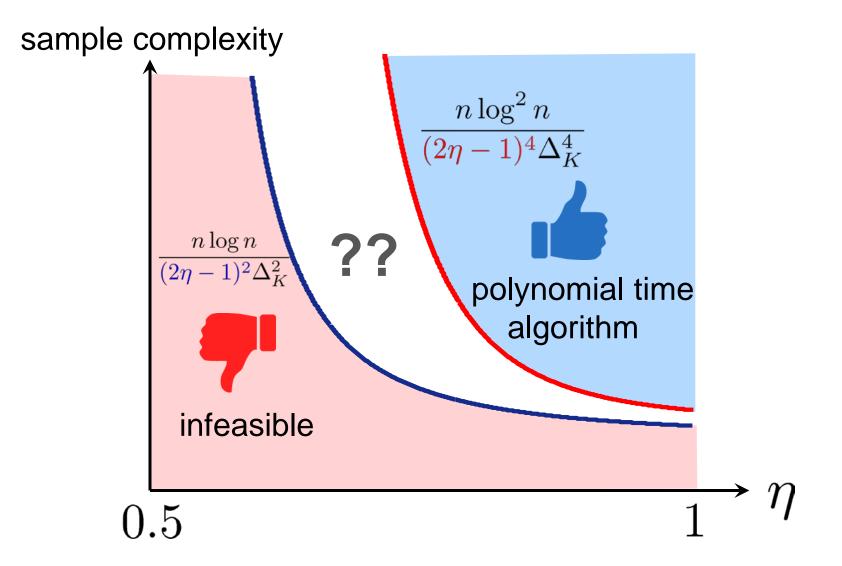


Contribution #1 η -known

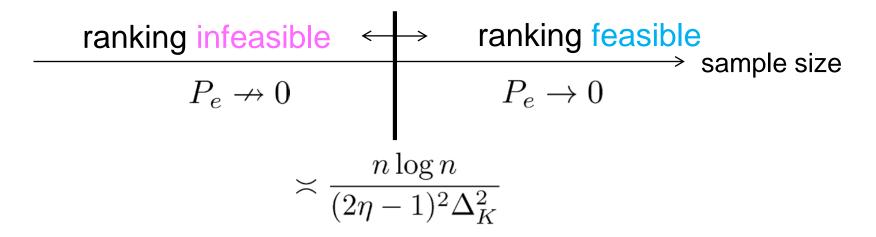
Experimental Result



Contribution #2 η **-unknown**



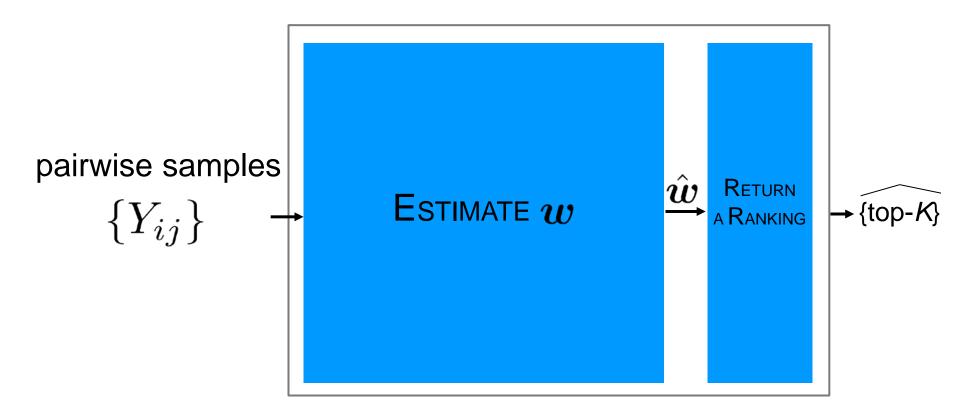
Optimality



- Minimax optimality: Construction of the worst-case score vector
- Translation to hypothesis testing: Construction of multiple hypotheses

