The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Generic Probability Density Function Reconstruction for Randomization in Privacy-Preserving Data Mining

Vincent Y. F. Tan<sup>1</sup> See-Kiong Ng<sup>2</sup>

<sup>1</sup>Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

<sup>2</sup>Institute for Infocomm Research (I<sup>2</sup>R), Singapore

Machine Learning and Data Mining MLDM 2007

The Reconstruction Algorithm

Numerical Experiments

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

### Outline



- Privacy-Preserving Data Mining
- Related Work
- Problem Statement
- - Parzen Windows
- - Performance Metrics
  - Privacy / Accuracy Tradeoff
  - Application to Real Data
  - - Summary
    - Eurther Work

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

### Outline



- Privacy-Preserving Data Mining
- Related Work
- Problem Statement
- 2 The Reconstruction Algorithm
  - Parzen Windows
  - Quadratic Programming
- 3 Numerical Experiments
  - Performance Metrics
  - Privacy / Accuracy Tradeoff
  - Application to Real Data
  - 4 Conclusions
    - Summary
    - Further Work

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

### Outline



- Privacy-Preserving Data Mining
- Related Work
- Problem Statement
- 2 The Reconstruction Algorithm
  - Parzen Windows
  - Quadratic Programming
- 3 Numerical Experiments
  - Performance Metrics
  - Privacy / Accuracy Tradeoff
  - Application to Real Data
  - Conclusions
    - Summary
    - Further Work

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

### Outline



- Privacy-Preserving Data Mining
- Related Work
- Problem Statement
- 2 The Reconstruction Algorithm
  - Parzen Windows
  - Quadratic Programming
- 3 Numerical Experiments
  - Performance Metrics
  - Privacy / Accuracy Tradeoff
  - Application to Real Data
  - Conclusions
    - Summary
    - Further Work

Introduction •••• The Reconstruction Algorithm

Numerical Experiments

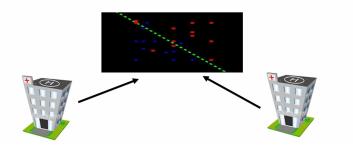
Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Privacy-Preserving Data Mining

## What is Privacy-Preserving Data Mining (PPDM)?

 Example: Two hospitals seek to construct a global classifier based on existing patient data.



But patients' private data cannot be revealed.

Introduction •••• The Reconstruction Algorithm

Numerical Experiments

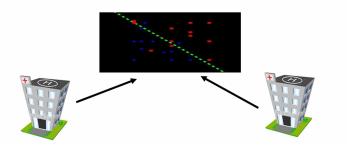
Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Privacy-Preserving Data Mining

## What is Privacy-Preserving Data Mining (PPDM)?

 Example: Two hospitals seek to construct a global classifier based on existing patient data.



• But patients' private data cannot be revealed.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Privacy-Preserving Data Mining

### Randomization in PPDM

#### Randomization

- Mask private data values by perturbing with noise.
- Task: To reconstruct the Probability Density Function (PDF) of the original dataset from the randomized data.

#### • Challenges: Two conflicting concerns.

- Confidentiality of the private information
- Otility of the aggregate statistics.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Privacy-Preserving Data Mining

### Randomization in PPDM

#### Randomization



Mask private data values by perturbing with noise.

Task: To reconstruct the Probability Density Function (PDF) of the original dataset from the randomized data.

#### • Challenges: Two conflicting concerns.

- Confidentiality of the private information
- Otility of the aggregate statistics.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Privacy-Preserving Data Mining

### Randomization in PPDM

#### Randomization



Mask private data values by perturbing with noise.

Task: To reconstruct the Probability Density Function (PDF) of the original dataset from the randomized data.

#### • Challenges: Two conflicting concerns.

- Confidentiality of the private information
- Otility of the aggregate statistics.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Privacy-Preserving Data Mining

### Randomization in PPDM

#### Randomization



Mask private data values by perturbing with noise.

Task: To reconstruct the Probability Density Function (PDF) of the original dataset from the randomized data.

