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Abstract—The second-order coding rate for source-channel

codes with m levels of unequal message protection (UMP) is

derived. The second-order coding rate takes the form of an

optimization problem which reduces to separate source-channel

coding rate for m = 2. A procedure for solving the given

optimization problem is proposed. The proposed procedure

exploits the structure of the problem to reduce the optimization

search space to one dimension. Numerical results for the BSC

are obtained and it is shown, empirically, that the second-order

coding rate of source-channel codes with m levels of UMP

approaches the optimal joint source-channel coding rate as m
grows.

I. INTRODUCTION

When it comes to transmitting an information source over a
noisy communication channel, traditional information theory
proposes two solutions: source-channel separation and joint
source-channel coding (JSCC). In the separation approach,
first proposed by Shannon [1], the information source is com-
pressed with a source encoder, and a separate channel encoder
is used for transmission of the compressed source over the
channel. For almost lossless transmission of a discrete source
(the setting studied in this work) this could be accomplished,
for example, by encoding all typical source realizations and
discarding the atypical ones. If the information source satisfies
asymptotic equipartition property, the separation approach is
asymptotically optimal [2, Thm. 7.13.1] in the first-order
sense. However, the optimality of separation fails to hold given
more refined analysis, see for example [3]. To achieve the best
possible tradeoff between rate and reliability of transmission,
a code needs to be designed jointly for the given source and
channel pair.

Separation and JSCC can be interpreted as unequal error
protection schemes. On the one hand, separation uses two
levels of a kind of unequal error protection called unequal
message protection (UMP). A subset of source realizations, the
ones discarded during compression, receive no protection from
channel noise. All of the remaining source realizations are pro-
tected equally by the channel code. On the other hand, optimal
JSCCs implicitly sets up many more levels of UMP which
gives JSCC schemes an advantage over separation schemes.
Often, such superior performance of JSCC is accomplished
through the use of maximum a posteriori (MAP) decoding
which is intractable in practice.

When viewing separation and JSSC strategies through the
lens of UMP a natural question arises which is what sorts
of schemes bridge these two approaches. This work addresses
exactly this question by characterizing the second-order coding
rate of source-channel codes restricted to only m UMP classes,
for some integer m � 2. The rest of this paper is structured
as follows. Section I-A overviews second-order coding rates
for optimal JSCCs, source-channel separation codes, and m-
class source-channel codes. Section I-B surveys relevant work.
Section II formally sets up the problem and restates relevant
background results. Section III contains the main result, The-
orem 1. In Section IV a method for solving the optimization
problem presented in Section III is proposed and numerical
results for the BSC are presented. Section V concludes the
paper with discussion, additional problem motivation, and
remarks on future work.

A. Second-Order Rate for Source-Channel Codes
This work studies lossless transmission of k realizations of

a discrete memoryless source (DMS) over n uses of a discrete
memoryless channel (DMC), under the fidelity constraint that
the probability of incorrect source recovery cannot exceed ✏.
It is shown in [4], [5] that the relationship between k, n, and ✏
for optimal JSCC admits the following asymptotic expansion

nC � kH(S) =
p
nV + kVQ�1

(✏) +O(log n) (1)

where C is channel capacity, V is channel dispersion, H(S)
is the entropy of the source, and V is the varentropy of the
source. By contrast, the asymptotic expansion for optimal sep-
arate source-channel coding is obtained through the following
optimization problem,

nC � kH(S) = min

E2(✏)

np
kVQ�1

(�1) +
p
nV Q�1

(✏1)
o

+O(log n) (2)

where

E2(✏) = {(�1, ✏1) : ✏1 + �1 � �1✏1  ✏}. (3)

It is easy to check that, in general, the RHS of (2) is greater
than (1). The main result of this work is that optimal m-
class source-channel codes admit the following asymptotic
expansion,

nC � kH(S) = min

E
m

(✏)
max

1i<m

np
kVQ�1

(�i) +
p
nV Q�1

(✏i)
o



+O(log n) (4)

where Em(✏) is a generalization of (3); it will be suitably
defined for m � 2, and its operational significance made clear,
in Section III. For m = 2 equation (4) recovers (2), while it is
shown, empirically, in Section IV that (4) approaches (1) for
large m.

