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Example: Two hospitals seek to construct a global
classifier based on existing private patient data.

Pooling data results in a more accurate global classifier.

Instead of building local classifiers on limited data at each
hospital site.
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Motivation

Randomization in PPDM

Randomization

1 Randomize locally to give sanitized data for sharing.
2 Similar to horizontally-partitioned scenario (Du et al. 2004).
3 Pool data to form a larger training set to construct a global

classifier.

Challenges: Two conflicting concerns.

1 Confidentiality of the private information
2 Utility of the aggregate statistics.

New randomization algorithm – Kernel Density Estimate
(KDE) Resampling.
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Related Work

Randomization Techniques

Atallah et al. (1999) first considered the data sanitization
problem.

Agrawal and Srikant (2000) suggested adding IID noise.

Noise addition has since been shown to be insecure
(Kargupta et al. 2003).

Distance-Preserving approaches have been suggested
(Liu et al. 2006, Chen et al. 2005, Olivera et al. 2007).

But we can derive bounds on the data.

We suggest a Non-Distance-Preserving randomization
approach, which also has classification accuracy.
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Related Work

Non-randomization Techniques

k -anonymization used to generalize databases for
preserving privacy (Sweeney, 1998).

Secure Multi-Party Computation (SMC) techniques are
more accurate but higher communication overhead.

Distributed Clustering via optimization of information
theoretic quantities (Merugu and Ghosh, 2005).
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Problem Statement

Problem Definition and Notation

Private data is stored in d-dim row vectors x1, . . . , xN .

Associated with N targets (class labels) t1, . . . tN .

L distributed data sites (private) and 1 centralized
(untrusted) server.

x(l) ∈ RNl×d contains the Nl data vectors at site l .

Assume: Vectors in x(l) are drawn from IID RVs with PDF
fX(l)

(
x(l)
)
.
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Task

Find a randomization scheme for site l, Rl(·) s.t.

y(l) = Rl(x(l)), 1 ≤ l ≤ L.

y = {y(l)}Ll=1 is then sent to the centralized server for
global classification.

We will demonstrate empirically that for our choice of Rl(·),

Prand(err) ≈ Pori(err).

Why non-distance-preserving?
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Problem Statement

Why Non-Distance-Preserving Randomization?

If Distance-Preserving Randomization (Random Projection-
Based Multiplication) was used:

The randomized data can be vulnerable to disclosure
(Caetano 2004)

True iff (d + 1) points do not lie in a (d − 1)-dimensional
vector subspace.

Furthermore in a L = 2 site scenario (details in our paper):

One can lower bound the norm of all the columns of the
data matrix x(1) given an estimate of the norm of one of the
columns of x(2).
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Why Non-Distance-Preserving Randomization?

Hence, if Distance-Preserving Randomization was used:

Potential security breach.

Intuition: Along with the preservation of distances, the
order of the samples is also preserved.

Hence, we propose a non-distance-preserving approach to
circumvent the problem.
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Main Idea: Sample from the reconstructed Kernel Density
Estimate (Parzen, 1962) (Devroye, 1985).

The KDE is a non-parameteric estimate of the PDF.

Nice properties of the new, representative samples,
including asymptotic independence and consistency.
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Resampling from Reconstructed PDF

Kernel Density Estimation

For each data site l , we will construct and sample from an
estimate of the PDF using x(l).

f̂X(l)

(
x(l); x(l,1), . . . , x(l,Nl )

)
=

1
Nl

Nl∑
j=1

K
(
x(l) − x(l,j); h l

)
,
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Resampling

The random vector

X(l) =
1
Nl

Nl∑
j=1

X(l,j)

is a mixture density.

KDE does not have to be explicitly constructed for
sampling.
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Resampling from Reconstructed PDF

KDE Resampling Algorithm

for l ← 1 to L do
for i ← 1 to d do

σ̂l,i = Standard deviation in dimension i ;
hl,i = Bandwidth in dimension i

endFor
for j ← 1 to Ml do

r = Random integer from 1 to Nl inclusive;
y(l,j) = Random sample vector from r th kernel;

endFor
endFor
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Properties of Representative Samples

Asymptotic Independence

Randomized samples are independent of the Original
samples as the number of samples Nl →∞.

Probabilistic inference cannot be performed based on the
randomized samples y(l) if Nl is sufficiently large.

