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Motivation: data-driven optimization

• Subdomain of reinforcement learning, online learning problem.
• Application:

• Internet advertisement placement
• Restaurant recommendation
• Clinical trials
• . . . . . .

Style of tutorial:

• Will present a few well-known models/algorithms
• Will present some “newer” models/algorithms
• Since it’s a tutorial, we will go through some proofs
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Multi-armed bandit problem (MAB)

Objectives

1. Maximize the cumulative reward over a fixed horizon.
2. Find the best arm (largest expected reward).
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Multi-armed Bandit problem (MAB)

Agent

Environment

Action:
pull an arm

Feedback:
corresponding reward

Challenge

• Exploitation: to pull “confident” arms to maximize reward.
• Exploration: to pull “unconfident" arms to find better ones.
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Classification
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Formulation of MAB models

♠ Ground set — S consists of available arms.
♠ Dynamics — At each time step t = 1, 2, . . .
1. Reward Wt(i) is associated with arm i.
2. Agent pulls arm At

3. Agent observes the corresponding feedback Ot = f({Wt(i) : i ∈ At}).

♠ Number of arms
• Finite-armed bandits (Audibert et al., 2009; Agrawal and Goyal, 2012)
Ground set S of L arms is indexed by [L] = {1, 2, . . . , L}.
• Infinite-armed bandits (Berry et al., 1997)
Related to the topic of Bayesian optimization
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Reward generation

Stochastic bandits
• Each arm i ∈ [L] is associated with an unknown distribution ν(i), mean w(i),
and variance σ2(i).
• {Wt(i)}Tt=1 is the i.i.d. sequence of rewards associated with arm i during the
T time steps.

♠ Linear generalization (Abe and Long, 1999)
• w(i) = x(i)>β
• Feature vector x(i) ∈ Rd is known for each arm i, latent vector β ∈ Rd is not
known.
• Reduces to standard bandits when x(i) = ei, standard basis.

♠ Stochastic combinatorial bandits
• Stardard setting: |At| = 1.
• Combinatorial setting: |At| ≥ 1.
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Feedback mode

♠ Full-bandit feedback

Agent only observes the sums of the realizations of all pulled arms (Rejwan and
Mansour, 2020; Kuroki et al., 2020).

♠ Semi-bandit feedback

Agent observes realizations of all pulled arms (Mannor and Tsitsiklis, 2004;
Kalyanakrishnan et al., 2012).

♠ Partial feedback

Agent only observes the realizations of a subset of pulled arms (Kveton et al.,
2015b; Li et al., 2016).
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Reward generation

♠ Stochastic bandits

♠ Stochastic bandits with adversarial corruptions
(Shen, 2019; Jun et al., 2018)

At each time step t = 1, . . . , T :
1. Stochastic reward Wt(i)∈ [0, 1] is i.i.d. drawn for each arm i.

♠ Adversarial/Non-stochastic bandits
(Auer et al., 2002b; Cesa-Bianchi and Lugosi, 2006)
• Rewards {Wt(i)}t=1 of each arm i are not necessarily drawn independently
from the same distribution.

Stochastically constrained adversarial bandits (Zimmert and Seldin, 2021)
• Wt(i) is a r.v. with mean wt(i), and gaps ∆i,j = Wt(i)−Wt(j) are fixed.
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Target of the agent

♠ Cumulative regret minimization

Maximize the cumulative reward, i.e.,minimize the regret (the gap between the
maximum cumulative reward and the reward obtained by the agent) (Agrawal and
Goyal, 2012; Russo and Van Roy, 2014; Lai, 1987).

♠ Simple regret minimization

Maximize the mean reward of the chosen arm by the end of a fixed time horizon
T (Carpentier and Valko, 2015).

♠ Pure exploration/best arm identification (BAI)
Fixed-confidence setting

Given a risk parameter δ, the agent aims to identify the
best arm with probability 1− δ in minimal time steps (Jamieson and Nowak, 2014;
Kalyanakrishnan et al., 2012).

Fixed-budget setting

Given a budget constraint T , the agent aims to maximize
the confidence of the chosen arm by the end of a fixed time horizon T (Auer
et al., 2002a; Audibert and Bubeck, 2010; Carpentier and Locatelli, 2016).
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Example — Cascading bandits (Kveton et al., 2015a)

♠ Online recommender system
• seek to select a small list of items to the user over time.

Log In  Sign Up

Discover the perfect business Brunch and Breakfast Takeout Delivery ×

Write a Review  Events  Talk  Yelp for Business

 Plumbers   Restaurants    Delivery  

Briarpatch Restaurant
Photo by Kerry H.

Recent Collections

Browse more collections

Recent Activity

Wrote a review
Heying D. 

Pizza Randale

Added 2 photos
Heying D. 

Pizza Randale

Added 1 photo
Andreas W. 