B. Prior Work

Csiszár [3], [6] was the first to identify UMP as a key com-
ponent in construction of source-channel codes. His achiev-
ability result for optimal lossless JSCC exponent [3] used
a UMP construction in which all source realizations in the
same type class were encoded with their own UMP class (that
is, given the same amount of error protection). Thus, for a
DMS, the number of classes used by Csiszár’s construction is
polynomial in k.

The second-order coding rate (or dispersion) characteriza-
tion of optimal (lossless and lossy) JSCCs was done concur-
rently by Kostina-Verdú [4] and Wang-Ingber-Kochman [5].
The separation asymptotic expansion (2), which can be viewed
as a direct corollary of [7]–[10], is also stated in [4], [5].
Second-order coding rate results for the problem of UMP were
derived in [5] as a step towards the JSCC dispersion. In [11]
the problem of UMP was analyzed via single-shot bounds, as
well as dispersion and moderate deviation asymptotic analysis.
Additional work on UMP was previously done by Borade-
Nakiboğlu-Zheng [12], Wang-Ingber-Kochman [5], and Nazer-
Shkel-Draper [13]. There have been a number of recent works
on source-channel coding with several classes inspired by the
approach of Csiszár. Single-shot bounds and numerical results
for source-channel codes with m UMP classes were presented
in [14]. In a series of concurrent works Bocharova et al. studied
the problem of source-channel coding with multiple classes
in [15], [16]. The focus of [15], [16] is error exponent analysis
rather than second-order coding rate as is presented here.

II. PRELIMINARIES

Let S be an information source with probability density
function PS(s) defined on discrete alphabet S . Let W be a
channel with input alphabet X and output alphabet Y . This
work studies the transmission of DMS Sk over a DMC Wn.
We refer the reader to previous works, see for example [4],
[5], for definition of channel capacity C, channel dispersion V ,
source entropy H(S), and source varentropy V . For simplicity
of exposition we assume that W and S are such that W has
a unique capacity achieving distribution and that V,V > 0.
The Q function, the tail probability of a standard normal
distribution, is defined to be

Q(x) =
1p
2⇡

Z 1

x

exp

⇢

�u2

2

�

du. (5)

A. Channel Coding and UMP

Unequal message protection is a generalization of the
traditional channel coding paradigm. In a UMP setup the
message set is partitioned into several message classes with

each class having its own error protection requirement, and
some messages receiving better protection from noise than
others. A formal definition follows.

Definition 1 (UMP code). An ((Mi)
m
i=1, (✏i)

m
i=1)-UMP code

for Wn is a tuple ({Mi}mi=1, f, g) consisting of
1) m disjoint message classes {M1, . . . ,Mm} forming the

message set M := [m
i=1Mi and satisfying |Mi| = Mi

for each i 2 {1, 2, . . .m}
2) An encoder f : M ! Xn

3) A decoder g : Yn ! M
such that for all i 2 {1, 2, . . .m}, the average error probabil-
ities for each message class satisfy

1

Mi

X

w2M
i

Wn
(B \ g�1

(w)|f(w))  ✏i. (6)

For m = 1 Definition 1 becomes an (n,M, ✏)-channel code
studied in [9].

It was essentially shown in [11] that a sequence of optimal
((Mn,i)

m
i=1, (✏i)

m
i=1)-UMP codes admits the following asymp-

totic expansion,

logMn,i = nC �
p
nV Q�1

(✏i) +O(log n)� log

1

�n,i
(7)

for some � 2 Lm where

Lm = {� = (�1, . . . ,�m) :

m
X

i=1

�i = 1,�i � 0 8i}. (8)

Remark 1. In fact, [11] shows a stronger result for m scaling
in n. In the setting of this paper m is fixed. The log

1
�
n,i

will
turn out to be negligible asymptotically. The result stated in [5]
would have been sufficient.

In the case m = 1 equation (7) reduces to classical channel
coding studied in [7]–[9]

logMn = nC �
p
nV Q�1

(✏) +O(log n). (9)

B. Source Coding and Source Partitioning

Subsequent results for lossless source-channel coding rely
on the following lossless source coding definitions and results.

Definition 2 (Almost-lossless Source Code). A lossless source
code for Sk is a tuple (f, g) consisting of

1) an encoding function f : Sk ! M,
2) and a decoding function g : M ! Sk.

