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Gaussian distribution

For F dimensions, the Gaussian distribution of a vector x ∈ RF is
defined by:

N (x|u,Σ) =
1

(2π)F/2
√
|Σ|

exp

(
−1

2
(x− u)TΣ−1(x− u)

)
,

where u is the mean vector, Σ is the covariance matrix of the
Gaussian.

Example: Mean u =

[
0
0

]
and Covariance matrix Σ =

[
0.25 0.3
0.3 1.0

]
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Gaussian mixture model (GMM)

P(x) =
K∑

k=1

wkN (x|uk ,Σk).

wk : mixing weight

uk : component mean vector

Σk : component covariance matrix; if Σk = σ2k I, the GMM is
said to be spherical
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Learning GMM

Data samples independently generated from a GMM ⇒
Correct target clustering of the samples according to which
Gaussian distribution they are generated from

Definition 1 (correct target clustering)

Suppose
V := [v1, v2, . . . , vN ]

are samples independently generated from a K -component GMM.
The correct target clustering

I := {I1,I2, . . . ,IK}

satisfies n ∈ Ik iff vn comes from the k-th component.

Thereby inferring the important parameters of the GMM.
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Algorithms for learning GMM

i) Expectation Maximization (EM)

A local-search heuristic approach for maximum likelihood
estimation in the presence of incomplete data;

Cannot guarantee the convergence to global optima.
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Algorithms for learning GMM

ii) Algorithms based on spectral decomposition and method of
moments;

Definition 2 (non-degeneracy condition)

The mixture model is said to satisfy a non-degeneracy condition if
the component mean vectors

u1, . . . ,uK

span a K -dimensional subspace, and the mixing weight wk > 0, for
k ∈ {1, 2, . . . ,K}.
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Algorithms for learning GMM

iii) Algorithms proposed in theoretical computer science with
guarantees;

Need to assume separability assumptions.

Vempala and Wang [2002]: for any i , j ∈ [K ], i 6= j ,

‖ui − uj‖2 > C max{σi , σj}K
1
4 log

1
4 (

F

wmin
).

A simple spectral algorithm with running time polynomial in both
F and K works well for correctly clustering samples.
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The k-means algorithm

Large number of algorithms for finding the (approximately) correct
clustering of GMM;

Many practitioners stick with k-means algorithm because of its
simplicity and successful applications in various fields.
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The objective function of k-means

Objective function: the so-called sum-of-squares distortion.

D(V,I ) :=
K∑

k=1

∑
n∈Ik

‖vn − ck‖22,

where

Ik : the index set of k-th cluster;

ck := 1
|Ik |

∑
n∈Ik

vn is the centroid of the k-th cluster.

Finding an optimal clustering I opt that satisfies

D(V,I opt) = min
I
D(V,I ) =: D∗(V).
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Using k-means to learn GMM?

Can we simply use k-means to learn the correct clustering of
GMM?

Yes!

Kumar and Kannan [2010] showed that if:

Data points satisfy a proximity condition, i.e., when they
independently generated from a GMM with a certain separability
assumption
⇒
k-means algorithm with a proper initialization can correctly cluster
nearly all data points with high probability
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Using k-means to learn GMM?

The key condition to be satisfied for performing k-means to learn
the parameters of a GMM?

The correct clustering ≈ Any optimal clustering
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Main contributions

We prove if

data points generated from a K -component spherical GMM;

non-degeneracy condition and an separability assumption;

The correct clustering ≈ Any optimal clustering
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Main contributions

We also prove if

data points generated from a K -component spherical GMM;

projected onto the low-dimensional space;

non-degeneracy condition and an even weaker separability
assumption;

The correct clustering ≈ Any optimal clustering for the
dimensionality-reduced dataset
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Advantages of dimensionality reduction

Significantly faster running time

Reduced memory usage

Weaker separability assumption

Other advantages
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Lower bound of distortion

Let Z be the centralized data matrix of V and denote S = ZTZ.
According to Ding and He [2004], for any K -clustering I ,

D(V,I ) ≥ D∗(V) := tr(S)−
K−1∑
k=1

λk(S),

where
λ1(S) ≥ λ2(S) ≥ . . . ≥ 0

are the sorted eigenvalues of S.
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Misclassification error (ME) distance

Definition 3 (ME distance)

The misclassification error distance of any two K -clusterings

I 1 := {I 1
1 ,I

1
2 , . . . ,I

1
K}, and

I 2 := {I 2
1 ,I

2
2 , . . . ,I

2
K}

is defined as

d(I 1,I 2) := 1− 1

N
max
π∈PK

K∑
k=1

|I 1
k

⋂
I 2
π(k)|,

where π ∈ PK represents that the distance is minimized over all
permutations of the labels {1, 2, . . . ,K}.

