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Abstract. Data perturbation with random noise signals has been shown
to be useful for data hiding in privacy-preserving data mining. Perturba-
tion methods based on additive randomization allows accurate estimation
of the Probability Density Function (PDF) via the Expectation-
Maximization (EM) algorithm but it has been shown that noise-filtering
techniques can be used to reconstruct the original data in many cases,
leading to security breaches. In this paper, we propose a generic PDF re-
construction algorithm that can be used on non-additive (and additive)
randomization techiques for the purpose of privacy-preserving data min-
ing. This two-step reconstruction algorithm is based on Parzen-Window
reconstruction and Quadratic Programming over a convex set – the prob-
ability simplex. Our algorithm eliminates the usual need for the iterative
EM algorithm and it is generic for most randomization models. The sim-
plicity of our two-step reconstruction algorithm, without iteration, also
makes it attractive for use when dealing with large datasets.

Keywords: Randomization, Privacy-preserving data mining, Parzen-
Windows, Quadratic Programming, Convex Set.

1 Introduction

Consider the following scenario: There are two hospitals which seek to predict
new patients’ susceptibility to illnesses based on existing data. It would be useful
for the hospitals to pool their data, since data mining tasks can often benefit
from a large training dataset. However, by law, the hospitals cannot release
private patient data. Instead, some form of sanitized data has to be provided to
a centralized server for further analysis. It is thus imperative to discover means
to protect private information and be able to perform data mining tasks with a
masked version of the raw data. Can privacy and accuracy co-exist? This is the
fundamental question in privacy-preserving data mining [2,3].
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Randomization has been shown to be a useful technique for hiding data in
privacy-preserving data mining. The basic concept is to sufficiently mask the
actual values of the data by perturbing them with an appropriate level of noise
that can still allow the underlying Probability Density Function (PDF) of the
original dataset to be adequately estimated from the randomized data. A balance
has to be achieved between two conflicting concerns in such approaches. On one
hand, the confidentiality of the precise information has to be protected i.e. to
minimize privacy loss. On the other hand, the utility of the aggregate data
statistics has to be maintained i.e. to minimize information loss.

The use of randomization for preserving privacy was studied extensively in the
framework of statistical databases [1]. It typically involves a trusted centralized
database in which the data are already fully known before they are random-
ized and released for publication (e.g. census data). As such, privacy-preserving
transformations such as sampling [24] and swapping [24] are more suitable for
perturbing the data as they can incorporate knowledge about the aggregate
characteristics of the dataset. In privacy preserving data mining (PPDM), we
consider both (trusted) centralized database scenarios as well as distributed sce-
narios in which there is one (untrusted) central server that needs pieces of private
information from multiple clients to build a aggregate model for the data, and
the clients would each perturb the information before releasing them to the
server to preserve privacy.

The early attempts by the pioneering authors in PPDM [2] applied additive
white noise (ei), generated from a pre-determined distribution, to the true data
(xi) and then transmitting the sum (zi = xi + ei) instead of the raw data. As it
was shown that the distribution of the original data fX(x) can be reconstructed
to a high accuracy i.e. low information loss, data mining can then be done sat-
isfactorily using the sum (zi) instead of the original data values (xi). The recon-
struction process hinges on the use of the iterative Expectation-Maximization
(EM) algorithm taking the original values xi as the latent variables.

However, Kargupta et al. [15] showed that such methods risk privacy breaches
as the additive noise can be filtered off leaving a reasonably good estimation of
the original data in many cases. Thus, other randomization models, such as using
multiplicative noise, have been suggested [15].

Motivated by this, we develop a novel non-iterative PDF reconstruction
scheme based on Parzen-Window reconstruction and Quadratic Programming
(QP) optimization with only one equality constraint and one inequality con-
straint. These constraints define the probability simplex, which is a convex set.
Convex programming/optimization [5,7] has been widely studied and efficient
methods can be employed to estimate the PDF. As far as we know, currently
only the mean and the variance in a multiplicative model can be estimated ac-
curately [16]. To the best of our knowledge, for the first time, our method can
allow the underlying PDF of the original dataset to be accurately reconstructed
from randomized data set perturbed with multiplicative noise, additive noise or
other noise models. From the estimated PDF, all the statistics can be inferred
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for distribution-based data mining purposes. Our approach therefore provides a
complete description of the original data without compromising on the privacy.

