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ABSTRACT
We propose a novel framework of using a parsimonious statisti-
cal model, known as mixture of Gaussian trees, for modelling the
possibly multi-modal minority class to solve the problem of imbal-
anced time-series classification. By exploiting the fact that close-by
time points are highly correlated, our model significantly reduces
the number of covariance parameters to be estimated from O(d2) to
O(Ld), L denotes the number of mixture components and d is the
dimension. Thus our model is particularly effective for modelling
high-dimensional time-series with limited number of instances in the
minority positive class. We conduct extensive classification experi-
ments based on several well-known time-series datasets (both single-
and multi-modal) by first randomly generating synthetic instances
from our learned mixture model to correct the imbalance. We then
compare our results to several state-of-the-art oversampling tech-
niques and the results demonstrate that when our proposed model
is used, the same support vector machines classifier achieves much
better classification accuracy across the range of datasets. In fact, the
proposed method achieves the best average performance 27 times
out of 30 multi-modal datasets according to the F-value metric.

Index Terms— Imbalanced dataset, Time-series, Oversam-
pling, Gaussian graphical models, Mixture models, Multi-modality

1. INTRODUCTION

In binary classification of time-series, class imbalance is the situa-
tion where one class has significantly fewer samples than the other.
It is important to solve the imbalance as standard classification meth-
ods tend to bias toward the class with the large number of training
samples. In many real-world applications, the minority class is often
the more informative of the two and the class of significant interest
for modelling. For instance, the known failures for aeroplanes are
very rare but are of greater importance for predicting the next failure
than the abundant number of normal instances. Motivated by the data
paucity in the minority class and to model multi-modality, this paper
proposes an oversampling method based on a parsimonious mixture
of Gaussian trees model for imbalanced time-series classification.
Such a model is shown to (i) compare excellently with other meth-
ods in terms of classification accuracy, (ii) require the estimation of
far fewer parameters than existing methods, (iii) model time-series
dependence explicitly and (iv) have low algorithmic complexity.

Current techniques for solving class imbalance can be seg-
mented into (i) those at the algorithm-level [1–3] and (ii) those
at the data-level [4–14]. Methods in (i) correct the imbalance by
assigning a pre-determined weight to each class [1]. This class of
methods include uneven dataspace weighting [1, 2, 11] or modi-
fying the operating point on the receiver operating characteristics
curve [3]. Though some methods achieves excellent performance

with theoretical bounds [15], the pre-determination of the weight
of each class is required, and this is not always trivial. Methods in
(ii) correct the imbalance by undersampling the majority class [10]
or by oversampling from the minority class [4–9, 11, 12], or a com-
bination of both [6]. Undersampling is efficient because of the
reduced size of the resulting dataset but it suffers from the risk of
discarding important samples. Oversampling has the advantage of
retaining all existing training samples at the expense of an enlarged
learning dataset. It also enhances representativeness of the minority
class by introducing rich data variations. Oversampling is the ap-
proach we adopt in this paper as it has been found to be effective
for re-establishing the class balance for conventional imbalanced
classification problems. To deal with the curse-of-dimensionality
involved in modelling high-dimensional time-series data, we adopt
sparse graphical models [16] to model dependence across time of
the positively-labelled time-series data statistically. This has also
been done previously [17].

We now summarize our main contributions. First, by using mix-
tures of sparse (or parsimonious) Gaussian graphical models [18,19],
we reduce the number of parameters of the model compared to struc-
ture preserving oversampling (SPO) [4] by exploiting the correla-
tions of nearby time points in a time-series instance. This amelio-
rates overfitting and circumvents the need for regularization of the
learned model. Second, there is only one parameter to tune, the
number of mixture components L, which we typically set to one or
two in this study. Thirdly, the model is well-adapted to the problem
at hand because time-series data is highly correlated and our model
explicitly takes this into account. Fourth, the model is able to deal
with multi-modal time-series data since we use a mixture of Gaus-
sian trees, each of which has one mode. This addresses the issue of
large within-class variations of time-series data. See Fig. 1 for an
illustration.