Meilă [2005]: ME distance defined above is indeed a metric.
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Important lemma

Lemma 1 (Meilă, 2006)

Given a partition I := {I1,I2, . . . ,IK} and a dataset V;

Let

pmax := max
k

1

N
|Ik |, and pmin := min

k

1

N
|Ik |

and

δ :=
D(V,I )−D∗(V)

λK−1(S)− λK (S)
, where D∗(V) := min

I
D(V,I ).

If

δ ≤ K − 1

2
and τ(δ) := 2δ

(
1− δ

K − 1

)
≤ pmin,

then
d(I , optimal) ≤ pmaxτ(δ).
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Definitions

Define the increasing function

ζ(p) :=
p

1 +
√

1− 2p/(K − 1)
,

the average variances

σ̄2 :=
K∑

k=1

wkσ
2
k

and the minimum eigenvalue

λmin := λK−1

(
K∑

k=1

wk(uk − ū)(uk − ū)T

)
.
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Theorem for original datasets

Theorem 1

Dataset V ∈ RF×N consisting of samples generated from a
K-component spherical GMM (N > F > K);

The non-degeneracy condition;

Let
wmin := min

k
wk , and wmax := max

k
wk

and assume

δ0 :=
(K − 1)σ̄2

λmin
< ζ(wmin).

For sufficiently large N, w.h.p.,

d(correct, optimal) ≤ τ (δ0)wmax.
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Remark for separability assumption

Remark 1

The condition δ0 < ζ(wmin) can be considered as a separability
assumption. For example,

K = 2 implies that

λmin = w1w2‖u1 − u2‖22

and we have

‖u1 − u2‖2 >
σ̄√

w1w2ζ(wmin)
.
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Remark for non-degeneracy condition

Remark 2

The non-degeneracy condition is used to ensure that λmin > 0.

For K = 2, we have

λmin = w1w2‖u1 − u2‖22

and we only need the two component mean vectors are
distinct and we do not need that they are linearly independent.



28/35

Theorem for dimensionality-reduced datasets

Theorem 2

V ∈ RF×N : generated under the same conditions given in
Theorem 1;

The separability assumption being modified to

δ1 :=
(K − 1)σ̄2

λmin + σ̄2
< ζ(wmin).

Ṽ ∈ R(K−1)×N : the post-(K − 1)-PCA dataset of V.

For sufficiently large N, w.h.p.,

d(correct, ˜optimal) ≤ τ (δ1)wmax.
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Upper bound for ME distance between optimal clusterings

Combining the results of Theorem 1 and Theorem 2, by the
triangle inequality:

Corollary 1

V ∈ RF×N : generated under the same conditions given in
Theorem 1;

Ṽ: the post-(K − 1)-PCA dataset of V.

For sufficiently large N, w.h.p.

d(optimal, ˜optimal) ≤ (τ (δ0) + τ (δ1))wmax.
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Parameter settings

K = 2, for all k = 1, 2, we set

σ2k =
λminζ(wmin − ε)

4(K − 1)
, corr. to

δ0
ζ(wmin)

≈ 1

4
,

or

σ2k =
λminζ(wmin − ε)

K − 1
, corr. to

δ0
ζ(wmin)

≈ 1,

where ε = 10−6.

The former corresponds to well-separated clusters; the latter
corresponds to moderately well-separated clusters
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Visualization of post-2-SVD datasets
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Original datasets

dorg := d(I ,I opt),

d̄org := τ(δ0)wmax.

δemp
0 := D(V,I )−D∗(V)

λK−1(S)−λK (S)
is an approximation of δ0,

d̄emp
org := τ(δemp

0 )pmax is an approximation of d̄org.
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Figure: True distances and upper bounds for original datasets.
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Dimensionality-reduced datasets
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Figure: True distances and upper bounds for post-PCA datasets.
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Comparisons of running time
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Further extensions

Randomized SVD instead of exact SVD;

Random projection;

Non-spherical Gaussian or even more general distributions,
e.g., log-concave distributions;