Weinhaus Sittl

Find Austrian food Near Vienna, Wien, Austria

 Home Services  Black Owned 

Vienna

9 Places · By Jeff B.

Vienna

11 Places · By Mony K.

Vienna

15 Places · By Susan C.

Vienna

22 Places · By Belkis R.

Wien Best Ratings

20 Places · By Why-Tie Z.

Vienna

9 Places · By NiNi S.

1 Lik 1 Lik
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Example — Cascading bandits (Kveton et al., 2015a)

Wien Restaurants Austrian food

Best Austrian food in Vienna, Wien, Austria

1. Gasthaus Pöschl

Gastropubs Austrian €€  •  Innere Stadt

Closed until Noon

“Really nice service and traditional Austrian food. The salads are generous & the goulash
delicious” more

2. Gasthaus Kopp

Austrian Beisl €  •  Brigittenau

Open until Midnight

“Take the U Bahn tu the S Bahn and walk 4 blocks to get to Austrian food heaven. I was alone
but” more

3. Figlmüller

Austrian Schnitzel €€  •  Innere Stadt

Opens in 56 min

“and attentive. The Austrian wine was excellent, as well as the all the different flavors of
schnapps. I” more

4. Zur Grünen Hütte

Austrian Delicatessen €€  •  Leopoldstadt

Open until 11:00 PM

“Excellent Austrian restaurant. Had wiener snitchzel the first night an grilled tuna fillet the
2nd” more

5. Steirerhof

Austrian €€  •  Leopoldstadt

“Come here if you are close by! Very hearty food. Very good and representing! This is true and
top knotch Austrian.” more

Sort: Recommended

All Price Open Now

236

68

587

16

7

Filters

Suggested

Category

See all

Features

See all

Neighborhoods

See all

Distance

€ €€ €€€ €€€€

Open Now 4:04 PM

Austrian Bars Cafes

Gastropubs

Good for Groups

Takes Reservations

Outdoor Seating

Good for Kids

Floridsdorf

Innere Stadt

Leopoldstadt

Landstraße

Bird's-eye View

Driving (8 km.)

Biking (4 km.)

Walking (2 km.)

Within 4 blocks

For Businesses Write a Review Log In Sign Up

Restaurants Home Services Auto Services More

 Austrian food  Vienna, Wien, Austria
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Example — Cascading bandits (Kveton et al., 2015a)

♠ Online recommender system
• Seek to select a small list of items to
the user over time.

• How to maximize the ‘reward’ over
several rounds of recommendation?
— Regret Minimization (RM)

• How to select an attractive list of items
after several rounds of recommendation?
— Pure Exploration/

Best Arm Identification (BAI)

Wien Restaurants Austrian food

Best Austrian food in Vienna, Wien, Austria

1. Gasthaus Pöschl

Gastropubs Austrian €€  •  Innere Stadt

Closed until Noon

“Really nice service and traditional Austrian food. The salads are generous & the goulash
delicious” more

2. Gasthaus Kopp

Austrian Beisl €  •  Brigittenau

Open until Midnight

“Take the U Bahn tu the S Bahn and walk 4 blocks to get to Austrian food heaven. I was alone
but” more

3. Figlmüller

Austrian Schnitzel €€  •  Innere Stadt

Opens in 56 min

“and attentive. The Austrian wine was excellent, as well as the all the different flavors of
schnapps. I” more

4. Zur Grünen Hütte

Austrian Delicatessen €€  •  Leopoldstadt

Open until 11:00 PM

“Excellent Austrian restaurant. Had wiener snitchzel the first night an grilled tuna fillet the
2nd” more

5. Steirerhof

Austrian €€  •  Leopoldstadt

“Come here if you are close by! Very hearty food. Very good and representing! This is true and
top knotch Austrian.” more

Sort: Recommended

All Price Open Now

236

68

587

16

7

Filters

Suggested

Category

See all

Features

See all

Neighborhoods

See all

Distance

€ €€ €€€ €€€€

Open Now 4:04 PM

Austrian Bars Cafes

Gastropubs

Good for Groups

Takes Reservations

Outdoor Seating

Good for Kids

Floridsdorf

Innere Stadt

Leopoldstadt

Landstraße

Bird's-eye View

Driving (8 km.)

Biking (4 km.)

Walking (2 km.)

Within 4 blocks

For Businesses Write a Review Log In Sign Up

Restaurants Home Services Auto Services More

 Austrian food  Vienna, Wien, Austria

© Vincent Tan Pure Exploration in Multi-Armed Bandits July 25, 2022 16/ 57



Example — Cascading bandits (Kveton et al., 2015a)

♠ Online recommender system
• Seek to select a small list of items to
the user over time.

• How to maximize the ‘reward’ over
several rounds of recommendation?
— Regret Minimization (RM)

• How to select an attractive list of items
after several rounds of recommendation?
— Pure Exploration/

Best Arm Identification (BAI)

Wien Restaurants Austrian food

Best Austrian food in Vienna, Wien, Austria

1. Gasthaus Pöschl

Gastropubs Austrian €€  •  Innere Stadt

Closed until Noon

“Really nice service and traditional Austrian food. The salads are generous & the goulash
delicious” more

2. Gasthaus Kopp

Austrian Beisl €  •  Brigittenau

Open until Midnight

“Take the U Bahn tu the S Bahn and walk 4 blocks to get to Austrian food heaven. I was alone
but” more

3. Figlmüller

Austrian Schnitzel €€  •  Innere Stadt

Opens in 56 min

“and attentive. The Austrian wine was excellent, as well as the all the different flavors of
schnapps. I” more

4. Zur Grünen Hütte

Austrian Delicatessen €€  •  Leopoldstadt

Open until 11:00 PM

“Excellent Austrian restaurant. Had wiener snitchzel the first night an grilled tuna fillet the
2nd” more

5. Steirerhof

Austrian €€  •  Leopoldstadt

“Come here if you are close by! Very hearty food. Very good and representing! This is true and
top knotch Austrian.” more

Sort: Recommended

All Price Open Now

236

68

587

16

7

Filters

Suggested

Category

See all

Features

See all

Neighborhoods

See all

Distance

€ €€ €€€ €€€€

Open Now 4:04 PM

Austrian Bars Cafes

Gastropubs

Good for Groups

Takes Reservations

Outdoor Seating

Good for Kids

Floridsdorf

Innere Stadt

Leopoldstadt

Landstraße

Bird's-eye View

Driving (8 km.)