2. PRELIMINARIES

2.1. Notation

Upper case (e.g., X) and lower case (e.g., x) letters denote random
variables and their realizations respectively. Sets are denoted by cal-
ligraphic font (e.g., X ) and the cardinality of finite sets by | · |. The
probability distribution of X denoted as pX(x) or simply as p(x)
if X is clear from the context. A random vector is a finite collec-
tion of random variables and is denoted by bold-face upper case as
X = (X1, . . . , Xd), where d is the dimension of the random vector
in context. A realization of this random vector, a deterministic vec-
tor in Rd, is denoted as x = (x1, . . . , xd). Given a subset of indices
S ⊂ {1, . . . , d}, XS = {Xi : i ∈ S} denotes the set of random
variables indexed by S. Correspondingly, xS = {xi : i ∈ S}.
Matrices are also denoted using bold-face upper case (e.g., A).
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Fig. 1. The Wafer0 dataset and the two constituent components separated
by our algorithm are shown on the top row. The empirical covariance matrix
have no sparsity structure but the learned inverse covariance matrices do.

Standard notations for information-theoretic quantities are used
in this paper [20]. For example, mutual information between ran-
dom variables X and Y is denoted as I(X;Y ) and the Kullback-
Leibler (KL) divergence between distributions p and q is denoted as
D(p || q). If random variables X and Y are conditionally indepen-
dent given another random variable Z, we denote this by the Markov
chain X − Z − Y . The correlation coefficient between two ran-
dom variables X and Y , a number between −1 and 1, is defined as
ρ(X,Y ) = Cov(X,Y )/

√
Var(X)Var(Y ).

The multivariate Gaussian probability density function with
mean µ ∈ Rd and covariance matrix Σ ∈ Sd

+ (Sd
+ is the cone of

positive semi-definite d× d matrices) is denoted as

N(x;µ,Σ)=
1√

2π det(Σ)
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

(1)

2.2. The Binary Classification Problem

We consider a binary classification problem where the training data
is divided into two disjoint subsets D+ := {x(1), . . . ,x(n+)} and
D− := {x̄(1), . . . , x̄(n−)}, a small set of positively-labelled sam-
ples and a large set of negatively-labelled samples. The union D+ ∪
D− is the set of training samples. We would like to useD+ andD−
to determine the class label of a set of samples that are unlabelled.
To do so, we propose a statistical model for the samples in D+ and
then augment to D+ by sampling from the learned distribution so
that the resulting cardinality of both classes is the same. Finally, we
perform classification on the augmented dataset.

2.3. Graphical Models

A graphical model [16, 21] is a probability distribution for which a
graph encodes the conditional independence relations among a col-
lection of random variables X = (X1, . . . , Xd). We associate ver-
tex i ∈ V to random variable Xi, which takes on values in some
alphabet Xi. In the sequel, we use the terms variable, vertex and
node interchangeably. We say that random vector X is Markov on
graph G if conditioned on the set of neighbors of i,Xi is independent
of all the other random variables in the graph.

By the Hammersley-Clifford theorem [21], if the random vector
X is Markov on the undirected graph G, then the joint distribution

pX(x) can be factorized according to the maximal cliques C of the
graph G, i.e.,

pX(x) =
∏
C∈C

pXC (xC), (2)

Equation (2) shows that the number of parameters describing the
joint distribution is reduced since they only depend on the joint dis-
tributions on the maximal cliques now. If X is a Markov chain, the
factorization in (2) specializes in this case to

p(x) = p(x1)p(x2|x1) . . . p(xd|xd−1). (3)

The number of parameters given the factorization in (3) is linear in
d. Thus, overfitting can be ameliorated if the high-dimensonal data
can be modelled adequately by a sparse graphical model.

Assuming that X is jointly Gaussian, then the inverse covari-
ance matrix J := Σ−1 has a sparsity structure corresponding to that
of G = (V, E). Such a probabilistic model is known as a Gaussian
graphical model. Then Ji,j 6= 0 if and only if (i, j) ∈ E .

Tree-structured graphical models [22] (or trees) admit efficient
and exact inference [23] and learning [24] algorithms. We choose
to model the data using trees because the learning is conceptually
easier and the set of tree models is more flexible and does not incur
any penalty in terms of the number of parameters as we shall see.