Dependent on how we select h l (Scott’s rule).

hl,i =

(
4

d + 2

)1/(d+4)

N−1/(d+4)
l σ̂l,i .
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Properties of Representative Samples

Consistency and Tractability

Under mild assumptions (See our paper), KDE f̂l , is
consistent i.e.

lim
Nl→∞

E
[∫ ∣∣∣f̂l − fl

∣∣∣] = 0, 1 ≤ l ≤ L.

As Nl becomes large, the KDE f̂l(·) becomes increasingly
accurate.

Treat {y(l)}Ll=1 as the training data without compromising
accuracy.

KDE approximation algorithm is tractable.
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Performance Metrics, Datasets, Classification Techniques

Distributed Aggregate Privacy Loss DAPL

We define privacy loss is a function of the degree of
independence between new, randomized samples and
original samples.

A sufficient condition for asymptotic independence is:

The expected l1 distance between f̂l and fl tends to zero
with Nl →∞ (Devroye, 1985).

Definition

The Distributed Aggregate Privacy Loss DAPL is defined as:

DAPL 4
=

1
2

(
L∑

l=1

cl E
[∫ ∣∣∣f̂l − fl

∣∣∣]) , cl
4
= Nl/N.
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Performance Metrics, Datasets, Classification Techniques

Deterioration of Classification φ

We define the classification error as:

P(err)
4
= 1−

|C|∑
i=1

∫
Ωi

p (ξ|Ci) P(Ci) dξ.

Definition

The Deterioration of Classification φ is defined as:

φ
4
= Prand(err)− Pori(err),

Pori(err): Error with original samples for training.

Prand(err): Error with randomized samples for training.
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Performance Metrics, Datasets, Classification Techniques

Datasets

Dataset #Class #Dim(d) #Trg(N) #Test
Iris 2 4 120 30

SVMGuide1 2 4 3089 4000
Diabetes 2 8 576 192

Breast-Cancer 2 10 512 171
Ionosphere 2 34 263 88

Table: Our five datasets from LIBSVM and the UCI ML Repository.
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Performance Metrics, Datasets, Classification Techniques

Classification Techniques

1 Artificial Neural Networks (ANN) by trained by error
backpropagation.

2 k -Nearest Neighbors classifier (kNN).

3 Naïve Bayes classifier (NB) with each attribute assumed to
be Gaussian.
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Results of Distributed Experiments

Observations

Accuracy:

No correlation between L and the Deterioration of
Classification φ.

Randomized data is still amenable to data mining tasks
regardless of L.

Privacy:

Increasing trend for the DAPL because Nl ↓ with L ↑.
A compromise between L and DAPL.

Improving the sampling algorithm by selecting optimal h l .
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Summary

Proposed an algorithm (KDE Resampling) for data
sanitization to share private data for distributed
classification.

Asymptotically independent (Privacy).

Consistent (Accuracy).

max |Prand(err)− Pori(err)| < 3% for all the datasets.

A malicious intruder cannot establish bounds on the
private data using KDE Resampling.

Only one-way communication – tractable.



Introduction KDE Resampling Algorithm Numerical Results Conclusions

Summary

Summary

Proposed an algorithm (KDE Resampling) for data
sanitization to share private data for distributed
classification.

Asymptotically independent (Privacy).

Consistent (Accuracy).

max |Prand(err)− Pori(err)| < 3% for all the datasets.

A malicious intruder cannot establish bounds on the
private data using KDE Resampling.

Only one-way communication – tractable.



Introduction KDE Resampling Algorithm Numerical Results Conclusions

Summary

Summary

Proposed an algorithm (KDE Resampling) for data
sanitization to share private data for distributed
classification.

Asymptotically independent (Privacy).

Consistent (Accuracy).

max |Prand(err)− Pori(err)| < 3% for all the datasets.

A malicious intruder cannot establish bounds on the
private data using KDE Resampling.

Only one-way communication – tractable.



Introduction KDE Resampling Algorithm Numerical Results Conclusions

Summary

Summary

Proposed an algorithm (KDE Resampling) for data
sanitization to share private data for distributed
classification.

Asymptotically independent (Privacy).

Consistent (Accuracy).

max |Prand(err)− Pori(err)| < 3% for all the datasets.

A malicious intruder cannot establish bounds on the
private data using KDE Resampling.

Only one-way communication – tractable.



Introduction KDE Resampling Algorithm Numerical Results Conclusions

Further Work and Acknowledgments

Further Work

Re-examine the issue of the privacy metric.

DAPL only quantifies the l1 distances between the 2
distributions.

Assumption that the data records is IID may not be
realistic.

But our algorithm requires this assumption.
This shortcoming will be addressed in our future work.
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