Other randomization/reconstruction methods based on multiplicative noise
have been proposed [22] but the implementation of the reconstruction method
was very computationally demanding. As such, we have also made sure that our
reconstruction method can be efficiently implemented, avoiding using the itera-
tive Expectation-Maximization algorithm employed in many reconstruction ap-
proaches for perturbation-based privacy-preserving data mining [2]. This makes
our method attractive for use with the increasingly large datasets that have
become commonplace in recent years.

More recently, [18] proposed a data perturbation approach in which the data
is multiplied by a randomly generated matrix, hence preserving privacy by effec-
tively projecting the data into a lower dimension subspace. As the transformation
is distance-preserving, the authors showed that it is possible to estimate from
the perturbed data various distance-related statistical properties of the original
data. We consider non-distance-preserving randomization models in this paper
because the distance-preserving nature of the randomization scheme in [18] may
result in security breaches if some private data is also revealed.

In short, our reconstruction algorithm has two main advantages:

1. Unlike EM, it is non-iterative and can handle large datasets.
2. More importantly, it can be applied to generic (non-additive) randomization

models, including multiplicative noise models.

The rest of this paper is organized as follows: We define the generic pertur-
bation model and state some assumptions in Section 2. We describe the Parzen-
Window and Quadratic Programming reconstruction algorithm in Section 3. In
Section 4 we describe the evaluation metrics. We then present extensive eval-
uation results on both simulated and real data sets to validate our technique
in Section 5. Finally, we conclude in Section 6 and provide some discussions on
future work.

2 Problem Definition

The current PPDM framework consists of two processes: a randomization pro-
cess, followed by a reconstruction process. First, the source data is randomized
at possibly multiple client sites. The randomized data are then transmitted to
a centralized server which attempts to recover the PDF of the original data for
aggregate analyses. In the next two sections, we will first formally define the
randomization model for privacy-preserving preservation, followed by the basic
assumptions that are necessary for the subsequent reconstruction process.

2.1 Randomization Model

The generic randomization problem can be stated, succintly and generally, using
the following mathematical model. Consider a set of N original scalars represent-
ing a particular private attribute (e.g. income) x1, . . . , xN , which are drawn from
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independent and identically distributed (IID) random variables X1, . . . , XN .
These random variables Xi follow a common PDF fX(x). To create the per-
turbation, we consider the generic two-variable randomization model:

zi = Z(ei, xi), ∀ i ∈ {1, . . . , N} (1)

where the e1, . . . , eN are realizations of known IID random variables E1, . . . , EN .
Z(·, ·) is a deterministic, possibly nonlinear, randomization operator. The ei’s
are sampled from a specified uniform distribution. Therefore Ei ∼ U(e; aE , bE),
where fE(e) = U(e; aE , bE) is the uniform distribution parameterized by lower
and upper limits aE and bE respectively.

2.2 Reconstruction of PDF and Assumptions

Given the perturbed values z1, . . . , zN and the noise distribution, the reconstruc-
tion task is to obtain an estimate for the original PDF, which we denote f̂X(x)1.
We make the following simple assumptions for recovering the PDF of X , fX(x):

A1. The random variables X and E are statistically independent (SI) i.e. the
joint distribution fX,E(x, e) = fX(x)fE(e) is equal to the product of the
marginals.

A2. The PDFs of X and E are finitely supported by DX and DE respectively.
Outside these domains, fX(x) = fE(e) = 0.

Assumption A1 is a common assumption in privacy-preserving data mining us-
ing randomization. It basically implies that the perturbing and original distri-
butions are SI, which is a reasonable assumption. Assumption A2 simplifies the
computation for the reconstruction of the original PDF f̂X(x) without loss of
generality. This will be evident in Section 3, where the reconstruction algorithm
is presented.

3 Randomization and Reconstruction Algorithms

Given the original data xi, we will generate random numbers from a known
uniform distribution to obtain the randomized data values zi (c.f. Section 2.1).
Because we are applying the noise ei element-wise (as in Eq (1)), our random-
ization and reconstruction algorithm can be applied to both the centralized the
distributed scenarios. It has been suggested [15] that the use of multiplicative
noise is better than the additive model for minimizing risk of security breaches.
In fact, our model goes beyond multiplicative noise. Any noise model of the form
zi = Z(ei, xi) can be used.