Tools: KL divergence, Generalized Fano's inequality, Reverse Pinsker inequality

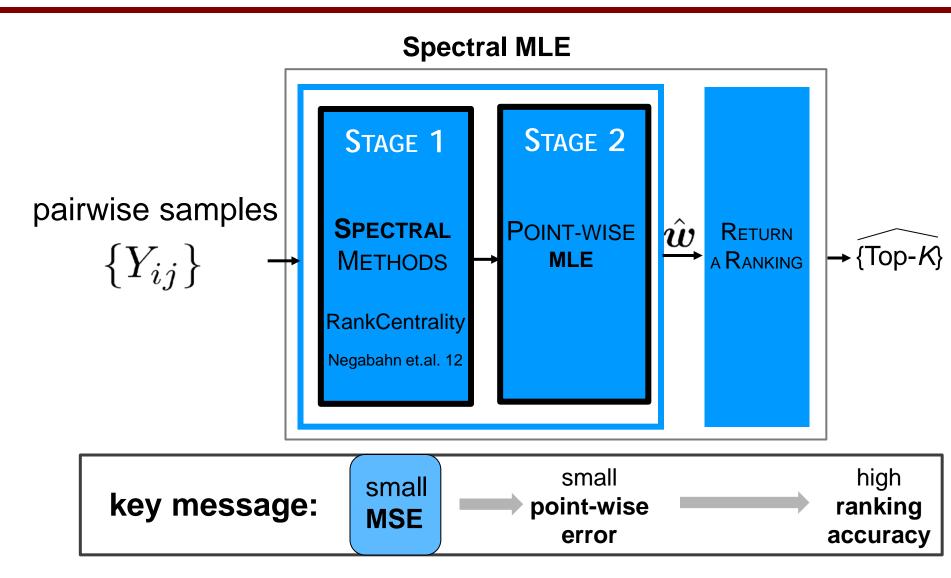
Ranking algorithm η **-known**



Remember: Scores determine a ranking.

 \rightarrow Take a **two-step** approach.

Ranking algorithm η -known $\eta = 1$ Chen-Suh '15



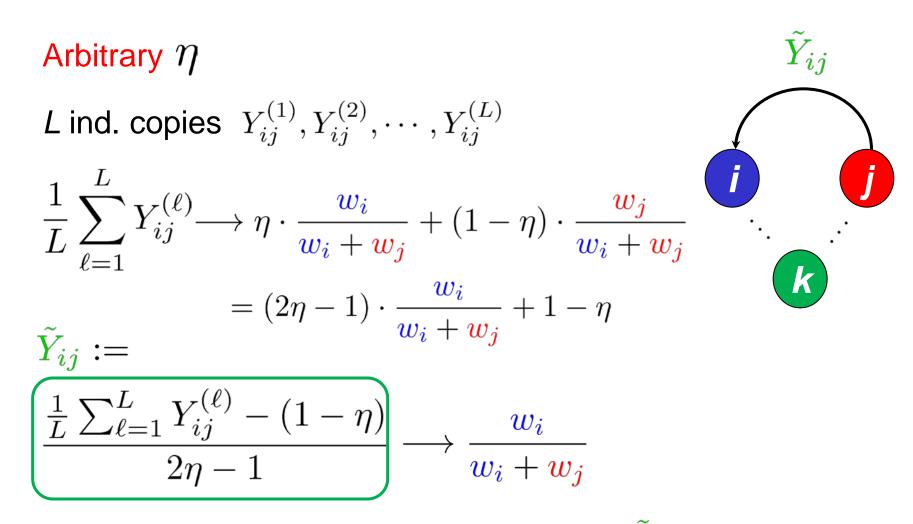
$$\begin{aligned} & \text{Recall} \quad \eta = 1: \\ & L \text{ ind. copies } Y_{ij}^{(1)}, Y_{ij}^{(2)}, \cdots, Y_{ij}^{(L)} \\ & \frac{1}{L} \sum_{\ell=1}^{L} Y_{ij}^{(\ell)} \longrightarrow \frac{w_i}{w_i + w_j} \end{aligned}$$