A lossless source code (f, g) is a (k,M, �)-source code if

P(Sk 6= g(f(Sk
))))  �. (10)

As discussed in [17] an optimal lossless source code for
Sk is always known. That is, suppose Sk is to be encoded
with M codewords. To minimize the probability of error an
optimal code encodes the first most likely M realizations of
Sk, breaking ties arbitrarily. The remaining source realizations
are discarded and their total probability is the smallest � such
that there exists a (k,M, �)-source code for Sk.



The asymptotic expansion for source coding was studied
in [7], [17]

logMk = kH(S) +
p
kVQ�1

(�) +O(log k). (11)

The next definition addresses partitioning of the source real-
izations. It can be thought of as a generalization of Definition 2
in the same way as Definition 1 is a generalization of channel
coding.

Definition 3 (Source Partition Code). An ((Mi)
m
i=1, (�i)

m
i=1)-

source partition code for Sk is a tuple ({Mi}mi=1, f, g) con-
sisting of

1) m disjoint message classes {M1, . . . ,Mm} forming the
message set M := [m

i=1Mi and satisfying |Mi| = Mi

for each i 2 {1, 2, . . .m}
2) An encoder f : Sk ! M
3) A decoder g : M ! Sk

such that for all i 2 {1, 2, . . .m},

P
�

{f(Sk
) /2 [i

j=1Mj} [ {f(Sk
) 6= g(f(Sk

))}
�

 �i. (12)

It follows from equation (12) that �m  �m�1  · · ·  �1
for any ((Mi)

m
i=1, (�i)

m
i=1)-source partition code. Furthermore,

the observation in [17] regarding optimal source codes also
extends to ((Mi)

m
i=1, (�i)

m
i=1)-source partition codes. To min-

imize all �i’s simultaneously an optimal ((Mi)
m
i=1, (�i)

m
i=1)-

partition code encodes M1 most likely realizations of Sk with
messages from M1, the next M2 most likely realizations of
Sk with messages from M2 and so on. It follows from (11)
that ((Mk,i)

m
i=1, (�i)

m
i=1)-source partition code for Sk admits

the following asymptotic expansion for i 2 {1, . . . ,m}

log

i
X

j=1

Mk,j = kH(S) +
p
kVQ�1

(�i) +O(log k). (13)

C. Source-Channel Coding

Definition 4 (Lossless Joint Source-Channel Code). A source-
channel code for source Sk over channel Wn is a tuple (f, g)
consisting of

1) an encoding function f : Sk ! Xn,
2) and a decoding function g : Yn ! Sk.

The source-channel code (f, g) is an (n, k, ✏)-source-channel
code if

P(Sk 6= g(Y n
)))  ✏. (14)

We refer to all codes allowable by Definition 4 as joint
source-channel codes. The asymptotic expansion for joint
source-channel codes is given by (1).

We say that (n, k, ✏)-source-channel code (f, g) is a sepa-
ration strategy if it can be expressed as a concatenation of a
source code and a channel code. That is,

f(sk) = fc(fs(s
k
)), g(yn) = gs(gc(y

n
)), (15)

for some (k,M, �1)-source code (fs, gs) and some (n,M, ✏1)-
channel code (fc, gc). Note that this construction implies,

✏ = �1 + (1� �1)✏1. (16)

The asymptotic expansion for separate source-channel coding
is given by (2).

We say that (n, k, ✏)-source-channel code (f, g) is an m-
class source-channel code if it can be expressed as a con-
catenation of an (m� 1)-class partition code together with an
(m� 1)-class UMP code. That is,

f(sk) = fump(fsp(s
k
)), g(yn) = gsp(gump(y

n
)), (17)

for some
�

(Mi)
m�1
i=1 , (�i)

m�1
i=1

�

-source partition code (fsp, gsp)
and some

�

(Mi)
m�1
i=1 , (✏i)

m�1
i=1

�

-UMP code (fump, gump) both
of which utilize the same message set M := [m�1

i=1 Mi. It
follows from this construction that

✏ =
m
X

i=1

(�i�1 � �i)✏i (18)

with �0 = 1 and ✏m = 1. We say that (n, k, ✏)-source-
channel code is an optimal JSCC if for any other (n, ˜k, ✏)-
source-channel code ˜k  k. Likewise, m-class (separation)
(n, k, ✏)-source-channel code is optimal if for any other m-
class (separation) (n, ˜k, ✏)-source-channel code ˜k  k.