A tree-structured graphical model is one that is Markov on a
tree. The joint distribution of a random vector Markov on a tree T =
(V, E) admits the factorization as the maximal cliques are precisely
the edges of the graph:

p(x) =
∏
i∈V

p(xi)
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)
. (4)

Thus, all we need to describe the joint distribution of a tree model are
the pairwise statistics on the edges, i.e., p(xi, xj) for all (i, j) ∈ E .
It can be easily verified [19] that if the Gaussian tree model is nor-
malized such that the variances of Xi are unity for every i ∈ V ,
then all elements of the covariance matrix Σ are functions of the
set of correlation coefficients on the edges of the graph, i.e., {ρi,j :
(i, j) ∈ E}. Indeed, for general models with variances σ2

i := Σi,i,
by exploiting the conditional independences between the random
variables (X1, . . . , Xd) which are Markov on the tree T , it can eas-
ily be shown [19] that

Σi,j =

{
ρi,jσiσj (i, j) ∈ E(∏

(k,l)∈Path(i,j) ρk,l
)
σiσj (i, j) /∈ E . (5)

where Path(i, j) ⊂ E is the set of edges joining i and j. In general,
the sets {σi : i ∈ V} and {ρi,j : (i, j) ∈ E} completely characterize
the covariance matrix of X. The construction of Σ in (5) results in
a positive definite matrix if |ρi,j | ∈ (0, 1) for all (i, j) ∈ E [19].
Furthermore J := Σ−1 is sparse according to E .

Since there are only d−1 edges in a tree model, 2d−1 parame-
ters (d−1 correlation coefficients and d variances) suffice to describe
the covariance matrix. Including the d elements in the mean of X,
3d− 1 parameters suffice to describe the entire distribution. This is
in contrast to an unstructured model which would require d(d+3)/2
parameters to describe.

2.4. Learning Tree-Structured Graphical Models

Chow and Liu [24] used the factorization in (4) to derive an al-
gorithm to learn trees from data, assuming that the variables are
discrete. Here we describe an extension of their algorithm to



continuous-valued data.
The setup is as follows: Given that samples x(1), . . . ,x(n) ∈ Rd

are i.i.d. from a tree-structured graphical model pX(x), we aim to
reconstruct the set of edges of the underlying graph of p. To do so,
consider the following optimization:

min
q∈Td

D(p̂ || q) (6)

where Td denotes the family of tree models and p̂ is an estimate of
the distribution from x(1), . . . ,x(n). Chow and Liu showed that (6)
reduces to the following max-weight spanning tree problem [25]:

Ê := arg max
E∈Td

∑
(i,j)∈E

Î(Xi;Xj), (7)

where the maximization in (7) is over the set of (spanning) trees Td

and Î(Xi;Xj) is the empirical mutual information between Xi and
Xj computed with respect to p̂, which in the jointly Gaussian case,
can be expressed in closed-form as [20]

Î(Xi;Xj) = −1

2
log(1− ρ̂2i,j), (8)

where ρ̂i,j is an estimate of the correlation coefficient between ran-
dom variablesXi andXj . This quantity can be computed via a max-
imum likelihood(ML) procedure. Since Î(Xi;Xj) in (8) is mono-
tonically increasing in |ρ̂i,j |, we can search for the edge set with the
highest sum of |ρ̂i,j | instead of the mutual informations in (7). In
this way, we circumvent the need to perform the computation in (8).

3. THE MIXTURE OF GAUSSIAN TREES MODEL FOR
THE POSITIVE CLASS

In this section, we describe the mixture of trees model [18] and the
Expectation Maximization-based algorithm used to learn Gaussian
Tree models from data. However, because our data are continuous-
valued, it is necessary to modify the algorithm to handle such non-
categorical data. Thus, we suggest the Gaussian mixture of trees
model and also a learning algorithm for such models by combining
the EM-framework in [18] and the learning algorithm for Gaussian
tree models [19] described in Section 2.4.

3.1. Mixture of Gaussian Trees

Even though trees and their variants have been employed suc-
cessfully in a variety of machine learning tasks such as classifi-
cation [26], it suffers from the fact that in the Gaussian case, the
Gaussian tree model can only model data that is unimodal. Thus a
natural generalization to effectively model data with more than one
mode (or multi-modal data) is to consider a convex combination of
two or more Gaussian trees. Such a model is characterized by a set
of non-negative mixing coefficients {αl : 1 ≤ l ≤ L} which sum up
to one (i.e.,

∑L
l=1 αl = 1) and a collection of constituent Gaussian

tree models {pl(x) = N(x;µl,Σl) : 1 ≤ l ≤ L}. Since each
pl is a Gaussian tree model, Jl := Σ−1

l has a sparsity pattern that
corresponds to a tree and, in particular, Jl only has O(d) non-zero
elements.

