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Gaussian distribution

For F dimensions, the Gaussian distribution of a vector x € RF is
defined by:

N(x|u,X) = 1(xu)T}:_l(xu)) ,

_ v (
n) 2 /TE T\ 2

where u is the mean vector, X is the covariance matrix of the
Gaussian.

Example: Mean u = [0

} and Covariance matrix X = [0'25 0-3}
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Gaussian mixture model (GMM)

K
P(x) = > wiN (X|ug, ).

k=1

@ Wj: mixing weight

@ uy: component mean vector

@ X,: component covariance matrix; if £ = 021, the GMM is
said to be spherical



Learning GMM

Data samples independently generated from a GMM =
Correct target clustering of the samples according to which
Gaussian distribution they are generated from
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Learning GMM

Data samples independently generated from a GMM =
Correct target clustering of the samples according to which
Gaussian distribution they are generated from

Definition 1 (correct target clustering)

Suppose
V.= |:V1,V27 oooa ,VN]

are samples independently generated from a K-component GMM.
The correct target clustering

A = {fl,fz,...,f;(}

satisfies n € .7, iff v, comes from the k-th component.

Thereby inferring the important parameters of the GMM.



Algorithms for learning GMM

i) Expectation Maximization (EM)

@ A local-search heuristic approach for maximum likelihood
estimation in the presence of incomplete data;

@ Cannot guarantee the convergence to global optima.



Algorithms for learning GMM

ii) Algorithms based on spectral decomposition and method of
moments;

Definition 2 (non-degeneracy condition)

The mixture model is said to satisfy a non-degeneracy condition if
the component mean vectors

ui,...,Uxg

span a K-dimensional subspace, and the mixing weight wy > 0, for
ke{l,2,...,K}.




Algorithms for learning GMM

iii) Algorithms proposed in theoretical computer science with
guarantees;

Need to assume separability assumptions.
Vempala and Wang [2002]: for any i,j € [K], i # J,

F

min

luj — ujf[2 > Cmax{o,-,aj}K% Iog%(



Algorithms for learning GMM

iii) Algorithms proposed in theoretical computer science with
guarantees;

Need to assume separability assumptions.

Vempala and Wang [2002]: for any i,j € [K], i # J,

)-

luj — ujf[2 > Cmax{o,-,aj}K% Iog%( .
min

A simple spectral algorithm with running time polynomial in both
F and K works well for correctly clustering samples.



The k-means algorithm

Large number of algorithms for finding the (approximately) correct
clustering of GMM,;



The k-means algorithm

Large number of algorithms for finding the (approximately) correct
clustering of GMM,;

Many practitioners stick with k-means algorithm because of its
simplicity and successful applications in various fields.



The objective function of k-means

Objective function: the so-called sum-of-squares distortion.

K
DV,#) =3 3 va - cill3.

k=1 ne.g

where
@ .7 the index set of k-th cluster;
° ¢y = ﬁ > ne.s, Vn is the centroid of the k-th cluster.



The objective function of k-means

Objective function: the so-called sum-of-squares distortion.

K
DV,#) =3 3 va - cill3.

k=1 ne.g

where
@ .7 the index set of k-th cluster;
° ¢y = ﬁ > ne.s, Vn is the centroid of the k-th cluster.

Finding an optimal clustering .#°P! that satisfies

D(V,.7°PY) = min D(V,.7) = D*(V).



k-means algorithm

k-Means: By Example

o Standardize the data.
@ Choose two cluster centers.
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From Bishop's Pattern recognition and machine learning, Figure 9.1(a).



k-means algorithm

@ Assign each point to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).



k-means algorithm

o Compute new class centers.
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From Bishop's Pattern recognition and machine learning, Figure 9.1(c).



k-means algorithm

@ Assign points to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(d).



k-means algorithm

o Compute cluster centers.

-2

From Bishop's Pattern recognition and machine learning, Figure 9.1(e).




k-means algorithm

o lterate until convergence.

-2

From Bishop's Pattern recognition and machine learning, Figure 9.1(i).
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Can we simply use k-means to learn the correct clustering of
GMM?
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Using k-means to learn GMM?

Can we simply use k-means to learn the correct clustering of
GMM?

Yes!

Kumar and Kannan [2010] showed that if:

Data points satisfy a proximity condition, i.e., when they
independently generated from a GMM with a certain separability
assumption

=

k-means algorithm with a proper initialization can correctly cluster
nearly all data points with high probability



Using k-means to learn GMM?

The key condition to be satisfied for performing k-means to learn
the parameters of a GMM?



Using k-means to learn GMM?

The key condition to be satisfied for performing k-means to learn
the parameters of a GMM?

The correct clustering &~ Any optimal clustering



Main contributions

We prove if

@ data points generated from a K-component spherical GMM,;

@ non-degeneracy condition and an separability assumption;

The correct clustering &~ Any optimal clustering



Main contributions

We also prove if

@ data points generated from a K-component spherical GMM,;
@ projected onto the low-dimensional space;

@ non-degeneracy condition and an even weaker separability
assumption;

The correct clustering &~ Any optimal clustering for the
dimensionality-reduced dataset



Advantages of dimensionality reduction

@ Significantly faster running time
@ Reduced memory usage
@ Weaker separability assumption

@ Other advantages



Lower bound of distortion

Let Z be the centralized data matrix of V and denote S =2Z72Z.
According to Ding and He [2004], for any K-clustering .#,

DV, 7) > D*(V) :=tr(S) — Ak(S),
where

A(S)>X(S)>...>0

are the sorted eigenvalues of S.