Biking (4 km.)

Walking (2 km.)

Within 4 blocks

For Businesses Write a Review Log In Sign Up

Restaurants Home Services Auto Services More

 Austrian food  Vienna, Wien, Austria

© Vincent Tan Pure Exploration in Multi-Armed Bandits July 25, 2022 16/ 57



Example — Cascading bandits (Kveton et al., 2015a)

Ground set

A finite set of all available arms [L] := {1, . . . , L}.

Click probability/weight of item i ∈ [L]

Arm i attracts the user with probability w(i) ∈ [0, 1].

• Standard setting: w := {w(i)}Li=1 are not known.

• Linear generalization: w(i) = x(i)>β
Feature vector x(i) is known for each arm i, latent vector β ∈ Rd is not known.

Whether arm i is clicked at time t

This is revealed by a random variable Wt(i) ∼ Bern (w(i)).
• Wt(i) = 1 iff the user observes and clicks on i at time t.
• Wt(i) = 0 iff the user observes but does not click on i at time t.
� Wt(i)’s are only observed for some arms.
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Example — Cascading bandits (Kveton et al., 2015a)

L = 9

For each time step t = 1, 2, . . .

1. The agent selects a list of K arms St := (it1, . . . , itK) ∈ [L](K) to the user, where
[L](K) = {all K-permutations of [L]};

2. The user examines the arms from it1 to itK :
• If she is attracted by an item, clicks on it;
• If not, she skips to the next item and checks if it is attractive;
• Process stops when she clicks on one item or when she comes to the end of the

list.

♠ Combinatorial bandits ♥ Partial feedback

♣ Standard setting & Linear generalization
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Outline

1 What is multi-armed bandits (MAB)?

2 Explore state-of-the-art findings of pure exploration

3 Summary and discussions
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Pure exploration/BAI settings

Fixed-confidence setting
• Given a risk parameter δ, the agent aims to identify the best arm with
probability 1− δ in minimal time steps.
(Jamieson and Nowak, 2014; Kalyanakrishnan et al., 2012)

Fixed-budget setting
• Given a budget constraint T , the agent aims to maximize the confidence of
the chosen arm by the end of a fixed time horizon T .
(Auer et al., 2002a; Audibert and Bubeck, 2010; Carpentier and Locatelli,
2016)
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Pure exploration in stochastic bandits

• Ground set S = [L] consists of L available arms.
• Each arm i ∈ [L] is associated with an unknown distribution ν(i), mean w(i),
and variance σ2(i).
• {Wt(i)}Tt=1 is the i.i.d. sequence of rewards associated with arm i during the
T time steps.

w(2) w(1)
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Pure exploration in stochastic bandits

• Optimal arm
1 = i∗ = arg max

i∈[L]
w(i)

• Without loss of generality, assume

w(1) > w(2) ≥ w(3) ≥ . . . ≥ w(L).

• Gaps to optimality

∆i = w(1)− w(i) ∀ i 6= 1, ∆1 = ∆2.

• Hardness parameters

H1 =
L∑
i=1

1
∆2
i

, H2 = max
i∈[L]

i

∆2
i

.
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Concentration inequalities: can we estimate w(i) well?

Theorem 2.1 (Standard multiplicative variant of the Chernoff-Hoeffding bound;
Dubhashi and Panconesi (2009), Theorem 1.1)

Suppose that X1, . . . , XT are independent [0, 1]-valued random variables, and let
X =

∑T

t=1Xt. Then for any ε ∈ (0, 1),

Pr(X − E[X] ≥ εE[X]) ≤ exp
(
−
ε2

3
EX

)
,

Pr(X − E[X] ≤ −εE[X]) ≤ exp
(
−
ε2

3
EX

)
.
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BAI algorithm

A deterministic and non-anticipatory online algorithm consists in a triple
π := ((πt)t, T π, φπ)

• sampling rule (πt)t: which arm Sπt to pull at time step t

Sπt is Ft−1-measurable, observation history Ft:= σ(Sπ1 ,Oπ
1 , . . . , S

π
t ,O

π
t );

• stopping rule T π : when to stop

stopping time T π with respect to (Ft)t∈N satisfying P(T π <∞) = 1;

• recommendation rule φπ : which arm Ŝπ to choose eventually

FT π -measurable.

T π

• Fixed-confidence setting: Time complexity of π (to minimize).
• Fixed-budget setting: T π = T (fixed).
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FT π -measurable.

T π

• Fixed-confidence setting: Time complexity of π (to minimize).
• Fixed-budget setting: T π = T (fixed).