The probability density function of the random vector X, fol-
lowing a mixture of Gaussian trees modelML, satisfies

ML : p(L)(x;θ) =

L∑
l=1

αlpl(x), (9)

where the set of parameters is denoted as θ := {αl,µl,Σl : 1 ≤
l ≤ L}. Because each mixture component pl is a Gaussian tree
model, the convex combination p(L) can have up to L modes. Since
the positive class, which we are modelling using mixture of Gaussian
trees, has few samples, we typically set L = 2 to avoid overfitting.
Note that the number of parameters required to describe the model is
still very low. Indeed, only 3dL−1 parameters suffice. This number
is linear in d and hence the model is parsimonious. We are thus able
to ameliorate overfitting and represent multi-modal data well.

3.2. Learning Mixture of Gaussian Trees

A central question in the study of mixture models is the ML learning
of the model parameters from data. As in Section 2.4, we assume
that we are given samples x(1), . . . ,x(n) ⊂ Rd, each sampled i.i.d.
from a probability distribution p(x) that is either an exact mixture
of Gaussian trees or can be well-modeled by such a mixture. We
would like to learn the parameters of the model θ assuming that L
is given, which will then be used for oversampling. The usual way
of learning mixture models is to regard cluster assignments as latent
variables and employ an EM-procedure [27] that alternates between
an Expectation step (E-step) and a Maximization step (M-step). A
canonical example is in Gaussian mixture modelling [16, Section
9.2.2]. However, since we want to take the time-series correlations
into account we have to perform further projections onto the set of
Gaussian trees using the technique described in Section 2.4.

First, we initialize the parameters αl,µl,Σl for 1 ≤ l ≤ L to
feasible values. We can use the k-means algorithm to obtain good
estimates of µl. Finally, Σl ∈ Sd

+ can be set to any positive definite
covariance matrix via Σ = AA> for a random matrix A. Based on
these initial parameters, compute the log-likelihood of the data.

Second, for the E-step, compute the responsibilities [16] as

γkl :=
αlN(x(k);µl,Σl)∑L

j=1 αjN(x(k);µj ,Σj)
, (10)

where k ∈ {1, . . . , n} indexes samples and l ∈ {1, . . . , L} indexes
mixture components. Roughly speaking, γkl represents the proba-
bility that sample x(k) belongs to mixture component l and γkl are
the latent variables in the EM procedure. Note that

∑L
l=1 γkl = 1 .

Third, for the M-step, we set nl :=
∑n

k=1 γkl to be the effective
number of samples in mixture component l. Note that

∑L
l=1 nl =

n. We then re-estimate the intermediate parameters consisting of
mixing coefficients and the means,

αnew
l =

nl

n
, µnew

l =
1

nl

nl∑
k=1

γklx
(k), (11)

and the intermediate covariances

Σ̃new
l =

1

nl

nl∑
k=1

γkl(x
(k) − µl)(x

(k) − µl)
>, (12)

for each l ∈ {1, . . . , L}. However, note from (12) that the Gaussians
p̃l(x) := N(x;µnew

l , Σ̃new
l ) are not necessarily tree-structured (be-

cause (Σ̃new
l )−1 is, in general, not sparse with respect to a tree).

Hence, to spasify the model, we adopt the tree-learning method de-
scribed in section 2.4 on each of the covariance matrices to obtain
a model with only O(d) parameters. We depart from the traditional
procedure used to learn the parameters of a Gaussian mixture model
and project Σ̃new

l onto the set of trees by (6), resulting in the l-th



edge set being updated as follows:

Ênewl := arg max
E∈Td

∑
(i,j)∈E

Îp̃l(Xi;Xj), (13)

where Îp̃l(Xi;Xj) is the empirical mutual information between Xi

and Xj computed with respect to the Gaussian p̃l which has mean
and covariance given by (11) and (12) respectively. The empirical
mutual information Îp̃l(Xi;Xj) is given by the formula in (8) where
the correlation coefficient is computed using Σ̃new

l in place of Σ̂.
The updated covariance matrix Σnew

l is then given by (5) with edge
set Ênewl . In addition, the correlation coefficients along the edges
and the variances are computed based on the intermediate covariance
Σ̃new

l . To find the path between two nodes efficiently, we employ
Dijkstra’s shortest path algorithm. Σnew

l is guaranteed to have an
inverse whose sparsity structure corresponds to the tree with edge
set Ênewl . After the M-step, we recompute the log-likelihood of the
n samples under the new parameters {αnew

l ,µnew
l ,Σnew

l : 1 ≤ l ≤
L}.