#### Challenges: Two conflicting concerns.

Confidentiality of the private information

Utility of the aggregate statistics.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Privacy-Preserving Data Mining

### Randomization in PPDM

Randomization



- Mask private data values by perturbing with noise.
- Task: To reconstruct the Probability Density Function (PDF) of the original dataset from the randomized data.
- Challenges: Two conflicting concerns.
  - Confidentiality of the private information
  - Utility of the aggregate statistics.

| Introduction | The Reconstruction Algorithm | Numerical Experiments | Conclusions<br>00 |
|--------------|------------------------------|-----------------------|-------------------|
| Related Work |                              |                       |                   |
| Related \    | Vork                         |                       |                   |

- Agrawal et al. (2000) applied noise  $(e_i)$  to the true data  $(x_i)$  and transmit the sum  $z_i = x_i + e_i$ .
- Reconstruction of  $f_X(x)$  (PDF of X) via EM.
- Kargupta et al. (2003) showed that such noise addition risk privacy breaches.
- We suggest a generic noise randomization model, to minimize privacy risk.
- We suggest a non-iterative PDF reconstruction algorithm.
- Other methods: *k*-anonymity (Sweeney, 2002), Secure Multi-Party Computation (Pinkas, 2002).

| Introduction | The Reconstruction Algorithm | Numerical Experiments | Conclusion |
|--------------|------------------------------|-----------------------|------------|
| Related Work |                              |                       |            |

### **Related Work**

- Agrawal et al. (2000) applied noise  $(e_i)$  to the true data  $(x_i)$  and transmit the sum  $z_i = x_i + e_i$ .
- Reconstruction of  $f_X(x)$  (PDF of X) via EM.
- Kargupta et al. (2003) showed that such noise addition risk privacy breaches.
- We suggest a generic noise randomization model, to minimize privacy risk.
- We suggest a non-iterative PDF reconstruction algorithm.
- Other methods: *k*-anonymity (Sweeney, 2002), Secure Multi-Party Computation (Pinkas, 2002).

| Introduction | The Reconstruction Algorithm | Numerical Experiments | Conclusions<br>00 |
|--------------|------------------------------|-----------------------|-------------------|
| Related Work |                              |                       |                   |
| Related \    | Vork                         |                       |                   |

- Agrawal et al. (2000) applied noise  $(e_i)$  to the true data  $(x_i)$  and transmit the sum  $z_i = x_i + e_i$ .
- Reconstruction of  $f_X(x)$  (PDF of X) via EM.
- Kargupta et al. (2003) showed that such noise addition risk privacy breaches.
- We suggest a generic noise randomization model, to minimize privacy risk.
- We suggest a non-iterative PDF reconstruction algorithm.
- Other methods: *k*-anonymity (Sweeney, 2002), Secure Multi-Party Computation (Pinkas, 2002).

| Introduction | The Reconstruction Algorithm | Numerical Experiments | Conclusions |
|--------------|------------------------------|-----------------------|-------------|
| Related Work |                              |                       |             |
| Related W    | ork                          |                       |             |

- Agrawal et al. (2000) applied noise  $(e_i)$  to the true data  $(x_i)$  and transmit the sum  $z_i = x_i + e_i$ .
- Reconstruction of  $f_X(x)$  (PDF of X) via EM.
- Kargupta et al. (2003) showed that such noise addition risk privacy breaches.
- We suggest a generic noise randomization model, to minimize privacy risk.
- We suggest a non-iterative PDF reconstruction algorithm.
- Other methods: *k*-anonymity (Sweeney, 2002), Secure Multi-Party Computation (Pinkas, 2002).

| Introduction | The Reconstruction Algorithm | Numerical Experiments | Conclusions |
|--------------|------------------------------|-----------------------|-------------|
| Related Work |                              |                       |             |
| Related V    | Nork                         |                       |             |

- Agrawal et al. (2000) applied noise  $(e_i)$  to the true data  $(x_i)$  and transmit the sum  $z_i = x_i + e_i$ .
- Reconstruction of  $f_X(x)$  (PDF of X) via EM.
- Kargupta et al. (2003) showed that such noise addition risk privacy breaches.
- We suggest a generic noise randomization model, to minimize privacy risk.
- We suggest a non-iterative PDF reconstruction algorithm.
- Other methods: *k*-anonymity (Sweeney, 2002), Secure Multi-Party Computation (Pinkas, 2002).