The key here, is whether we can effectively reconstruct the PDF of original
data from the perturbed data. In this section, we will show how this can be done
effectively and efficiently, without the need of the commonly-used iterative EM
1 In this paper, estimates of functions, vectors and other variables are denoted with a

overhead hat. For example, â is the estimate for a.
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Fig. 1. Illustration of Parzen-Windows for estimation of the multimodal PDF. The
boxes are the N = 7 independent realizations of the multimodal random variable. The
individual Gaussian kernels are centered at the realizations. Their sum, as detailed in
Eq (2) and indicated by the bold line, is the Parzen-Window approximation [20].

reconstruction algorithm. The general idea is as follows. Given the perturbed
values zi, we will first obtain an estimate of fZ(z) via Parzen-Windows [20].
Following the estimation of fZ(z), we will use Quadratic Programming (QP) to
obtain an estimate of fX(x).

3.1 Estimate PDF of Perturbed Samples fZ(z) Via Parzen-Windows

The first step of the reconstruction algorithm is to estimate f̂Z(z) using Parzen
density estimation [20]. In this step, we are given N perturbed samples z1,. . ., zN .
They follow a common random variable Z, with true PDF fZ(z).

Parzen-Windows. The Parzen-Window approximation of the PDF of the per-
turbed samples is

f̂Z(z) =
1
N

N∑

i=1

1
σp

√
2π

exp
[
− (z − zi)2

2σ2
p

]
, (2)

where σp is the standard deviation or ‘width’ of the kernel. This estimator uses
the Gaussian kernel function to smooth the raw sample set, placing more prob-
ability mass in regions with many samples, which is intuitively evident.

Example 1. An illustration of how the Parzen-Window method works for N = 7
is shown in Fig 1. We show the samples drawn from an arbitrary distribution.
The Parzen approximation is the sum of the individual Gaussian kernels of equal
standard deviations σp.

Remark 1. For Parzen-Window estimation, the quality of the estimate depends
on the number of samples N as well as the standard deviation (SD) σp. If σp is
too small, the Parzen approximation suffers from too much statistical variability
and if σp is too large, the Parzen approximation is over-smoothed. Hence, we
will now turn our attention to the selection of the optimal value of σp.
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Cross-validation scheme for σp. In our experiments, we will use a cross-
validation scheme that guarantees an optimal value of σp [4,21] in the l2 sense.
In this univariate optimization procedure, we seek to minimize the Integrated
Squared Error (ISE) between the estimated PDF f̂Z(z) and the actual PDF
fZ(z):

ISE
�
=

∫

DZ

(
f̂Z(z) − fZ(z)

)2
dz. (3)

The ISE can be simplified to given the ‘leave-one-out’ (LOO) cross-validation
criterion

σ∗
p = argmin

σp

ELOO(σp), (4)

with ELOO(σp) defined as

ELOO(σp)
�
=

1
N2

N∑

i=1

N∑

j=1

N (zi; zj,
√

2σp) − 2
N(N − 1)

N∑

i=1

N∑

j=1
j �=i

N (zi; zj, σp), (5)

and N (x; μ, c) = (c
√

2π)−1 exp
[
−(x − μ)2/2c2

]
is the Gaussian kernel with

mean μ and variance c2. The optimization problem in Eq (4) is one-dimensional
and efficient line search methods [17] will yield sufficiently accurate solutions.

3.2 Estimate Original PDF fX(x) Via Quadratic Programming
(QP)

Equipped with an estimate of the perturbed PDF f̂Z(z), we are ready to estimate
the original PDF fX(x).