We iterate and recompute the responsibilities in the E-step
in (10) until the difference between the log-likelihoods of the sam-
ples between two iterations is below a pre-defined small threshold.
In practice, for our datasets, the number of iterations taken for the
algorithm to converge is small (< 10) because we provide good
initializations using k-means.

4. THE OVERSAMPLING AND CLASSIFICATION
FRAMEWORK USING A MIXTURE OF GAUSSIAN TREES

4.1. Details of the Oversampling and Classification Procedure

First, we use the procedure described in Section 3.2 to learn a mix-
ture of Gaussian trees fromD+. For simplicity, we usually setL = 2
so that we can model multi-modal data from a limited number of
samples and the number of parameters is also small.

Second, we generate n− − n+ samples from p(L). Suppose
that L = 2, then we sample from a Bernoulli random variable B ∈
{1, 2} with bias α1. If B = 1 (resp. B = 2), then we sample
a vector randomly from N(µ1,Σ1) (resp. from N(µ2,Σ2)). For
sampling vectors from a multivariate Gaussian N(µ,Σ), one usually
performs the Cholesky decomposition of the covariance matrix Σ =
LL>, where L is lower triangular. One then samples a vector z from
N(0, I) and performs a linear transformation Lz + µ to obtain the
desired sample. Since each component is a tree, we can implement
this step more judiciously by sampling from any node in the tree
(the root) and direct all undirected edges away from the root. The
complexity of such a procedure exploiting the learned tree structure
is linear in d.

Having augmented to the samples in D+ to form a new
dataset D′+, we can then use a standard Support Vector Machines
(SVM) [28] on D− and D′+ to classify the unlabelled samples.

4.2. Advantages of the Proposed Method

In this section, we highlight competencies of the proposed method.
First, the number of parameters required to describe the parsi-

monious model is small (of orderO(Ld)). This is in contrast to other
oversampling methods, such as SPO [4] which is of order O(d2).
As there are fewer parameters, it is less likely that overfitting occurs
(Occam’s razor [16]).

Second, the mixture of Gaussian trees model has no parameters
to tune once L is fixed. Other methods such as SPO [4] require an

additional post-processing step on the eigenspectrum of the learned
covariance matrix Σ to truncate small eigenvalues of Σ, requiring
cross-validation which is computationally expensive. As such, our
model alleviates this problem due to its parsimony.

Third, the model is well-adapted to time-series data since each
component is Markov on a tree [17]. Time-series data are charac-
terized by the fact that each sample in time is highly correlated to
its neighbors and the correlation decays as the distance between the
two nodes increases. By learning a tree, we explicitly incorporate
this important feature of the dataset into our model.

Finally, we are able to handle multi-modal data because the
model is a mixture of trees.

5. NUMERICAL RESULTS

We constructed 48 imbalanced two-class datasets from 8 multi-class
datasets from the UCR time-series repository [29]. These datasets
are selected as they contain large numbers of samples to simulate
the highly skewed binary classification task. We systematically con-
verted the datasets into multiple imbalanced two-class datasets by
selecting one or merging several classes to form the positive class
and using the remaining classes to form the negative class. The in-
dices of the selected positive classes are appended to the name of the
dataset as in Table 1. Note that we have distinguished two types of
imbalanced datasets, which we call “multi-modal” and “unimodal”.
“Multi-modal” here refers to the case that multiple original classes
are selected to form the new positive class, while “unimodal” means
that only one is selected. By merging original classes, we simulate
the situation where the positive class is multi-modal, and it is this sit-
uation that our proposed algorithm is expected to perform well since
it takes the multi-modality into account explicitly. The training and
test data are divided randomly and all available samples are included
in either sets with imbalance ratios between 1.9 and 15.

The figures of merit that we use to assess the accuracy of the
algorithms are the F-value and G-mean [15, 30]. These are simply
functions of the precision and recall. Due to space constraints, we
only tabulate the F-values. We observed that the behavior of the G-
means are similar to the F-Values. All the imbalanced datasets and
tables for the G-means can be found at the following permanent link:
https://sites.google.com/site/mlsp13mogt/.