| Introduction | The Reconstruction Algorithm | Numerical Experiments | Conclusions |
|--------------|------------------------------|-----------------------|-------------|
| Related Work |                              |                       |             |
| Related V    | Nork                         |                       |             |

- Agrawal et al. (2000) applied noise  $(e_i)$  to the true data  $(x_i)$  and transmit the sum  $z_i = x_i + e_i$ .
- Reconstruction of  $f_X(x)$  (PDF of X) via EM.
- Kargupta et al. (2003) showed that such noise addition risk privacy breaches.
- We suggest a generic noise randomization model, to minimize privacy risk.
- We suggest a non-iterative PDF reconstruction algorithm.
- Other methods: *k*-anonymity (Sweeney, 2002), Secure Multi-Party Computation (Pinkas, 2002).

The Reconstruction Algorithm

Numerical Experiments

Conclusions

Problem Statement

- PPDM framework: Randomization + Reconstruction.
- N original scalars {x<sub>i</sub>}<sup>N</sup><sub>i=1</sub>, drawn from IID random variables (RV) {X<sub>i</sub>}<sup>N</sup><sub>i=1</sub> ~ f<sub>X</sub>(x).

$$z_i = \mathcal{Z}(e_i, x_i), \quad \forall i \in \{1, \dots, N\}$$

- $\{e_i\}_{i=1}^N$  are realizations of IID noise RVs  $\{E_i\}_{i=1}^N \sim f_E(e)$ .
- *E* statistically independent of *X*.
- Task: Given the randomized values  $\{z_i\}_{i=1}^N$  and  $f_E(e)$ , estimate original PDF  $\hat{f}_X(x)$  for arbitrary  $\mathcal{Z}(\cdot, \cdot)$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

Problem Statement

- PPDM framework: Randomization + Reconstruction.
- N original scalars {x<sub>i</sub>}<sup>N</sup><sub>i=1</sub>, drawn from IID random variables (RV) {X<sub>i</sub>}<sup>N</sup><sub>i=1</sub> ∼ f<sub>X</sub>(x).

$$\mathbf{z}_i = \mathcal{Z}(\mathbf{e}_i, \mathbf{x}_i), \quad \forall i \in \{1, \dots, N\}$$

- $\{e_i\}_{i=1}^N$  are realizations of IID noise RVs  $\{E_i\}_{i=1}^N \sim f_E(e)$ .
- *E* statistically independent of *X*.
- Task: Given the randomized values  $\{z_i\}_{i=1}^N$  and  $f_E(e)$ , estimate original PDF  $\hat{f}_X(x)$  for arbitrary  $\mathcal{Z}(\cdot, \cdot)$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

Problem Statement

- PPDM framework: Randomization + Reconstruction.
- N original scalars {x<sub>i</sub>}<sup>N</sup><sub>i=1</sub>, drawn from IID random variables (RV) {X<sub>i</sub>}<sup>N</sup><sub>i=1</sub> ∼ f<sub>X</sub>(x).

$$\mathbf{z}_i = \mathcal{Z}(\mathbf{e}_i, \mathbf{x}_i), \quad \forall i \in \{1, \dots, N\}$$

- {e<sub>i</sub>}<sup>N</sup><sub>i=1</sub> are realizations of IID noise RVs {E<sub>i</sub>}<sup>N</sup><sub>i=1</sub> ~ f<sub>E</sub>(e). *E* statistically independent of *X*.
- Task: Given the randomized values  $\{z_i\}_{i=1}^N$  and  $f_E(e)$ , estimate original PDF  $\hat{f}_X(x)$  for arbitrary  $\mathcal{Z}(\cdot, \cdot)$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

Problem Statement

- PPDM framework: Randomization + Reconstruction.
- N original scalars {x<sub>i</sub>}<sup>N</sup><sub>i=1</sub>, drawn from IID random variables (RV) {X<sub>i</sub>}<sup>N</sup><sub>i=1</sub> ∼ f<sub>X</sub>(x).

$$\mathbf{z}_i = \mathcal{Z}(\mathbf{e}_i, \mathbf{x}_i), \quad \forall i \in \{1, \dots, N\}$$