Theorem 1. Let Z = Z(X, E) be the result of a function of two random vari-
ables that can also be expressed as E = E(X, Z) i.e. given X = x, the trans-
formation is one-to-one. Then, if assumptions A1 and A2 (c.f. Section 2.2) are
satisfied, the Probability Density Function (PDF) of Z, f̂Z(z) can be written as

f̂Z(z) =
∫

DX

fX(x)fE [E(x, z)]
∣∣∣∣
∂E(x, z)

∂x

∣∣∣∣ dx. (6)

Proof. See Appendix A. ��

The assumption that the transformation from Z to E given X = x is one-to-
one is made without any loss of generality. This is because we can represent the
set A = {(x, e)} of input variables as the union of a finite number, say K, of
mutually disjoint subsets {Ak}K

k=1 such that the transformation is one-to-one in
each of Ak onto B = {(v, z)}. We focus on the one-to-one case for notational
simplicity but note that it is straightforward to extend the argument to the case
where the transformation is not one-to-one. For example, the randomization
model zi = Z(ei, xi) = xiei + x2

i e
4
i is not one-to-one. Nonetheless, it is still

possible to apply our reconstruction algorithm, with appropriate modifications
to Eq (6). We refer the reader to the excellent treatment of functions of random
variables by Hogg and Craig [14, Chapter 4].
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QP Formulation. Using Theorem 1, we can formulate the Quadratic Program
to estimate the optimal fX(x). Discretizing2 the integral in Eq. (6) yields

f̂Z(z) ≈
∑

nΔx∈DX

fX (nΔx) fE [E(nΔx, z)]
∣∣∣∣
∂E(x, z)

∂x

∣∣∣∣
x=nΔx

Δx, (7)

where Δx > 0 is the step size of fX(x) and nΔx ∈ DX and DX
�
= {(n0 + 1)

Δx, . . . , (n0 + Nx)Δx} is the set of discretized points contained in the finitely-
supported3 domain of X . Then for z ∈ {z1, . . . , zNz}, Eq. (7) can be written as

f̂Z = GE fX , (8)

where the length Nz vector f̂Z , length Nx vector fX and the Nz by Nx matrix
GE are defined as

[f̂Z ]j
�
= f̂Z(zj), (9)

[fX ]i
�
= fX((n0 + i)Δx), (10)

[GE ]ij
�
= fE [E((n0 + i)Δx, zj)]

∣∣∣∣
∂E(x, zj)

∂x

∣∣∣∣
x=(n0+i)Δx

Δx, (11)

and [v]k is the kth element of the vector v and [M]ij is the element in the ith row
and jth column of the matrix M and i ∈ {1, . . .Nz} and j ∈ {1, . . .Nx}. Eq. (8)
can be converted into the canonical cost function in a Quadratic Program as
shown in Appendix B.

Example 2. If as in [3], we use an additive scheme i .e. zi = Zadd(ei, xi) = xi+ei,
then Eq (11), together with the convolution formula [19], simplifies to give

[GE ]ij
�
= fE [zj − (n0 + i)Δx] . (12)

Example 3. If instead we use a multiplicative scheme [16] i.e. zi = Zmul(ei, xi) =
ei × xi, then Eq (11) together with the result in [13] simplifies to give

[GE ]ij
�
=

∣∣∣∣
1

n0 + i

∣∣∣∣ fE

[
zj

(n0 + i)Δx

]
, n0 	= −i. (13)

Constraints. As fX(x) is a PDF, it has to satisfy the stochastic constraints
fX(x) ≥ 0 , ∀ x ∈ DX and

∫
DX

fX(x) dx = 1. This places an inequality and an
equality constraint on the vector fX , which can be easily incorporated into the
QP as:

fX ≥ 0NX×1,
∑

nΔx∈DX

fX(nΔx) =
1

Δx
. (14)

2 This is done using the Rectangular rule. We can alternatively use the Trapezoidal,
Simpson or Quadrature rules [8] to discretize the integral. Our experimental results,
however, show that the performances of these discretization rules are very similar
and hence for simplicity, we shall only present Rectangular rule.

3 By assumption A2.
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Sufficient conditions for QP. We now derive sufficient conditions for the
optimization problem. Because the constraint set is particularly simple, we can
obtain the optimal solution without the use of iterative methods (such as gradient
projection or modern interior points methods). Consider our quadratic program:

min
fX

J(fX) =
1
2
fT
XHfX + hTfX , (15)

subject to

fX ∈ C, with C =

{
fX

∣∣∣ fX ≥ 0,

Nx∑

i=1

[fX ]i = 1

}
, (16)

for appropriately chosen H and h (as shown in Appendix B). Then, the necessary
condition for f∗X to be a local minimum over a convex set [6, Section 2.1] is

Nx∑

i=1

∂J(f∗X)
∂[fX ]i

([fX ]i − [f∗X ]i) ≥ 0, ∀ fX ∈ C. (17)

Subsequent simplification yields the condition

[f∗X ]i > 0⇒ ∂J(f∗X)
∂[fX ]i

<
∂J(f∗X)
∂[fX ]j

⇔
Nx∑

k=1

[H]ik[fX ]k+[h]i <

Nx∑

k=1

[H]jk[fX ]k+[h]j , ∀ j.