 $\frac{\frac{1}{L}\sum_{\ell=1}^{V_{ij}}Y_{ij}^{(\ell)}}{\frac{1}{K}}$

 $\eta \in (0.5, 1]$

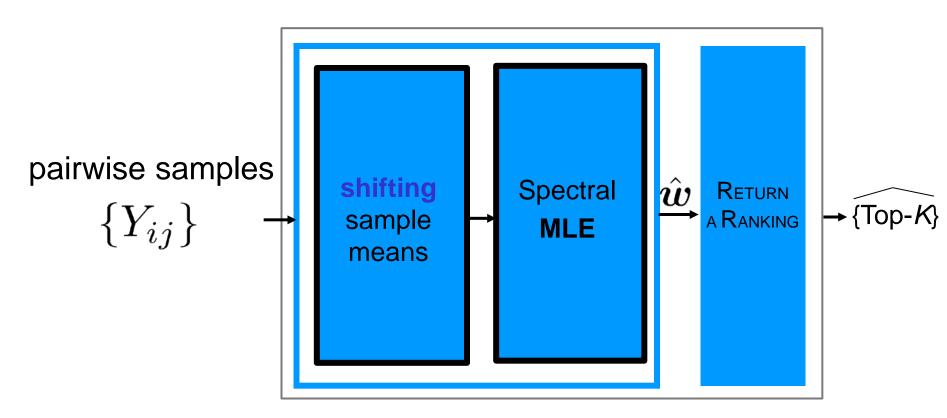
stationary dist. \rightarrow w (up to const. scaling)

 $\eta \in (0.5, 1]$



Idea: Construct Markov Chain now with $\{Y_{ij}\}$

Ranking algorithm η -known $\eta \in (0.5, 1]$



Using several ineq. (Hoeffding, Bernstein, Tropp ...), showed:

sample size $\gtrsim \frac{n \log n}{(2n-1)^2 \Lambda_{+}^2}$

feasible ranking

Adversarial BTL model is a **mixture model**.

Mixture model learning problems are difficult in general.

Recent development:

Tensor methods: Jain-Oh '14, Anandkumar et al. '14

Key insight: exact $2^{nd} \& 3^{rd}$ moments \rightarrow sufficient statistics

Our setting:

Can obtain estimates of 2^{nd} & 3^{rd} moments \rightarrow Can estimate η

1) Turn weights into distribution vectors

$$\pi_0 := \begin{bmatrix} \cdots & \frac{w_i}{w_i + w_j} & \frac{w_j}{w_i + w_j} & \frac{w_{i'}}{w_{i'} + w_{j'}} & \frac{w_{j'}}{w_{i'} + w_{j'}} & \cdots \end{bmatrix}^T$$

2) Estimate moments

$$M_2 := \eta \pi_0 \otimes \pi_0 + (1 - \eta) \pi_1 \otimes \pi_1,$$

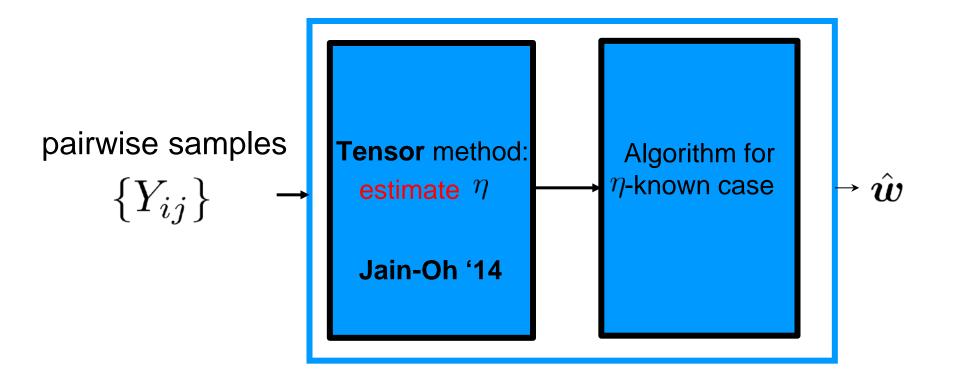
$$M_3 := \eta \pi_0 \otimes \pi_0 \otimes \pi_0 + (1 - \eta) \pi_1 \otimes \pi_1 \otimes \pi_1,$$

3) Solve a Least Squares Problem

$$\widehat{G} \in \underset{Z \in \mathbb{R}^{2 \times 2 \times 2}}{\operatorname{arg\,min}} \left\| \mathcal{P}_{\Omega_3} \left(Z \left[P_{\widehat{M}_2} \right]_3 - \frac{1}{|\mathcal{I}_2|} \sum_{t \in \mathcal{I}_2} \otimes^3 \underline{Y}^{(t)} \right) \left[Q_{\widehat{M}_2} \right]_3 \right\|_F^2.$$

4) Find **leading eigenvalue** λ_1 of \hat{G} which is related to the mixing weight as follows:

$$\hat{\eta} = \lambda_1^{-2}$$



How does the η -estimation affect sample complexity?