Remark 2. We assume, with a small loss in generality, that
�m�1 < 1; that is, one class of source symbols receives no
error protection at all. Thus, an m-class source-channel code
only uses (m � 1) level UMP code. The remaining level of
UMP is attributed to the source symbols which are discarded
by the source encoder. Although for full generality we should
allow for the possibility of all source realizations to receive
some error protection, this restricted set up aligns well with
the separation strategy and leads to nicer overall exposition.

Remark 3. As observed in [5, Section V], there is a possibility
in separate source-channel coding of a fortuitous assignment
of likely source realization to better protected codewords.
This may lead to better source-channel coding performance
than noted in equation (16). Such theoretical caviat could be
circumvented by randomising over the common message set
M. The same considerations apply to m-class source-channel
codes presenting in this work.

III. MAIN RESULT

Theorem 1. A sequence of optimal m-class (n, k, ✏)-source-
channel codes must satisfy

nC � kH(S) = min

E
m

(✏)
max

1i<m

np
kVQ�1

(�i) +
p
nV Q�1

(✏i)
o

+O(log n) (19)

where

Em(✏) = {(✏1, �1), . . . , (✏m�1, �m�1) :

m
X

i=1

(�i�1 � �i)✏i  ✏,

1 = �0 > �1 > . . . > �m�1 > �m = 0,

0 = ✏0 < ✏1 < . . . < ✏m�1 < ✏m = 1}.
(20)

The statement of Theorem 1 can be dissected in the follow-
ing way. Fix ✏ and a finite channel block length n. Let k be



the largest source block length for which an m-class (n, k, ✏)-
source-channel code exists. Then, n and k must be such that

nC � kH(S) ' min

E
m

(✏)
max

1i<m

np
kVQ�1

(�i) +
p
nV Q�1

(✏i)
o

(21)

where ' denotes that the relationship holds approximately, up
to some correction term ✓n,k. Theorem 1 says that ✓n,k =

O(log n) and we refer to (21) as normal approximation for
m-class source-channel codes.

It is also useful to discuss the construction of an opti-
mal m-class source-channel code for fixed source and chan-
nel block lengths k and n. Per Section II, every m-class
source-channel code can be represented as a concatenation
of an

�

(Mk,i)
m�1
i=1 , (�i)

m�1
i=1

�

-source partition code and an
�

(Mn,i)
m�1
i=1 , (✏i)

m�1
i=1

�

-UMP code. Let the UMP code be fixed
and assume, without loss of generality,

✏1 < . . . < ✏m�1. (22)

Consider selection of the best
�

(Mk,i)
m�1
i=1 , (�i)

m�1
i=1

�

-source
partition code given the UMP code. It must be the case that
Mn,i = Mk,i by definition (in the case Mn,i > Mk,i it is
still possible to define a concatenation in a meaningful way,
but the resulting source-channel code clearly would not be
optimal). Next, we argue that for the given (Mk,i)

m�1
i=1 no

�

(Mk,i)
m�1
i=1 , (�i)

m�1
i=1

�

-source partition code leads to smaller
source-coding error ✏ than an optimal one (recall discussion
below Definition 3).

Indeed, suppose the source-partition code
�

{Mk,i}m�1
i=1 , fsp, gsp

�

were not optimal. Then, there
must be at least two source realizations sk1 , s

k
2 2 Sk with

PSk(sk1) > PSk(sk2) and with

fsp(s
k
1) 2 Mi, sk1 = gsp(fsp(s

k
1))

fsp(s
k
2) 2 Mj , sk2 = gsp(fsp(s

k
2)), j < i.

But, then sk2 has better error protection than sk1 and swapping
the encoding of the two source realizations would only lead
to a smaller source-channel coding error.

Finally, 2(m� 1) parameters determine the source-channel
coding error:

• the probability of all recoverable source symbols mapped
to message class Mi is given by (�i�1 � �i), with a
convention �0 = 1,

• the error protection of message class Mi is ✏i, with a
convention ✏m = 1.

From this, it is easy to observe that
m
X

i=1

(�i�1 � �i)✏i = ✏. (23)

Recalling from Definition 3 that

�1 > . . . > �m�1 (24)

holds for any
�

(Mi)
m�1
i=1 , (�i)

m�1
i=1

�

-source partition code to-
gether with (23) and (22) gives an interpretation of Em(✏) .
See Appendix A for the remainder of proof outline.
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Fig. 1. Normal approximation of rate-block length tradeoff for BMS with
bias � = 0.11 over a BSC with cross-over probability p = 0.11. This normal
approximation is for ✏ = 0.1.