© Vincent Tan Pure Exploration in Multi-Armed Bandits July 25, 2022 24/ 57



BAI algorithm

A deterministic and non-anticipatory online algorithm consists in a triple
π := ((πt)t, T π, φπ)

• sampling rule (πt)t: which arm Sπt to pull at time step t
Sπt is Ft−1-measurable, observation history Ft:= σ(Sπ1 ,Oπ

1 , . . . , S
π
t ,O

π
t );

• stopping rule T π : when to stop
stopping time T π with respect to (Ft)t∈N satisfying P(T π <∞) = 1;

• recommendation rule φπ : which arm Ŝπ to choose eventually
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BAI: fixed-confidence

• δ-PAC algorithm: find the optimal arm with probability at least 1− δ

Theoretical study

N Propose a δ-PAC algorithm and upper bound its time complexity
H Derive a lower bound on the time complexity of any δ-PAC algorithm
• Evaluate theoretical findings with experiments

Simple pure exploration in stochastic bandits
• to identify the best arm with the largest mean:

i∗ = arg max
i∈[L]

w(i)

♠ Successive elimination
Successive Elimination, Median Elimination (Even-Dar et al., 2002)
♠ Track optimal allocation
Track & Stop (Garivier and Kaufmann, 2016)
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i∗ = arg max
i∈[L]

w(i)

♠ Successive elimination
Successive Elimination, Median Elimination (Even-Dar et al., 2002)
♠ Track optimal allocation
Track & Stop (Garivier and Kaufmann, 2016)
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Successive Elimination(δ) (Even-Dar et al., 2002)

Algorithm 1: Successive Elimination(δ) (Even-Dar et al., 2002)

1: Input: Set t = 1 and survival set S = [L].
2: Let ŵti be the average reward of arm i by time t.
3: Set ŵ1

i = 0 for all arm i ∈ [L].
4: Sample each arm i ∈ S once and update ŵti (average reward of arm i).

5: Let ŵtmax = max
i∈[L]

ŵti and confidence radius αt =
√

log(cLt2/δ)
t

.

6: For each arm i ∈ S such that ŵtmax − ŵti ≥ 2αt, set S = S \ {i}.
7: t = t+ 1.
8: If |S| > 1, the Go to Step 4, Else output S.

ŵ(i): eliminated ŵtmax
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7: t = t+ 1.
8: If |S| > 1, the Go to Step 4, Else output S.
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Successive Elimination(δ) (Even-Dar et al., 2002)

Step 1. Concentration inequality:

Pr
(
∪i∈[L] ∪t∈N

{
|ŵti − w(i)| > αt

})
≤ δ.

Step 2. Assume ∩i∈[L] ∩t∈N
{
|ŵti − w(i)| ≤ αt

}
holds. Recall that we eliminate

arm i when ŵtmax − ŵti ≥ 2αt. Since
ŵtmax − ŵti ≥ ŵt1 − ŵti ≥ w(1)− αt − (w(i) + αt) = w(1)− w(i)− 2α2,

we eliminate a suboptimal arm i 6= 1 when
w(1)− w(i)− 2αt = ∆i − 2αt ≥ 2αt.

Step 3. When each arm has been sampled for

ti = O

(
log(L/(δ∆i))

∆2
i

)
times, we have αt ≤ ∆i/4 and arm i will be eliminated.
Hence, the time complexity would be

t2 +
L∑
i=2

ti = O

( L∑
t=1

log(L/(δ∆i))
∆2
i

)
= Õ(H1), H1 =

L∑
i=1

1
∆2
i

(hardness).
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ŵtmax − ŵti ≥ ŵt1 − ŵti ≥ w(1)− αt − (w(i) + αt) = w(1)− w(i)− 2α2,

we eliminate a suboptimal arm i 6= 1 when
w(1)− w(i)− 2αt = ∆i − 2αt ≥ 2αt.

Step 3. When each arm has been sampled for

ti = O

(
log(L/(δ∆i))

∆2
i

)
times, we have αt ≤ ∆i/4 and arm i will be eliminated.
Hence, the time complexity would be

t2 +
L∑
i=2

ti = O

( L∑
t=1

log(L/(δ∆i))
∆2
i

)
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Median Elimination(ε, δ) (Even-Dar et al., 2002)

♠ With probability 1− δ, identify an ε-optimal arm i: w(i) ≥ max
j∈[L]

w(j)− ε.

Algorithm 2: Median Elimination(ε, δ) (Even-Dar et al., 2002)

1: Input: Survival set S = [L]. Set ε1 = ε/4, δ1 = δ/2, ` = 1.
2: Sample each arm i ∈ S for 1

(ε`/2)2 log(3/δ`) times, and let ŵti denote its
average reward.

3: Find the median of ŵ`i , denoted by m` := median
(
{ŵ`i : i ∈ S`}

)
.

4: Let S`+1 = S` \ {i : ŵ`i < m`}.
5: t = t+ 1.
6: If |S| = 1, Then output S.

Else ε`+1 = 3
4 ε`, δ`+1 = δ`/2, ` = `+ 1; Go to Step 2.

Applying the same concentration inequality, we can show the time complexity of
Median Elimination(ε, δ) is

O

(
L log(1/δ)

ε2

)
.
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{ŵ`i : i ∈ S`}

)
.

4: Let S`+1 = S` \ {i : ŵ`i < m`}.
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{ŵ`i : i ∈ S`}

)
.

4: Let S`+1 = S` \ {i : ŵ`i < m`}.
5: t = t+ 1.
6: If |S| = 1, Then output S.

Else ε`+1 = 3
4 ε`, δ`+1 = δ`/2, ` = `+ 1; Go to Step 2.

Applying the same concentration inequality, we can show the time complexity of
Median Elimination(ε, δ) is

O

(
L log(1/δ)

ε2

)
.