The comparisons of our mixture of Gaussian trees method for
oversampling to other oversampling methods are detailed in Ta-
bles 1, and 2. During the SVM-based classification with radial basis
function kernel, we perform log-scale grid search and choose the
best combination of SVM parameters (C, g) for each oversampling
method and each dataset through cross-validation. Our methods are
termed 1MoGT and 2MoGT where numeral denotes the number of
mixture components. In the 1MoGT case, we are simply modeling
the positively-labeled data using one Gaussian tree model. We ran
all experiments over 10 independent runs and computed the means
and standard deviations of the F-values and G-means. This is to
confirm that the variability across different oversampled datasets is
not large and our results are consistent.

For the multi-modal datasets, we observe from Table 1 that
2MoGT outperformed all the remaining oversampling methods in
good consistency. Here, 2MoGT achieves the best average per-
formance 27 times (according to the F-value). In particular, we
found for some difficult-to-classify datasets (e.g., TwoPattern4 1,
SLeaf1 2, 50words3 4 and Adiac7 8 9 10) that 2MoGT achieves
large margins of improvement over all other oversampling methods.
The good consistency and large improvement margin of 2MoGT
suggest that it is important to model the distribution of such datasets
with more than one mixture component using 2MoGT.

https://sites.google.com/site/mlsp13mogt/


Methods None SPO [4] Repeat SMOTE [5] BorSMOTE [8] ADASYN [9] DB [11] 1MoGT 2MoGT
FaceAll2 3 .955±.000 .960±.004 .955±.000 .952±.002 .951±.003 .952±.003 .954±.003 .965±.002 .963±.005
FaceAll3 4 .912±.000 .940±.003 .912±.000 .904±.004 .910±.004 .903±.005 .946±.004 .969±.004 .970±.003
FaceAll4 5 .973±.000 .964±.006 .941±.000 .943±.004 .944±.002 .945±.003 .964±.003 .960±.005 .980±.005
FaceAll5 8 .952±.000 .950±.002 .952±.000 .951±.003 .951±.002 .952±.002 .947±.002 .962±.001 .963±.003
FaceAll8 2 .677±.000 .812±.002 .940±.000 .941±.002 .941±.002 .939±.002 .760±.001 .891±.002 .951±.002

TwoPatterns1 2 .263±.000 .914±.004 .746±.000 .769±.002 .769±.003 .769±.006 .605±.003 .854±.007 .961±.002
TwoPatterns2 3 .163±.000 .742±.003 .163±.000 .325±.005 .310±.004 .334±.003 .328±.002 .672±.006 .798±.005
TwoPatterns3 4 .768±.000 .911±.003 .856±.000 .860±.001 .860±.002 .860±.002 .812±.001 .904±.004 .922±.002
TwoPatterns4 1 .456±.000 .634±.008 .087±.000 .291±.003 .286±.003 .297±.002 .459±.002 .554±.005 .832±.005

SLeaf1 2 .818±.000 .804±.013 .768±.000 .787±.004 .775±.011 .785±.006 .825±.009 .728±.011 .892±.011
SLeaf2 3 .816±.000 .796±.014 .800±.000 .803±.010 .801±.007 .806±.009 .818±.007 .761±.008 .841±.011
SLeaf3 4 .707±.000 .826±.014 .588±.000 .659±.010 .624±.012 .656±.011 .808±.010 .823±.016 .841±.014
SLeaf4 5 .839±.000 .838±.014 .630±.000 .682±.000 .677±.014 .686±.010 .837±.010 .828±.011 .896±.014
SLeaf5 1 .845±.000 .835±.011 .845±.000 .840±.006 .850±.008 .839±.007 .821±.008 .840±.016 .892±.013