- {e<sub>i</sub>}<sup>N</sup><sub>i=1</sub> are realizations of IID noise RVs {E<sub>i</sub>}<sup>N</sup><sub>i=1</sub> ~ f<sub>E</sub>(e). *E* statistically independent of *X*.
- Task: Given the randomized values  $\{z_i\}_{i=1}^N$  and  $f_E(e)$ , estimate original PDF  $\hat{f}_X(x)$  for arbitrary  $\mathcal{Z}(\cdot, \cdot)$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

Problem Statement

- PPDM framework: Randomization + Reconstruction.
- N original scalars {x<sub>i</sub>}<sup>N</sup><sub>i=1</sub>, drawn from IID random variables (RV) {X<sub>i</sub>}<sup>N</sup><sub>i=1</sub> ∼ f<sub>X</sub>(x).

$$\mathbf{z}_i = \mathcal{Z}(\mathbf{e}_i, \mathbf{x}_i), \quad \forall i \in \{1, \dots, N\}$$

- $\{e_i\}_{i=1}^N$  are realizations of IID noise RVs  $\{E_i\}_{i=1}^N \sim f_E(e)$ .
- E statistically independent of X.
- Task: Given the randomized values  $\{z_i\}_{i=1}^N$  and  $f_E(e)$ , estimate original PDF  $\hat{f}_X(x)$  for arbitrary  $\mathcal{Z}(\cdot, \cdot)$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Parzen Windows

## Estimate $f_Z(z)$ via Parzen Windows

 The Parzen-Window approximation of the PDF of the perturbed samples {z<sub>i</sub>}<sup>N</sup><sub>i=1</sub> is

$$\hat{f}_{Z}(z) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{N}(z, z_i, \sigma_p^2).$$

- Quality of estimator depends largely on N and  $\sigma_p$ .
- Choose  $\sigma_p$  via a cross-validation scheme.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Parzen Windows

## Estimate $f_Z(z)$ via Parzen Windows

 The Parzen-Window approximation of the PDF of the perturbed samples {z<sub>i</sub>}<sup>N</sup><sub>i=1</sub> is

$$\hat{f}_{Z}(z) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{N}(z, z_i, \sigma_p^2).$$

- Quality of estimator depends largely on N and  $\sigma_p$ .
- Choose  $\sigma_p$  via a cross-validation scheme.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

(ロ) (同) (三) (三) (三) (○) (○)

Parzen Windows

## Estimate $f_Z(z)$ via Parzen Windows

 The Parzen-Window approximation of the PDF of the perturbed samples {z<sub>i</sub>}<sup>N</sup><sub>i=1</sub> is

$$\hat{f}_{Z}(z) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{N}(z, z_i, \sigma_p^2).$$

- Quality of estimator depends largely on N and  $\sigma_p$ .
- Choose  $\sigma_p$  via a cross-validation scheme.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Parzen Windows

## Illustration of Parzen Windows

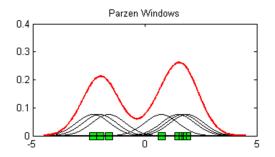


Figure: Illustration of Parzen-Windows for estimation of the multimodal PDF.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quadratic Programming

# Estimate $f_X(x)$ via Quadratic Programming (QP)

- Applying (i) the theory of transformation of RVs and (ii) discretizing the space (See our paper).
- A QP can be formulated.

$$\min_{\mathbf{f}_X \in \mathcal{C}} \quad J(\mathbf{f}_X) = \frac{1}{2} \mathbf{f}_X^{\mathrm{T}} \mathbf{H} \mathbf{f}_X + \mathbf{h}^{\mathrm{T}} \mathbf{f}_X,$$

• Constraints are given by

$$\mathbf{f}_X \ge \mathbf{0}_{N_X imes 1}, \quad \sum_{n \Delta x \in \mathcal{D}_X} f_X(n \Delta x) = \frac{1}{\Delta x}.$$

• Natural question: Is it a convex program?