Misclassification error (ME) distance

Definition 3 (ME distance)

The misclassification error distance of any two K-clusterings

gt ={g, 7} ... 7L}, and
j2 = {j127j227 90 7'ﬂ}%}

is defined as
1 K
1 z2y._ 1 2
d(75,7%) =1— N 72%),(( kEZI BAAREEPE

where m € Py represents that the distance is minimized over all
permutations of the labels {1,2,..., K}.

Meild [2005]: ME distance defined above is indeed a metric.
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Lemma 1 (Meila, 2006)

e Given a partition .9 .= {1, %, ..., %k} and a dataset V;
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o Let
1 .1
[ — mkaxNLﬂk], and  Pmin 1= min N\fk|
and
§ = DV, 7) = D*(V) where D*(V) := minD(V, .¥)

Ak 1(S) = k(S = mi




Important lemma

Lemma 1 (Meila, 2006)

e Given a partition .9 .= {1, %, ..., %k} and a dataset V;
o Let

1 1
Pmax ‘= mkaXNLﬂk’a and  pmin 1= mkm N‘j”

and

5. D(V,.7) = D*(V)

Ak 1(S) = k(S = mi

o If
K—-1

1)
and 7(9):=20 <1 - 1> < Pmins

d(#, optimal) < pnax7(9).
D




Define the increasing function

_ P
141 -2p/(K-1)

¢(p) :

the average variances

K
52 = g Wko',%
k=1

and the minimum eigenvalue

K
>\min = )\K,1 (Z Wk(uk — ﬁ)(uk — ﬁ)T> .

k=1



Theorem for original datasets

o Dataset V € RF*N consisting of samples generated from a
K-component spherical GMM (N > F > K);
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o Let
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Theorem for original datasets

o Dataset V € RF*N consisting of samples generated from a
K-component spherical GMM (N > F > K);

@ The non-degeneracy condition;
o Let
Winin 1= mkin Wk, and Wpmay := mfx Wy
and assume

K —1)52
50 = ()\)O— < C(Wmin).

For sufficiently large N, w.h.p.,

d(correct, optimal) < 7 (dp) Wmax-




Remark for separability assumption

The condition dg < ((Wmin) can be considered as a separability
assumption. For example,

@ K = 2 implies that
Amin = W1W2||U1 - u2||%

and we have

g

lui —uzll2 > —(——.
w1 W2 (Win)




Remark for non-degeneracy condition

The non-degeneracy condition is used to ensure that A\pmin > 0.

@ For K =2, we have
Amin = wiwa[ug — w23

and we only need the two component mean vectors are
distinct and we do not need that they are linearly independent.




Theorem for dimensionality-reduced datasets

o V € RFXN: generated under the same conditions given in
Theorem 1;

@ The separability assumption being modified to

(K —1)52

o Ve RIK-DXN: the post-(K — 1)-PCA dataset of V.




Theorem for dimensionality-reduced datasets

o V € RFXN: generated under the same conditions given in
Theorem 1;

@ The separability assumption being modified to

(K —1)52

o Ve RIK-DXN: the post-(K — 1)-PCA dataset of V.
For sufficiently large N, w.h.p.,

d(correct, optfmal) < 7 (01) Wimax-




Upper bound for ME distance between optimal clusterings

Combining the results of Theorem 1 and Theorem 2, by the
triangle inequality:

Corollary 1

o V € RFXN: generated under the same conditions given in
Theorem 1;

o V: the post-(K — 1)-PCA dataset of V.
For sufficiently large N, w.h.p.

d(optimal, optimal) < (7 (8) + 7 (1)) Winax-




Parameter settings

K =2, forall k =1,2, we set

)\minC(Wmin - 5) 0o 1

o MK—1) corr. to ) S @
” Amin (Winin — ) 5
minG (Wmin — € 0

or = 1 , corr. to i) ~1,

where ¢ = 107°.



Parameter settings

K =2, forall k =1,2, we set

0_2 . )\minC(Wmin - 5) corr. to o ~ 1

K= aK=1) 7 (Wmin) 4
> AminC( ) 5
minG(Wmin — € 0

ai = 1 , corr. to (o) ~ 1,

where ¢ = 107°.

The former corresponds to well-separated clusters; the latter
corresponds to moderately well-separated clusters



Visualization of post-2-SVD datasets
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Original datasets

dorg 1= d(57, FOPY),

aorg = 7(00) Winax-

semp . D(V,#)—D*(V)
0 - >\K,1(S)—)\K(S)

(_igfép := 7(85"") Pmax is an approximation of doyg.
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Figure: True distances and upper bounds for. original datasets.



Dimensionality-reduced datasets

post-PCA dataset
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Figure: True distances and upper bounds for post-PCA datasets.



Comparisons of running time
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Further extensions

@ Randomized SVD instead of exact SVD;
@ Random projection;

@ Non-spherical Gaussian or even more general distributions,
e.g., log-concave distributions;