50words1 2 .935±.000 .914±.005 .913±.000 .915±.002 .916±.002 .914±.005 .921±.004 .925±.002 .977±.002
50words2 3 .870±.000 .854±.012 .865±.000 .842±.008 .847±.010 .839±.008 .861±.000 .871±.002 .934±.003
50words3 4 .680±.000 .668±.011 .648±.000 .670±.006 .657±.018 .670±.008 .659±.002 .650±.008 .903±.008
50words4 5 .711±.000 .677±.020 .756±.000 .739±.009 .737±.008 .736±.008 .697±.003 .700±.006 .814±.008
50words5 1 .867±.000 .862±.014 .867±.000 .864±.006 .843±.000 .860±.004 .875±.000 .867±.000 .883±.007
SynCtrl1 2 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
SynCtrl2 3 .995±.000 .992±.004 .995±.000 .996±.002 .995±.000 .998±.003 .985±.004 .996±.002 .996±.003
SynCtrl3 4 .980±.000 .980±.004 .980±.000 .980±.000 .978±.002 .979±.002 .987±.003 .982±.003 .988±.003
SynCtrl4 5 .964±.000 .969±.006 .964±.000 .964±.000 .964±.000 .964±.000 .963±.009 .968±.006 .978±.006
SynCtrl5 1 .990±.000 .985±.000 .975±.000 .977±.003 .976±.002 .977±.002 .985±.000 .985±.002 .990±.000

Adiac1 2 3 4 .709±.000 .723±.007 .739±.000 .785±.011 .789±.007 .785±.005 .686±.009 .685±.005 .781±.009
Adiac4 5 6 7 .448±.000 .522±.027 .520±.000 .514±.017 .491±.006 .507±.018 .514±.016 .566±.021 .578±.016
Adiac7 8 9 10 .658±.000 .584±.023 .600±.000 .699±.018 .700±.016 .698±.021 .621±.000 .568±.021 .790±.021

Adiac10 11 12 13 .819±.000 .872±.017 .760±.000 .779±.013 .775±.121 .780±.120 .753±.002 .843±.008 .877±.007
Adiac13 14 15 16 .829±.000 .835±.011 .790±.000 .796±.017 .836±.004 .797±.018 .683±.007 .794±.022 .910±.015
Adiac16 17 18 19 .769±.000 .775±.019 .667±.000 .698±.022 .698±.016 .716±.023 .746±.008 .772±.029 .857±.008

Table 1. Comparison of F-values for various oversampling methods on multi-modal positive class

We have also benchmarked 2MoGT with a recently-developed
integrated oversampling (INOS) method [30], which enhances and
integrates SPO with interpolation-based oversampling techniques.
Using the suggested integration ratio of 70%, we find for the multi-
modal dataset, INOS achieves better performance than SPO, but
is not comparable with 2MoGT. INOS achieves average F-values
of 92.5%, 85.6%, 81.6%, 78.2%, 98.6% and 71.5% for FaceAll,
TwoPatterns, SLeaf, 50words, SynCtrl and Adiac, respectively. Cor-
respondingly, 2MoGT scores 96.5%, 87.8%, 87.2%, 90.2%, 99.0%
and 79.9% with clear winning margins for four of the six datasets.

For the unimodal datasets, we observe from Table 2 that 1MoGT
and 2MoGT perform competitively across all 18 imbalanced time-
series datasets compared to the other oversampling methods. Since
the positive classes of these datasets are unimodal, we notice that
SPO performs the best on many occasions since it fits data better.
Moreover, SPO also incorporates regularization and cleaning mech-
anisms to boost its performance. Without such additional measures,
our 1MoGT performed slightly worse than SPO, but it requires sig-
nificantly fewer parameters for modeling time-series. Other than
SPO, our 1MoGT and 2MoGT perform the best by achieving the
best F-value for 7 datasets and the best G-mean for 8 datasets out of
a total of 18 datasets. We also noticed when 1MoGT outperforms
2MoGT, the differences in performance are not very pronounced be-
cause when we set L = 2 for a strongly unimodal positive class,
then either the inferred misture components α1 or α2 will be small
(close to zero), thus that component is automatically de-emphasized.

6. CONCLUSION
We proposed oversampling from a parsimonious mixture of Gaus-
sian trees to correct the imbalance in time-series classification. Our
model is able to capture the dependencies among neighboring time
points and learning is computationally efficient. The number of pa-
rameters that are required to be stored is linear in the dimensionality

of the data. We validated the proposed methods on 18 unimodal
and 30 multimodal imbalanced datasets and observed that combin-
ing trees with the multi-modal aspect results in excellent classifica-
tion performance.

In the future, especially for oversampling minority classes which
are multi-modal in nature, we will compare the results obtained us-
ing our modeling technique to non-oversampling methods for time-
series classification such as 1NN-DTW [31].
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