(18)
Thus, all coordinates which are (strictly) positive at the optimum must have min-
imal (and equal) partial cost derivates [6]. Since GE only contains real entries,
the Hessian matrix H = GT

EGE of the QP is positive semidefinite. Consequently,
the cost function J(·) is convex [7] and any local optimum of Eq (15) is also a
global optimum, which implies that the cost value is equal for all local optima.
Moreover, the set of local optima is always convex.

We exploit the convexity of the cost function to conclude that Eq (18) is also
a sufficient condition for global optimality of f∗X = f̂X .

3.3 Discussion

We have completed the discussion of our non-iterative PDF reconstruction for
generic randomization schemes for privacy-preserving data mining. There are
two steps: Firstly, we build the Parzen-Window of the perturbed samples f̂Z(z).
Secondly, we perform a QP over the probability simplex to reconstruct an es-
timate of the original PDF f̂X(x). Our algorithm is summarised in Fig 2. We
conclude this section with two comments on our algorithm.

1. Discretizing the integral in Eq (6) is, in general, intractable if we are recon-
structing PDFs of high dimensions as the problem suffers from the ‘curse
of dimensionality’. We can mitigate the effects of the curse by assuming the
dimensions are independent, if possible. Using this näıve approach, we es-
timate the PDF in each dimension before taking their product to form the
joint density. Alternatively, we can project the data onto a lower dimensional
subspace and perform the same analysis in that subspace.
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Fig. 2. The PDF reconstruction algorithm. There are two main steps. We reconstruct
f̂Z via Parzen-Windows. Then we estimate of f̂X(x) using the QP.

2. The reconstruction algorithm can handle large datasets. One approach is to
find a random subset of the samples from the dataset zi to build the Parzen-
Window and to perform the QP. This is known as the reduced Parzen-
Window and is discussed in more detail in [12].

4 Performance Metrics

As mentioned earlier, there are two competing issues. Firstly, we hope to min-
imize the privacy loss so that individual information is not revealed. At the
same time, we want to preserve the structure and the aggregate statistics of the
underlying data. In other words, we also hope to minimize the information loss.

4.1 Privacy Loss

In this section, we will quantify privacy loss using mutual information. It was
argued in [2] that the mutual information between two random variables X and
Z measures the degree of independence between the random variables and hence,
the privacy loss for X when Z is revealed.

The mutual information I(X ; Z) tells us how much information one random
variable tells about another one. In other words, I(X ; Z) is the amount of uncer-
tainty in X , which is removed by knowing Z. When X and Z are independent,
I(X ; Z) = 0. The lower the value of I(X ; Z), the better the privacy gain via the
given perturbation scheme, the more the privacy is preserved. This leads us to
the notion of the privacy loss P(X |Z) of X when Z is known. It is defined as:

P(X |Z)
�
= 1 − 2−I(X;Z). (19)

By definition, 0 ≤ P(X |Z) ≤ 1. P(X |Z) = 0 if and only if X and Z are SI.

Remark 2. Privacy breach [9], based on worst-case information loss, has also
been suggested as an alternative privacy measure. However, in our work, we
consider an average disclosure measure – mutual information. Also, the privacy
breach [10] measure is typically used in the context of association-rule mining,
which is not applicable in our context.
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4.2 Information Loss

In this section, we will define information loss, which is a measure of the effec-
tiveness and accuracy of the reconstruction algorithm. It is clear that given the
perturbed values z1, . . . , zN , it is, in general, not possible to reconstruct the orig-
inal density fX(x) with arbitrary precision. The lack of precision in estimating
fX(x) from the perturbed values is referred to as information loss. The closer our
estimate f̂X(x) is to the actual PDF fX(x), the lower the information loss. We
use the following universal metric suggested in [2] to quantify the information
loss in the reconstruction of fX(x).