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quadratic Programming

# Estimate $f_X(x)$ via Quadratic Programming (QP)

- Applying (i) the theory of transformation of RVs and (ii) discretizing the space (See our paper).
- A QP can be formulated.

$$\min_{\mathbf{f}_X \in \mathcal{C}} \quad J(\mathbf{f}_X) = \frac{1}{2} \mathbf{f}_X^{\mathrm{T}} \mathbf{H} \mathbf{f}_X + \mathbf{h}^{\mathrm{T}} \mathbf{f}_X,$$

Constraints are given by

$$\mathbf{f}_X \geq \mathbf{0}_{N_X imes 1}, \quad \sum_{n \Delta x \in \mathcal{D}_X} f_X(n \Delta x) = \frac{1}{\Delta x}.$$

• Natural question: Is it a convex program?

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quadratic Programming

# Estimate $f_X(x)$ via Quadratic Programming (QP)

- Applying (i) the theory of transformation of RVs and (ii) discretizing the space (See our paper).
- A QP can be formulated.

$$\min_{\mathbf{f}_X \in \mathcal{C}} \quad J(\mathbf{f}_X) = \frac{1}{2} \mathbf{f}_X^{\mathrm{T}} \mathbf{H} \mathbf{f}_X + \mathbf{h}^{\mathrm{T}} \mathbf{f}_X,$$

Constraints are given by

$$\mathbf{f}_X \geq \mathbf{0}_{N_X imes 1}, \quad \sum_{n \Delta x \in \mathcal{D}_X} f_X(n \Delta x) = \frac{1}{\Delta x}.$$

• Natural question: Is it a convex program?

| Introduction          | The Reconstruction Algorithm<br>○○○● | Numerical Experiments | Conclusions<br>00 |
|-----------------------|--------------------------------------|-----------------------|-------------------|
| Quadratic Programming |                                      |                       |                   |
| Convexity             |                                      |                       |                   |

• Cost function and constraint set C are convex.

$$\mathcal{C} = \left\{ \mathbf{f}_X \, \Big| \, \mathbf{f}_X \ge \mathbf{0}, \, \sum_{n=1}^{N_x} [\mathbf{f}_X]_n = \frac{1}{\Delta x} \right\}$$

- $\Rightarrow$  Convex Programming/Optimization.
- Necessary conditions are sufficient conditions for optimality.

$$[\mathbf{f}_X^*]_i > \mathbf{0} \Rightarrow rac{\partial J(\mathbf{f}_X^*)}{\partial [\mathbf{f}_X]_i} < rac{\partial J(\mathbf{f}_X^*)}{\partial [\mathbf{f}_X]_j} \quad \forall j$$

| Introduction<br>0000  | The Reconstruction Algorithm<br>○○○● | Numerical Experiments | Conclusions<br>00 |
|-----------------------|--------------------------------------|-----------------------|-------------------|
| Quadratic Programming |                                      |                       |                   |
| Convexity             |                                      |                       |                   |

• Cost function and constraint set C are convex.

$$\mathcal{C} = \left\{ \mathbf{f}_X \, \Big| \, \mathbf{f}_X \ge \mathbf{0}, \, \sum_{n=1}^{N_x} [\mathbf{f}_X]_n = \frac{1}{\Delta x} \right\}$$

- $\Rightarrow$  Convex Programming/Optimization.
- Necessary conditions are sufficient conditions for optimality.

$$[\mathbf{f}_X^*]_i > \mathbf{0} \Rightarrow \frac{\partial J(\mathbf{f}_X^*)}{\partial [\mathbf{f}_X]_i} < \frac{\partial J(\mathbf{f}_X^*)}{\partial [\mathbf{f}_X]_j} \quad \forall j$$

| Introduction          | The Reconstruction Algorithm<br>○○○● | Numerical Experiments | Conclusions<br>00 |
|-----------------------|--------------------------------------|-----------------------|-------------------|
| Quadratic Programming |                                      |                       |                   |
| Convexity             |                                      |                       |                   |

• Cost function and constraint set C are convex.

$$\mathcal{C} = \left\{ \mathbf{f}_X \, \Big| \, \mathbf{f}_X \ge \mathbf{0}, \, \sum_{n=1}^{N_x} [\mathbf{f}_X]_n = \frac{1}{\Delta x} \right\}$$

- $\Rightarrow$  Convex Programming/Optimization.
- Necessary conditions are sufficient conditions for optimality.