Remark 4. Just like E2(✏) in (2), the set Em(✏) is symmetric
in �i’s and ✏i’s. That is,

m
X

i=1

(�i�1 � �i)✏i =
m
X

j=1

✏̃j(�̃j�1 � �̃j). (25)

with �i = ✏̃j , ✏i = �̃j and i + j = m. See Appendix B for
proof.

IV. NUMERICAL RESULTS

This section compares normal approximation (21) with
normal approximations for JSCC

nC � kH(S) '
p
nV + kVQ�1

(✏), (26)

obtained from (1), and normal approximation for separation

nC � kH(S) ' min

E2(✏)

np
kVQ�1

(�1) +
p
nV Q�1

(✏1)
o

,

(27)

obtained from (2). A procedure for solving the optimization
problem (21) is proposed and implemented.1 Numerical plots
for the Binary Symmetric Source (BMS) transmitted over the
Binary Symmetric Channel (BSC) are given in Figures 1 and 2.

A. Plots

Figure 1 plots the channel block length vs. source-channel
coding rate tradeoff. Going from a 2-class (separation) code to
a 3-class code leads to marked improvement in performance.
Figure 1 also shows that there is diminishing returns as m
grows. The performance of 25-class code is not much better
than that of 10-class code. This is to be expected since the
number of levels of UMP in the optimal JSCC actually grows
as a polynomial with block length. In a sense, m-class codes

1When we say ‘solving’ we mean, ’obtaining a reasonably good solution’.
We make not claims of optimality.
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are trying to catch up with a moving target. Nevertheless,
Figure 1 provides a visual demonstration of how m-class
source-channel codes may be viewed as a bridge between
separation strategy and optimal joint source-channel coding.

Figure 2 plots the number of classes, m, vs. source-channel
coding rate for fixed channel block length n = 1000. As the
number of classes increases, the performance of an m-class
source-channel code (as given by normal approximation (21))
approaches that of optimal JSCC (as given by normal approx-
imation (26)). We remark that the statement of Theorem 1
holds for fixed m. As such, it may not be meaningful to
consider the setting where m is on the same order as n
and so in Figure 2 we only plot the source-channel coding
rate for up to m = 200. Finally, it would be interesting to
numerically compare normal approximation with finite block
length bounds. Due to space constraints, we leave this to future
work.

B. Proposed Procedure for Solving (21)

Define source-channel coding rate ⇢ =

k
n and divide both

sides of (26) by n to obtain,

C � ⇢H(S) ⇡
r

V + ⇢V
n

Q�1
(✏). (28)

The term on the RHS of (28) is the gap between channel
capacity and source entropy needed at finite block lengths for
a JSCC with rate ⇢ and average error ✏. It goes to zero as

p
n.

Call this gap G
opt

(⇢)p
n

, that is

Gopt(⇢) =
p

V + ⇢VQ�1
(✏). (29)

Likewise, call the optimal gap for an m-class source-channel
code

Gm(⇢) = min

E
m

(✏)
max

1i<m

np
VQ�1

(�i) +
p

⇢V Q�1
(✏i)

o

(30)

where G2(⇢) gives the gap for separation. Thus, the rela-
tionship between ✏ and Gm(⇢) is given by the following
optimization problem:

minimize

m
X

i=1

(�i�1 � �i)✏i = ✏ (31)

subject to
p
V Q�1

(✏i) +
p

⇢VQ�1
(�i)  Gm(⇢),

i 2 {1, . . . ,m� 1}.

We set up a Lagrange multiplier problem

g(~�,~✏, ~µ) =
m
X

i=1

(�i�1 � �i)✏i

+

m�1
X

i=1

µi

⇣p
V Q�1

(✏i) +
p

⇢VQ�1
(�i)�Gm(⇢)

⌘

(32)

where ~� = (�1, . . . , �m�1), ~✏ = (✏1, . . . , ✏m�1), and ~µ =

(µ1, . . . , µm�1). Taking the derivatives for i 2 {1, . . . ,m�1}
with respect to �i, ✏i, µi we obtain,

d

d�i
g(~�,~✏, ~µ) = ✏i+1 � ✏i + µi

p

⇢V(Q�1
)

0
(�i) (33)

d

d✏i
g(~�,~✏, ~µ) = �i�1 � �i + µi

p
V (Q�1

)

0
(✏i) (34)

d

dµi
g(~�,~✏, ~µ) =

p
V Q�1

(✏i) +
p

⇢VQ�1
(�i)�Gm(⇢).