I(fX , f̂X)
�
=

1
2
E

[∫

DX

∣∣∣fX(x) − f̂X(x)
∣∣∣ dx

]
, (20)

where f̂X(x) is the estimate for the PDF of the random variable X . It is easy to
see that 0 ≤ I(fX , f̂X) ≤ 1. We will see that our algorithm produces an accu-
rate original PDF that is amendable to various distribution-based data mining
tasks.

5 Experiments

We conducted two main experiments to demonstrate the efficiency and accuracy
of the PQP reconstruction algorithm.

1. Firstly, we examine the tradeoff between the privacy loss and information
loss. In Section 5.1, we show empirically that our generic PDF reconstruc-
tion algorithm performs as well as the additive randomization-EM algorithm
suggested in [2]. We emphasize that our PDF reconstruction algorithm is
applicable to all randomization models that can be expressed in the form
Eq (1).

2. Secondly, we applied our algorithm to a real dataset and demonstrate that
privacy can be preserved and, at the same time, the aggregate statistics can
be mined. The results are discussed in Section 5.2.

5.1 Privacy/Accuracy Tradeoff

As mentioned previously, data perturbation based approaches typically face a
privacy/accuracy loss tradeoff. In this section, we shall examine this tradeoff and
compare it to existing technologies. We used two different randomization models
– multiplicative and additive and examine the efficacy of the PDF reconstruction
algorithm (‘PQP’). The results are summarized in Fig 3.

We observe that our reconstruction algorithm performs as well as EM with
the added bonus that it is generic. It can be applied to multiplicative, additive
and other randomization models. Besides, it is non-iterative.
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Fig. 3. Plot of the tradeoff between information loss I(fX , f̂X ) and privacy loss
P(X|Z). Our PDF reconstruction algorithm (‘PQP’) performs just as well as EM but
has the added bonus of being a generic reconstruction method.

Table 1. Information Losses resulting from the various perturbation/reconstruction
methods. Privacy Loss is kept constant at P(X|Z) = 0.330. We observe that the PQP
reconstruction algorithm gives a superior (lower) information loss as compared to EM.

Method Mul + PQP Add + PQP Add + EM [2]
I(fX , f̂X) 0.1174 0.0957 0.1208

5.2 Application to Real Data

We applied the Parzen-Window and QP reconstruction (‘PQP’) algorithm to real
data obtained from The U.S. Department of Housing and Urban Development’s
(USDHUD’s) Office of Policy Development and Research (PD&R) [23]. As with
the previous experiment, we perturbed the data with multiplicative noise and
additive noise. Other randomization techniques are also applicable.

The data in [23] provides us with the median income of all the counties in
the 50 states in the U.S in 2005. The length of the dataset is N = 3195. This
is plotted as a histogram with 75 bins in Figure 4(a). We multiplied each data
value with samples drawn from a uniform distribution with domain 1 ≤ e ≤ 3
giving a privacy loss value of P(X |Z) = 0.330.

In addition to using the multiplicative randomization and PQP reconstruc-
tion algorithm, we also ran the PQP algorithm on the data corrupted by additive
noise. The level of noise was adjusted such that the privacy loss is kept constant
at P(X |Z) = 0.330. Finally, we implemented the additive noise and EM recon-
struction algorithm [2] on the data.

We averaged our results over 500 independent runs and the results are tab-
ulated in Table 1. The results showed that our PDF reconstruction algorithm
(‘PQP’) performed better than additive/EM [2] on the real data. The added
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Fig. 4. (a) Original histogram of Median Income of Counties in the U.S. [23] (b) Re-
constructed histogram after Multiplicative Randomization and our PDF reconstruc-
tion algorithm (‘PQP’). (c) Reconstructed histogram after Additive Randomization
and ‘PQP’. (d) Reconstructed histogram after Additive Randomization and EM [2].
Note the accuracy of our PDF reconstruction algorithm.

advantage here is that our novel non-iterative PDF reconstruction algorithm
can be applied to all randomization models of the form Eq (1).

6 Conclusions and Further Work

In this paper, we have devised a novel PDF reconstruction scheme for privacy-
preserving data mining. This scheme is based on Parzen-Window reconstruction
and Quadratic Programming (with a positive semidefinite Hessian) over a con-
vex set. For the first time, the original PDF fX(x) can be approximated from the
samples which have been perturbed by any type of noise (even multiplicative)
that follows the generic randomization equation zi = Z(ei, xi). We performed ex-
tensive numerical experiments demonstrating the efficacy of our algoritm. There
are two distinct advantages over the existing PDF reconstruction algorithms
which are based on the iterative EM algorithm.