With very careful analysis, we can derive a lemma:

$$|\eta - \hat{\eta}| \le \epsilon \implies \text{sample size required} \gtrsim \frac{n \log^2 n}{\epsilon^2}$$

 $|\eta - \hat{\eta}| \downarrow \implies ||w - \hat{w}||_{\infty} \downarrow$ but sample size required \uparrow $|\eta - \hat{\eta}| \uparrow \implies$ sample size required \downarrow but $||w - \hat{w}||_{\infty} \uparrow$

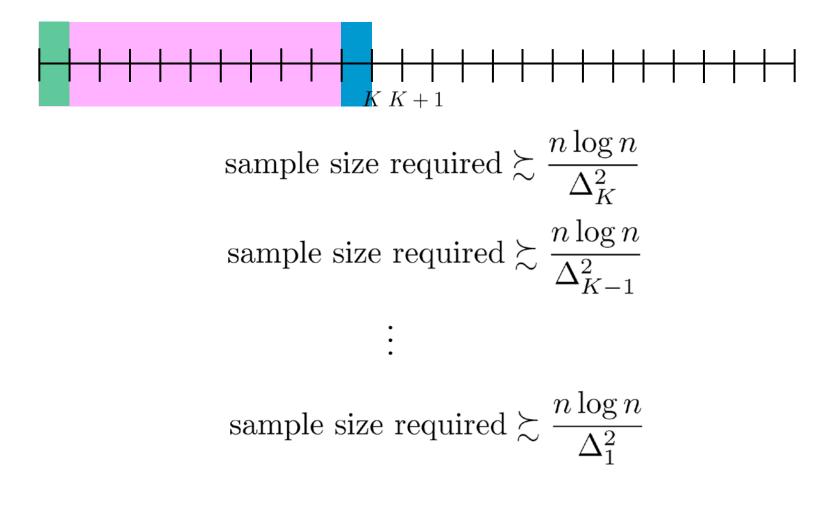
We could find a sweet spot to show that

sample size
$$\gtrsim \frac{n \log^2 n}{(2\eta - 1)^4 \Delta_K^4}$$
 feasible ranking

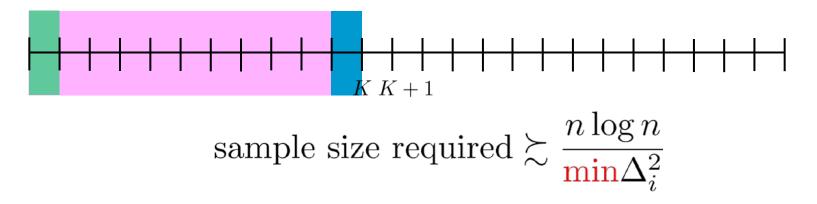
- Explored a top-K ranking problem for an adversarial setting.
- Characterized order-wise optimal sample complexity for η-known case.
- Established an **upper bound** on the sample complexity for η -unknown case.
- Developed computationally efficient algorithms.
- Full version of paper on arXiv 1602.04567.

backup slides

• **Detailed** ranking among the top-*K* items



• **Detailed** ranking among the top-*K* items



• Can easily extend to any-K ranking.

No ground truth score vector

[Shah-Wainwright`15]

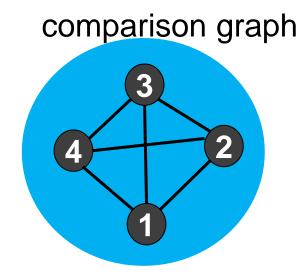
Instead we are given: $p_{ij} := \Pr[\text{item } i \succ \text{item } j]$

Subsumes as special cases many parametric models (including BTL and ours)

Assumption:

of comparisons per every edge

 $\sim \mathsf{Binom}(r,p)$



Case 1: $\Delta_1 \approx \Delta_2 \approx \cdots \approx \Delta_{n-1}$

Both sampling methods yield almost the same performance.

Case 2: $\Delta_1 \ll \Delta_i \ (i \ge 2)$

Adaptive sampling outperforms random sampling.