© Vincent Tan Pure Exploration in Multi-Armed Bandits July 25, 2022 29/ 57



Median Elimination(ε, δ) (Even-Dar et al., 2002)

♠ With probability 1− δ, identify an ε-optimal arm i: w(i) ≥ max
j∈[L]

w(j)− ε.

Algorithm 2: Median Elimination(ε, δ) (Even-Dar et al., 2002)
1: Input: Survival set S = [L]. Set ε1 = ε/4, δ1 = δ/2, ` = 1.
2: Sample each arm i ∈ S for 1

(ε`/2)2 log(3/δ`) times, and let ŵti denote its
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Lower bound (Garivier and Kaufmann, 2016)

For any δ-PAC algorithm and any bandit instance µ,

Eµ[τδ] ≥ T ∗(µ) log
(4
δ

)
where

T ∗(µ)−1 := sup
w∈ΣL

inf
λ∈Alt(µ)

( L∑
i=1

wid(µi, λi)
)
.

• For any instance µ = (µ1, . . . , µL) ∈ S
• S = {(µ1, . . . , µL) : ∃i∗(µ) ∈ [L] s.t. µi∗(µ) > µi ∀i 6= i∗(µ)}
• Unique optimal arm: i∗(µ) = arg max

i∈[L]
µi

• “Alternative set”: Alt(µ) := {λ ∈ S : i∗(λ) 6= i∗(µ)}

• Set of probability distributions on [L]

ΣL =
{

(w1, . . . , wL) ∈ (0, 1]L :
L∑
i=1

wi = 1
}
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Proof strategy of lower bound

• Let λ∈Alt(µ) and define event E={τδ<∞, iout(µ) 6= i∗(λ)}∈Fτδ . Then
2δ ≥ Pµ(τδ <∞ and iout(µ) 6= i∗(µ)) + Pµ(τδ <∞ and iout(µ) 6= i∗(λ))
≥ Pµ(Ec) + Pλ(E)

≥ 1
2 exp

(
−

L∑
i=1

Eµ[Ti(τδ)]D(µi, λi)
)
. Bretagnolle–Huber inequality

• Rearranging,
L∑
i=1

Eµ[Ti(τδ)]D(µi, λi) ≥ log 4
δ

• Using this and the definition of T ∗(µ),

Eµ[τδ]
T ∗(µ) = Eµ[τδ] sup

w∈ΣL
inf

λ∈Alt(µ)

L∑
i=1

wiD(µi, λi)

≥���Eµ[τδ] inf
λ∈Alt(µ)

L∑
i=1

Eµ[Ti(τδ)]
���Eµ[τδ]

D(µi, λi)

= inf
λ∈Alt(µ)

L∑
i=1

Eµ[Ti(τδ)]D(µi, λi) ≥ log 4
δ
.
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Track & Stop algorithm (Garivier and Kaufmann, 2016)

We thus have the asymptotic lower bound on the time complexity:

lim inf
δ→0

Eµ[τδ]
log(1/δ) ≥ T

∗(µ).

A matching upper bound can be achieved by Track & Stop

Pµ
(

lim sup
δ→0

τδ
log(1/δ) ≤ T

∗(µ)
)

= 1,

or

lim sup
δ→0

Eµ[τδ]
log(1/δ) ≤ T

∗(µ).
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Track & Stop algorithm (Garivier and Kaufmann, 2016)

Algorithm 3: Track & Stop (Garivier and Kaufmann, 2016)

1: Let Ni(t) =
t∑

u=1
1{Su = i} be the number of pulls of arm i,

µ̂i(t) = 1
Ni(t)

t∑
u=1

Wt(i)1{Su = i} be the empirical mean of arm i.

Set µ̂(t) = (µ̂1(t), µ̂2(t), . . . , µ̂L(t)).
2: Sample each arm once and update t = L, Ni(L), µ̂i(L).

3: while Stopping condition (Generalized Likelihood Ratio statistic) is not
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4: Sample arm St+1 by C-Tracking/D-Tracking rule.
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6: end while
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i∈[L]
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Track & Stop (Garivier and Kaufmann, 2016)

Sampling rule

C-Tracking: St+1 ∈ arg max
i∈[L]

t∑
τ=0

wετi (µ̂(τ))−Ni(t)

D-Tracking: St+1∈


arg min
i∈Ut

Ni(t) if Ut 6= ∅ (forced exploration)

arg max
i∈[L]

twεti (µ̂(t))−Ni(t) else (directed tracking)

w∗(µ) = arg max
w∈ΣL

inf
λ∈Alt(µ)

( L∑
i=1

wid(wi, λi)
)
,

• Proportion of arm draws of any strategy matches the lower bound
εt = (L2 + t)−1/2/2,

wε(µ): L∞ projection of w∗(µ) onto Σ(ε)
L =

{
(w1, . . . , wL) ∈ [ε, 1]L :

L∑
i=1

= 1
}

© Vincent Tan Pure Exploration in Multi-Armed Bandits July 25, 2022 34/ 57



Track & Stop (Garivier and Kaufmann, 2016)

Sampling rule

C-Tracking: St+1 ∈ arg max
i∈[L]

t∑
τ=0

wετi (µ̂(τ))−Ni(t)

D-Tracking: St+1∈


arg min
i∈Ut

Ni(t) if Ut 6= ∅ (forced exploration)

arg max
i∈[L]

twεti (µ̂(t))−Ni(t) else (directed tracking)

w∗(µ) = arg max
w∈ΣL

inf
λ∈Alt(µ)