1. Firstly, our proposed two-step reconstruction algorithm eliminated the com-
mon need for the iterative Expectation-Maximization (EM) algorithm. This
is essential for problems which involve larger datasets, as it circumvents the
need for iteration. It only involves two steps: Parzen-Window reconstruction
and Quadratic Programming. The QP is particularly easy to solve because
of the nature of the constraints – the (convex) probability simplex.
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2. Secondly, our reconstruction method is also generic. Theorem 1 shows that
the algorithm can be applied to many other randomization models as long
as the perturbing random variable E and the underlying random variable
X are SI, which is a common assumption for randomization methods in
privacy-preserving data mining. We emphasize that although we examined
the multiplicative and additive models only in Section 5, our reconstruction
algorithm can be applied to all randomization models of the form Eq (1).

A natural extension to this work is to examine even more randomization models
and reconstruction algorithms. For instance, we can parameterize Eq (1) as fol-
lows: zi = Z(ei(ψ), xi; ψ) where ψ is an unknown but deterministic/non-random
parameter. This adds an additional layer of privacy and the PDF can be esti-
mated using a combination of our PQP reconstruction algorithm and maximum-
likelihood methods. Finally, a question of paramount importance that researchers
can try to decipher is: Does a fundamental relation between the privacy loss and
information loss exist? We believe this needs to be answered precisely in order
to unlock the promising future in privacy-preserving data mining.
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Appendix

A Proof of Theorem 1

Proof. Our proof is adapted from [11] and [13]. Using the transformation tech-
nique [14], the transformation V = X and Z = Z(X, E) constitutes a one-to-one
mapping from from A = {(x, e)} to B = {(v, z)}. Let u denote the transformation
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and w the inverse transformation. The transformation and its inverse can be
written as:

v = u1(x, e) = x, z = u2(x, e) = Z(x, e), (A.1)
x = w1(v, z) = z, e = w2(v, z) = E(v, z). (A.2)

Consequently, the Jacobian determinant can be expressed in the form

J =
∣∣∣∣

∂x
∂z

∂x
∂v

∂e
∂z

∂e
∂v

∣∣∣∣ =
∣∣∣∣
∂E(v, z)

∂v

∣∣∣∣ =
∣∣∣∣
∂E(x, z)

∂x

∣∣∣∣ . (A.3)

The marginal density of Z, which can be obtained through Parzen reconstruction
from the samples of zi can be found by integrating the joint density of V and Z

f̂Z(z) =
∫

DV

fV,Z(v, z) dv. (A.4)

Application of the transformation from B to A yields

f̂Z(z) =
∫

DV

fX,E(w1(v, z), w2(v, z))
∣∣∣∣
∂E(x, z)

∂x

∣∣∣∣ dv, (A.5)

A further simplification and the use of the statistical independence of X and E
(Assumption A1) gives Eq. (6). ��

B Detailed Formulation of the Quadratic Program

The canonical QP can be written as

θ∗ = argmin
θ

{
1
2
θTHθ + hTθ

}
, (B.1)

subject to
Aθ ≤ b, Aeqθ = beq, (B.2)

where H, A and Aeq are matrices and h, b, beq and θ are vectors, all appro-
priately sized. To optimize for a solution to Eq (8), we can write it in terms of
an cost function

J(fX) =
1
2

∥∥∥f̂Z − GEfX
∥∥∥

2

2
, (B.3)

where ‖ · ‖2 is the l2 norm. Eq (B.3) can be can be simplified to give

J(fX) =
1
2
fT
XGT

EGEfX − f̂T
Z GEfX + c, (B.4)

where c is some constant independent of fX . Hence, by comparing Eq (B.1) and
Eq (B.4), we observe that θ = fX is the vector of control variables and

H = GT
EGE , h = −GT

E f̂Z , (B.5)

are the matrix (Hessian) and vector that define the cost function. Also, compar-
ing the constraints in Eq (14) to the constraints in the canonical QP, we obtain

A = −INX×NX , b = 0NX×1, Aeq = (Δx)11×NX , beq = 1. (B.6)
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