$$[\mathbf{f}_X^*]_i > \mathbf{0} \Rightarrow \frac{\partial J(\mathbf{f}_X^*)}{\partial [\mathbf{f}_X]_i} < \frac{\partial J(\mathbf{f}_X^*)}{\partial [\mathbf{f}_X]_j} \quad \forall j.$$

The Reconstruction Algorithm

Numerical Experiments

Conclusions

Performance Metrics

## Privacy Loss and Information Loss

• Quantify privacy loss using mutual information (Agrawal et al. 2000).

$$\mathcal{P}(X|Z) \stackrel{\triangle}{=} 1 - 2^{-l(X;Z)}.$$

- $0 \leq \mathcal{P}(X|Z) \leq 1.$
- Information Loss is a measure of the accuracy of the PDF reconstruction algorithm using

$$\mathcal{I}(f_X, \hat{f}_X) \stackrel{\Delta}{=} \frac{1}{2} \mathbf{E} \left[ \int_{\mathcal{D}_X} \left| f_X(x) - \hat{f}_X(x) \right| \, dx \right],$$

•  $0 \leq \mathcal{I}(f_X, \hat{f}_X) \leq 1.$ 

The Reconstruction Algorithm

Numerical Experiments

Conclusions

Performance Metrics

## Privacy Loss and Information Loss

Quantify privacy loss using mutual information (Agrawal et al. 2000).

$$\mathcal{P}(X|Z) \stackrel{ riangle}{=} 1 - 2^{-I(X;Z)}.$$

• 
$$0 \leq \mathcal{P}(X|Z) \leq 1.$$

Information Loss is a measure of the accuracy of the PDF reconstruction algorithm using

$$\mathcal{I}(f_X, \hat{f}_X) \stackrel{ riangle}{=} rac{1}{2} \mathbf{E} \left[ \int_{\mathcal{D}_X} \left| f_X(x) - \hat{f}_X(x) \right| \, dx 
ight],$$

•  $0 \leq \mathcal{I}(f_X, \hat{f}_X) \leq 1.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

The Reconstruction Algorithm

Numerical Experiments

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Performance Metrics

### Experimental Setup/Data

#### • Multiplicative and additive randomization models used.

- *N* = 500.
- Original PDF  $f_X(x)$  is Gaussian.
- Noise is Uniform.
- Varied  $\sigma_e$  to get different Privacy Loss/Info Loss points.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Performance Metrics

- Multiplicative and additive randomization models used.
- *N* = 500.
- Original PDF  $f_X(x)$  is Gaussian.
- Noise is Uniform.
- Varied  $\sigma_e$  to get different Privacy Loss/Info Loss points.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Performance Metrics

- Multiplicative and additive randomization models used.
- *N* = 500.
- Original PDF  $f_X(x)$  is Gaussian.
- Noise is Uniform.
- Varied  $\sigma_e$  to get different Privacy Loss/Info Loss points.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Performance Metrics

- Multiplicative and additive randomization models used.
- *N* = 500.
- Original PDF  $f_X(x)$  is Gaussian.
- Noise is Uniform.
- Varied  $\sigma_e$  to get different Privacy Loss/Info Loss points.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Performance Metrics

- Multiplicative and additive randomization models used.
- *N* = 500.
- Original PDF  $f_X(x)$  is Gaussian.
- Noise is Uniform.
- Varied  $\sigma_e$  to get different Privacy Loss/Info Loss points.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

Privacy / Accuracy Tradeoff

#### Tradeoff curves

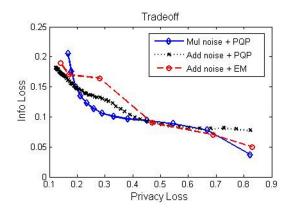


Figure: Our PDF reconstruction algorithm ('PQP') performs just as well as EM but has the added bonus of being a generic, non-iterative reconstruction method.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Application to Real Data

- Real data obtained from The U.S. Department of Housing and Urban Development's (USDHUD's).
- Median income of all the counties in the 50 states in the U.S in 2005.
- Multiplicative and additive randomization models used.
- *N* = 3195.
- Histogram with 75 bins.
- Noise is Uniform.
- Privacy loss is kept constant at  $\mathcal{P}(X|Z) = 0.330$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Application to Real Data