( L∑
i=1

wid(wi, λi)
)
,

• Proportion of arm draws of any strategy matches the lower bound
εt = (L2 + t)−1/2/2,

wε(µ): L∞ projection of w∗(µ) onto Σ(ε)
L =

{
(w1, . . . , wL) ∈ [ε, 1]L :

L∑
i=1

= 1
}

© Vincent Tan Pure Exploration in Multi-Armed Bandits July 25, 2022 34/ 57



Track & Stop (Garivier and Kaufmann, 2016)

Sampling rule

C-Tracking: St+1 ∈ arg max
i∈[L]

t∑
τ=0

wετi (µ̂(τ))−Ni(t)

D-Tracking: St+1∈


arg min
i∈Ut

Ni(t) if Ut 6= ∅ (forced exploration)

arg max
i∈[L]

twεti (µ̂(t))−Ni(t) else (directed tracking)

w∗(µ) = arg max
w∈ΣL

inf
λ∈Alt(µ)

( L∑
i=1

wid(wi, λi)
)
,

• Proportion of arm draws of any strategy matches the lower bound
εt = (L2 + t)−1/2/2,

wε(µ): L∞ projection of w∗(µ) onto Σ(ε)
L =

{
(w1, . . . , wL) ∈ [ε, 1]L :

L∑
i=1

= 1
}

© Vincent Tan Pure Exploration in Multi-Armed Bandits July 25, 2022 34/ 57



Outline

1 What is multi-armed bandits (MAB)?

2 Explore state-of-the-art findings of pure exploration
BAI: fixed-confidence setting
BAI: fixed-budget setting

3 Summary and discussions
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BAI: fixed-budget

Theoretical study

N Propose a BAI algorithm in a fixed time horizon and upper bound its failure
probability
H Derive a lower bound on the failure probability of any algorithm
• Evaluate theoretical findings with experiments

Simple pure exploration in stochastic bandits
• to identify the best arm with the largest mean: i∗ = arg max

i∈[L]
w(i)

♠ UCB-based
UCB-E(a) (Audibert and Bubeck, 2010)
♠ Successive elimination
Sequential Halving (Karnin et al., 2013)
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UCB-E(a) (Audibert and Bubeck, 2010)

Algorithm 4: UCB-E(a) (Audibert and Bubeck, 2010)

1: Input: time budget T , size of ground set of items L, parameter a.
2: For all i ∈ [L], compute Ni,0, ŵi,0, Ci,0, Ui,0:

Ni,t =
t∑

u=1

1{iu = i}, ŵi,t = 1
Ni,t

t∑
u=1

Wi,t · 1{iu = i},

Ci,t =
√
a

t
if t ≥ 1, Ci,0 = +∞, Ui,t = ĝi,t + Ci,t.

3: for t = 1, . . . , T do
4: Pull item it = arg maxi∈[L] Ui,t−1.
5: Update Nit,t, ŵit,t, Ci,t, and Ui,t for all i.
6: end for
7: Output iout = arg maxi∈[L] ŵi,T .
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UCB-E(a) (Audibert and Bubeck, 2010)

Step 1: Concentration. Let Ei := {∀t ≥ L, |ŵi,t −w(i)| ≤ Ci,t/5} for all i ∈ [L].
We apply concentration inequality to show that

Pr
( L⋂
i=1

Ei
)
≥ 1− 2TL exp

(
− 2a

25

)
.

In the following, we prove that conditioned on the event
⋂L

i=1 Ei, we have
iout = 1, which concludes the proof.
We assume

⋂L

i=1 Ei holds from now on. Since iout is the item with the largest
empirical mean, for all i 6= iout, we have

ŵiout,T ≥ ŵi,t, ŵiout,T ≥ w(iout)− Ciout,T /5, w(i) + Ci,T /5 ≥ ŵi,t.

Consequently, to show iout = 1, it is sufficient to show that
Ci,T

5 ≤ ∆i

2 ⇔ Nit ≥
4
25

a

∆2
i

∀ i ∈ [L]. (1)

Step 2: Upper bound Ni,T (i 6= 1). To begin with, we prove by induction that

Ni,t ≤
36
25

a

∆2
i

∀ i 6= 1. (2)
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UCB-E(a) (Audibert and Bubeck, 2010)

Step 3: Lower bound Ni,T (i 6= 1). Next, we again prove by induction that

Ni,t ≥
4
25 min

{
a

∆2
i

,
25
36(N1,t − 1)

}
∀i 6= 1. (3)

Step 4: Lower bound on N1,T . Recall that we want to show (1). (i) To show
(1) holds for all i 6= 1, (3) indicates that it is sufficient to show that

25
36(N1,t − 1) ≥ a

∆2
i

∀i 6= 1.

(ii) In order to show (1) holds for all i = 1, we apply (2), t =
∑L

i=1 Ni,t and

36
25H1a ≤ T − L ⇔ a ≤ 25(T − L)

36H1
, H1 =

L∑
i=1

1
∆2
i

.

Step 5: Conclusion. The failure probability is

2TL exp
(
− 2a

25

)
∀ a ≤ 25(T − L)

36H1

and achieves the minimum,

however, requiring prior knowledge: hardness H1

2TL exp
(
− T − L

18H1

)
when a = 25(T − L)

36H1
.
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Sequantial Halving (SH) (Karnin et al., 2013)

Algorithm 5: Sequantial Halving (SH) (Karnin et al., 2013)

1: Input: time budget T , size of ground set L.
2: Set M = d log2 Le, N = bT/Mc, T0 = 0, A0 = [L].

