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classifier based on existing patient data.

But patients’ private data cannot be revealed.
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Randomization in PPDM

Randomization
1 Mask private data values by perturbing with noise.
2 Task: To reconstruct the Probability Density Function (PDF)

of the original dataset from the randomized data.

Challenges: Two conflicting concerns.
1 Confidentiality of the private information
2 Utility of the aggregate statistics.



Introduction The Reconstruction Algorithm Numerical Experiments Conclusions

Privacy-Preserving Data Mining

Randomization in PPDM

Randomization
1 Mask private data values by perturbing with noise.
2 Task: To reconstruct the Probability Density Function (PDF)

of the original dataset from the randomized data.

Challenges: Two conflicting concerns.
1 Confidentiality of the private information
2 Utility of the aggregate statistics.



Introduction The Reconstruction Algorithm Numerical Experiments Conclusions

Privacy-Preserving Data Mining

Randomization in PPDM

Randomization
1 Mask private data values by perturbing with noise.
2 Task: To reconstruct the Probability Density Function (PDF)

of the original dataset from the randomized data.

Challenges: Two conflicting concerns.
1 Confidentiality of the private information
2 Utility of the aggregate statistics.



Introduction The Reconstruction Algorithm Numerical Experiments Conclusions

Privacy-Preserving Data Mining

Randomization in PPDM

Randomization
1 Mask private data values by perturbing with noise.
2 Task: To reconstruct the Probability Density Function (PDF)

of the original dataset from the randomized data.

Challenges: Two conflicting concerns.
1 Confidentiality of the private information
2 Utility of the aggregate statistics.



Introduction The Reconstruction Algorithm Numerical Experiments Conclusions

Privacy-Preserving Data Mining

Randomization in PPDM

Randomization
1 Mask private data values by perturbing with noise.
2 Task: To reconstruct the Probability Density Function (PDF)

of the original dataset from the randomized data.

Challenges: Two conflicting concerns.
1 Confidentiality of the private information
2 Utility of the aggregate statistics.



Introduction The Reconstruction Algorithm Numerical Experiments Conclusions

Related Work

Related Work

Agrawal et al. (2000) applied noise (ei ) to the true data (xi )
and transmit the sum zi = xi + ei .

Reconstruction of fX (x) (PDF of X ) via EM.

Kargupta et al. (2003) showed that such noise addition risk
privacy breaches.

We suggest a generic noise randomization model, to
minimize privacy risk.

We suggest a non-iterative PDF reconstruction algorithm.

Other methods: k -anonymity (Sweeney, 2002), Secure
Multi-Party Computation (Pinkas, 2002).
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Problem Statement

Problem Definition + Notation

PPDM framework: Randomization + Reconstruction.

N original scalars {xi}N
i=1, drawn from IID random variables

(RV) {Xi}N
i=1 ∼ fX (x).

zi = Z(ei , xi), ∀ i ∈ {1, . . . , N}

{ei}N
i=1 are realizations of IID noise RVs {Ei}N

i=1 ∼ fE(e).

E statistically independent of X .

Task: Given the randomized values {zi}N
i=1 and fE(e),

estimate original PDF f̂X (x) for arbitrary Z(·, ·).
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Estimate fZ (z) via Parzen Windows

The Parzen-Window approximation of the PDF of the
perturbed samples {zi}N

i=1 is

f̂Z (z) =
1
N

N∑
i=1

N (z, zi , σ
2
p).

Quality of estimator depends largely on N and σp.

Choose σp via a cross-validation scheme.
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Parzen Windows

Illustration of Parzen Windows

Figure: Illustration of Parzen-Windows for estimation of the
multimodal PDF.
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Quadratic Programming

Estimate fX (x) via Quadratic Programming (QP)

Applying (i) the theory of transformation of RVs and (ii)
discretizing the space (See our paper).

A QP can be formulated.

min
fX∈C

J(fX ) =
1
2

fT
X HfX + hTfX ,

Constraints are given by

fX ≥ 0NX×1,
∑

n∆x∈DX

fX (n∆x) =
1

∆x
.

Natural question: Is it a convex program?
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Quadratic Programming

Convexity

Cost function and constraint set C are convex.

C =

{
fX

∣∣∣ fX ≥ 0,

Nx∑
n=1

[fX ]n =
1

∆x

}

⇒ Convex Programming/Optimization.

Necessary conditions are sufficient conditions for
optimality.

[f∗X ]i > 0 ⇒
∂J(f∗X )

∂[fX ]i
<

∂J(f∗X )

∂[fX ]j
∀j .
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Performance Metrics

Privacy Loss and Information Loss

Quantify privacy loss using mutual information (Agrawal et
al. 2000).

P(X |Z )
4
= 1− 2−I(X ;Z ).

0 ≤ P(X |Z ) ≤ 1.

Information Loss is a measure of the accuracy of the PDF
reconstruction algorithm using

I(fX , f̂X )
4
=

1
2

E
[∫
DX

∣∣∣fX (x)− f̂X (x)
∣∣∣ dx

]
,

0 ≤ I(fX , f̂X ) ≤ 1.
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Multiplicative and additive randomization models used.

N = 500.

Original PDF fX (x) is Gaussian.

Noise is Uniform.

Varied σe to get different Privacy Loss/Info Loss points.
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Privacy / Accuracy Tradeoff

Tradeoff curves

Figure: Our PDF reconstruction algorithm (‘PQP’) performs just as
well as EM but has the added bonus of being a generic, non-iterative
reconstruction method.
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Application to Real Data

US Housing Dept data

Real data obtained from The U.S. Department of Housing
and Urban Development’s (USDHUD’s).

Median income of all the counties in the 50 states in the
U.S in 2005.

Multiplicative and additive randomization models used.

N = 3195.

Histogram with 75 bins.

Noise is Uniform.

Privacy loss is kept constant at P(X |Z ) = 0.330.
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Application to Real Data

Reconstructed Histograms

Figure: Comparison among different randomization / reconstruction
schemes.
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Devised a novel PDF reconstruction algorithm for
privacy-preserving data mining.

Our non-iterative algorithm eliminated the common need
for the iterative EM algorithm.

Our reconstruction method is also generic i.e. for all
randomization models zi = Z(ei , xi).
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Different privacy loss metrics address different problems.

Does a fundamental relation between the privacy loss and
information loss exist?
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