- Real data obtained from The U.S. Department of Housing and Urban Development's (USDHUD's).
- Median income of all the counties in the 50 states in the U.S in 2005.
- Multiplicative and additive randomization models used.
- *N* = 3195.
- Histogram with 75 bins.
- Noise is Uniform.
- Privacy loss is kept constant at  $\mathcal{P}(X|Z) = 0.330$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Application to Real Data

- Real data obtained from The U.S. Department of Housing and Urban Development's (USDHUD's).
- Median income of all the counties in the 50 states in the U.S in 2005.
- Multiplicative and additive randomization models used.
- N = 3195.
- Histogram with 75 bins.
- Noise is Uniform.
- Privacy loss is kept constant at  $\mathcal{P}(X|Z) = 0.330$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Application to Real Data

- Real data obtained from The U.S. Department of Housing and Urban Development's (USDHUD's).
- Median income of all the counties in the 50 states in the U.S in 2005.
- Multiplicative and additive randomization models used.
- *N* = 3195.
- Histogram with 75 bins.
- Noise is Uniform.
- Privacy loss is kept constant at  $\mathcal{P}(X|Z) = 0.330$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Application to Real Data

- Real data obtained from The U.S. Department of Housing and Urban Development's (USDHUD's).
- Median income of all the counties in the 50 states in the U.S in 2005.
- Multiplicative and additive randomization models used.
- *N* = 3195.
- Histogram with 75 bins.
- Noise is Uniform.
- Privacy loss is kept constant at  $\mathcal{P}(X|Z) = 0.330$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Application to Real Data

- Real data obtained from The U.S. Department of Housing and Urban Development's (USDHUD's).
- Median income of all the counties in the 50 states in the U.S in 2005.
- Multiplicative and additive randomization models used.
- *N* = 3195.
- Histogram with 75 bins.
- Noise is Uniform.
- Privacy loss is kept constant at  $\mathcal{P}(X|Z) = 0.330$ .

The Reconstruction Algorithm

Numerical Experiments

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

Conclusions

Application to Real Data

#### **Reconstructed Histograms**

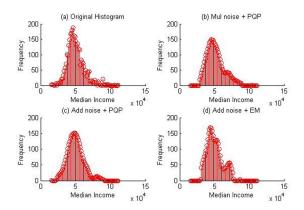


Figure: Comparison among different randomization / reconstruction schemes.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Summary

## Summary and Advantages

- Devised a novel PDF reconstruction algorithm for privacy-preserving data mining.
- Our non-iterative algorithm eliminated the common need for the iterative EM algorithm.
- Our reconstruction method is also generic i.e. for all randomization models  $z_i = \mathcal{Z}(e_i, x_i)$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary

## Summary and Advantages

- Devised a novel PDF reconstruction algorithm for privacy-preserving data mining.
- Our non-iterative algorithm eliminated the common need for the iterative EM algorithm.
- Our reconstruction method is also generic i.e. for all randomization models  $z_i = \mathcal{Z}(e_i, x_i)$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary

## Summary and Advantages

- Devised a novel PDF reconstruction algorithm for privacy-preserving data mining.
- Our non-iterative algorithm eliminated the common need for the iterative EM algorithm.
- Our reconstruction method is also generic i.e. for all randomization models  $z_i = \mathcal{Z}(e_i, x_i)$ .

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Further Work

#### **Further Work**

• Different privacy loss metrics address different problems.

- Does a fundamental relation between the privacy loss and information loss exist?
- I would like to thank the support of the Agency for Science, Technology and Research (A\*STAR), Singapore.
- http://web.mit.edu/vtan/www.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Further Work

#### **Further Work**

- Different privacy loss metrics address different problems.
- Does a fundamental relation between the privacy loss and information loss exist?
- I would like to thank the support of the Agency for Science, Technology and Research (A\*STAR), Singapore.
- http://web.mit.edu/vtan/www.

The Reconstruction Algorithm

Numerical Experiments

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Further Work

#### **Further Work**

- Different privacy loss metrics address different problems.
- Does a fundamental relation between the privacy loss and information loss exist?
- I would like to thank the support of the Agency for Science, Technology and Research (A\*STAR), Singapore.
- http://web.mit.edu/vtan/www.