3: for phase m = 1, 2, . . . ,M do
4: Set Tm = Tm−1 +N, qm = 1/|Am−1|, nm = bqmNc.
5: for t = Tm−1 + 1, . . . , Tm do
6: Pull i∈Am−1 with for nm times in order and observe Wt(i).
7: end for
8: For all i ∈ Am−1, set

Sm(i) =
Tm∑

t=Tm−1+1

Wt(it) · I{it = i}, ŵm(i) = Sm(i)
nm

.

9: LetAm contain the dL/2me items with the highest ŵm(i)’s inAm−1.
10: end for
11: Output the single item iout ∈ AM .
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Sequantial Halving (SH) (Karnin et al., 2013)

Step 1: Assume that the best arm was not eliminated prior to phase m. Then

Pr(ŵm(1) < ŵm(i)) ≤ exp
(
− 1

2nm∆2
i

)
∀ i ∈ Sm \ {1}.

Step 2: The probability that the best arm is eliminated in phase m is at most

3 exp
(
− T

8 log2 L
·

∆2
im

im

)
where im = L/2m+2.
Step 3: The failure probability can be bounded as follows:

3
log2 L∑
m=1

exp
(
− T

8 log2 L
·

∆2
im

im

)
≤ 3

log2 L∑
m=1

exp
(
− T

8 log2 L
· 1

maxi i∆−2
i

)
= O

(
log2 L exp

(
− T

8H2 log2 L

) )
when the hardness is measured by

H2 = max
i∈[L]

i

∆2
i

.
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BAI: fixed-budget

Algorithm/Instance Reference Failure probability eT

UCB-E
(

25(T − L)
36H1

)
Audibert and Bubeck (2010) 2TL exp

(
− T − L

18H1

)
SR Audibert and Bubeck (2010) L(L− 1) exp

(
− T − L

(1/2 +
∑L

i=2 1/i)H2

)

UGapEb
(
T − L
16H2

)
Gabillon et al. (2012) 2TL exp

(
− T − L

8H2

)
SAR Bubeck et al. (2013) 2L2 exp

(
− T − L

8(1/2 +
∑L

i=2 1/i)H2

)

SH Karnin et al. (2013) 3 log2 L · exp
(
− T

8H1 log2 L

)
NSE(p) Shahrampour et al. (2017) (L− 1) exp

(
− 2(T − L)

H ′pCp

)

Stochastic Bandits Carpentier and Locatelli (2016) 1
6 exp

(
− 400T
H2 logL

)
(Lower Bound)

Shahrampour et al. (2017): H ′p := max
i 6=1

ip

∆2
i

, Cp := 2−p +
L∑
i=2

i−p ∀p > 0.
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− 2(T − L)
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Stochastic Bandits Carpentier and Locatelli (2016) 1
6 exp

(
− 400T
H2 logL

)
(Lower Bound)

H2 :=
∑
i=1

1
∆i2

, H1 := max
i 6=1

i

∆2
i

, H ′p := max
i 6=1

ip

∆2
i

, Cp := 2−p +
L∑
i=2

i−p ∀p > 0.

• H2 ≤ H1 ≤ H2 log(2L) (Audibert and Bubeck, 2010)
• Whether SH or NSE(p) performs better depends on the instance, and SH
does not involve a tunable parameter
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BAI: fixed-budget + corruptions (Zhong et al., 2021)

Stochastic bandits
• Each arm i ∈ [L] is associated with an unknown distribution ν(i), mean w(i),
and variance σ(i)2.
• {Wt(i)}Tt=1 is the i.i.d. sequence of rewards associated with arm i during the
T time steps.

♠ Question from real life: do we always have i.i.d. data in real life?

⇒ Stochastic bandits with adversarial corruptions
N Propose algorithms with near-optimal performance guarantees

H Demonstrate (near-)optimality by designing an appropriate corruption strategy
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Case 1: Biases and Contaminations in Clinical Trials

• To test the efficacy of a medicine on randomly
chosen patients.

• Possible biases and errors:
• Loss-to-follow-up,
• Non-compliance. . .

• A lesson from COVID:
• Not enough time to ensure i.i.d. samples!

• How to identify the best medicine with
contaminated data?

Figure 1: Loss-to-follow-up, boxed
in blue.
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Case 2: Fake Users in Online Recommendation Systems

• Paid reviews:
• A major problem for recommender systems.

• Much effort to remove fake reviews.
• No fool-proof solution, anyone can review.
• How to identify the best restaurants with
contaminated data?

Figure 2: Buying fake reviews, and warnings
about fake reviews.
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Dynamic (Gupta et al., 2019)

• Ground set of L items indexed by [L] := {1, . . . , L}.
• Each item i ∈ [L] is associated with an unknown mean w(i) ∈ (0, 1].

• Amount of adversarial corruptions is bounded by the unknown corruption
budget C:

T∑
t=1

max
i∈[L]

|ct(i)| ≤ C.

♠ At each time step t = 1, . . . , T :
1. A stochastic reward Wt(i)∈ [0, 1] is i.i.d. drawn for each item i.
2. The adversary observes {Wt(i)}i∈[L], and corrupts each Wt(i) with
ct(i) ∈ [−1, 1] if the corruption budget has not been depleted:

W̃t(i) = Wt(i) + ct(i) ∈ [0, 1]

3. The agent pulls it ∈ [L] and observes the corrupted reward W̃t(it).
♠ At the end, the agent returns iout ∈ [L] as the recommendation.
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Objective

• Assume w(1)>w(2) ≥ . . . ≥ w(L).
• Optimality gap of item i is ∆1,i := w(1)− w(i).

• For fixed εC , δ ∈ (0, 1), an algorithm is said to be (εC , δ)-PAC (probably
approximately correct) if

P
[
∆1,iπ,Tout

> εC
]
≤ δ.

♠ Goal: design an (εC , δ)-PAC algorithm π with both εC and δ small.
– εC < ∆1,2: an (εC , δ)-PAC algorithm identifies the optimal item with

probability at least 1− δ.
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Probabilistic Sequential Shrinking Algorithm

♠ How to shrink the active set?
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PSS: Shrink the active set
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PSS: Shrink the active set

♠ Pull each active item with the same probability

♠ Shrink the active set:
only keep items with high empirical means during the current phase

0.4 0.1  0.87 0.3 0.35  0.8 
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Comparison to deterministic algorithms: UP, SH

PSS(L) and Uniform Pull (UP)

• PSS(L): pulls each item for T/L times in expectation.
• UP: pulls each item for bT/Lc times with a deterministic schedule.
⇒ PSS(L): randomized version of UP.

PSS(2) and Sequential Halving (SH) (Karnin et al., 2013)

• Similarity: both divide the whole horizon into dlog2 Le phases and halve the active
set during each phase.

• Difference:
� at each time step of phase m, PSS(2) chooses item i ∈ Am−1 with probability

1/|Am−1| and pulls it;
� during phase m, SH pulls each item in Am−1 for exactly
bT/(dlog2 Le · |Am−1|)c times according to a deterministic schedule.

⇒ PSS(2): randomized version of SH.
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Comparison among upper bounds

Comparison in stochastic bandits with adversarial corruptions

Algorithm Order of error bound εC Order of failure probability δ

PSS(u)
C logu L

T
L(logu L) exp

[
−

T

192H̃2(w,L, u) logu L

]

PSS(2)
C log2 L

T
L(log2 L) exp

[
−

T

192H̃2(w,L, u) log2 L

]
SH CL log2 L

T
L(log2 L) exp

[
−

T

192H̃2(w,L, u) log2 L

]
PSS(L)

C

T
L exp

(
−

T

192L/∆2
1,2

)
UP CL

T
L exp

(
−

T

192L/∆2
1,2

)

• H̃2(w,L, u)=max
i 6=1

min{u · i, L}
∆2

1,i
: quantify difficulty of BAI.

•H2(w) = max
i6=1

i

∆2
i

, H̃2(w,L, 1) = H2(w), H̃2(w,L, u) ≤ u ·H2(w).
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Corruption Strategy and Impossibility Result

Theorem 2.2

Fix λ ∈ (0, 1) and ∆ ∈ (0, 1/2). For any online algorithm, there is a BAI with an
adversarial corruption instance over T steps, corruption budget C = 1 + (1 + λ)2∆T , and
optimality gap ∆, such that

P[∆1,iout > 0] = P[∆1,iout ≥ ∆] = P[iout 6= 1]

≥
1
2
·
[

1− exp
(
−

2λ2∆T
3

)]
.

• C

T
> 2∆1,2: It is impossible for any algorithm to identify the optimal item

with high probability.

• C

T
≤ ∆1,L

8dlogu Le
: our work (Theorem 4.1) provides a guarantee for PSS(u).

⇒ The upper bound in our work (Theorem 4.1) is within a factor of O(logL)
away from the largest possible upper bound on C/T in Theorem 2.2.
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Outline

1 What is multi-armed bandits (MAB)?

2 Explore state-of-the-art findings of pure exploration

3 Summary and discussions
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Summary

• Introduction on multi-armed bandit problems
• Problem formulation

• Hardness H1, H2; concentration inequalities

• BAI under the fixed-confidence setting
• Algorithms: Successive elimination, Median Elimination, Track &

Stop
• Lower bound: achieved by Track & Stop

• BAI under the fixed-budget setting
• Algorithms: UCB-E, Sequential Halving
• Gap between upper and lower bounds
• With adversarial corruptions: Probabilistic Sequential Shrinking

• More existing works ...
• Multiple pure exploration: to identify multiple arms

CLUCB by Chen et al. (2014), EST1 and CSAR by Rejwan and Mansour
(2020)

• Pure exploration in linear bandits
(Jedra and Proutiere, 2020; Yang and Tan, 2021)

• • • •
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Further exploration

• Fill the gap between upper and lower bounds for BAI under the fixed-budget
setting?

• Identification of the arm with the highest median reward (Altschuler et al.,
2019):
More studies taking the median of rewards as the criterion are yet to be done.
• BAI in adversarial bandits (Shen, 2019; Zhong et al., 2021):
Optimal attack strategies against regret minimization (Jun et al., 2018; Liu
and Lai, 2020)
Optimal attack strategies against pure exploration?
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Q&A

Thanks for listening!
https://zixinzh.github.io/homepage/conf_tutorial/

Emails: vtan@nus.edu.sg, zixin.zhong@u.nus.edu
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