(35)

Setting (33), (34), and (35) to zero and solving for µi gives a
system of equations

(✏i+1 � ✏i)
p
V
�

Q�1
�0
(✏i) = (�i�1 � �i)

p

⇢V
�

Q�1
�0
(�i)
(36)

p
V Q�1

(✏i) +
p

⇢VQ�1
(�i) = Gm(⇢). (37)

Finally, we can compute,
�

Q�1
�0
(x) = �

p
2⇡e

(Q�1(x))2

2 (38)

using the chain rule and Q(x) = 1 � �(x) where �(x) is
Guassian CDF.

We solve the system of equations given by (36) and (37)
using a simple one dimensional binary search which we arrive
at via the following line of reasoning. Observe that for i =
1 (36) and (37) become,

(✏2 � ✏1)
p
V
�

Q�1
�0
(✏1) = (�0 � �1)

p

⇢V
�

Q�1
�0
(�1)
(39)

p
V Q�1

(✏1) +
p

⇢VQ�1
(�1) = Gm(⇢). (40)

However, we already know the ‘boundary condition’ �0 = 1

and thus we have two equations and three unknowns (�1, ✏1,
and ✏2). If an oracle gave us the value of ✏1 we could compute
�1 and ✏2. Moreover, the i = 2 equation would become

(✏3 � ✏2)
p
V
�

Q�1
�0
(✏2) = (�1 � �2)

p

⇢V
�

Q�1
�0
(�2)
(41)

p
V Q�1

(✏2) +
p

⇢VQ�1
(�2) = Gm(⇢) (42)



which given the knowledge of �1 and ✏2 from i = 1 equations
turns into a system of two equations and two unknowns.
Propagating through till i = m� 2 gives us all the unknown
✏i’s and �i’s. Moreover, if the oracle gave us correct value for
✏1 the i = m� 1 equation

(✏m � ✏m�1)
p
V
�

Q�1
�0
(✏m�1)

= (�m�2 � �m�1)
p

⇢V
�

Q�1
�0
(�m�1) (43)

should hold with the ‘boundary condition’ ✏m = 1 satisfied.
Thus, the problem becomes to pick the initial value ✏1 in such
a way that the boundary condition in the last equation is met.
We do so via binary search over possible values of ✏1.

One last caveat is that solving (36) and (37) numerically is
hard, and the solution is very unstable and sensitive to initial
conditions and search precision. To get a more stable solution
we approximate (36) with

(✏i+1 � ✏i)
p
V

✏i
=

(�i�1 � �i)
p
⇢V

�i
. (44)

The approximation follows from using Chernoff Bound

Q(x)  e
�x

2

2 (45)

on (38).

V. DISCUSSION

From a practical perspective, separate source-channel cod-
ing is an appealing strategy since it provides a way to decom-
pose the problem of source-channel coding into two easier
problems: source coding and channel coding. Joint source-
channel coding, on the other hand, is an appealing strategy
because it leads to the optimal tradeoff between rate and
reliability. But, as pointed out in Section I, this performance
boost comes with increased decoding complexity making joint
source-channel codes intractable. Ideally, we would like to
design source-channel codes witch are both tractable and have
close-to-optimal rate vs. reliability tradeoffs.

The main result of this work, Theorem 1, characterizes
second-order coding rate for m-class source-channel codes.
As seen in Figure 1, m-class source-channel codes bridge
the source-channel separation and JSCC approaches. In fact,
Figure 1 shows that there is a marked improvement in the rate
of m-class codes over separation with just a few additional
classes. The m-class approach also decomposes the problem of
source-channel coding into two problems: source partitioning
and UMP coding. As shown in [11], UMP codes can be
constructed from linear codes, and their decoding complexity
scales in m. In other words, the problem of m-class source-
channel coding is closely tied to UMP coding, and there is a
path towards practical implementation of both.

For the remainder of this section we address additional open
questions about m-class source-channel codes.

A. Lossy Source-Channel Coding

We conjecture that Theorem 1 generalizes to lossy source-
channel coding. That is, a sequence of optimal m-class
(n, k, ✏, d)-lossy source-channel codes should satisfy

nC�kR(d)'min

E
m

(✏)
max

1i<m

n

p

kV(d)Q�1
(�i)+

p
nV Q�1

(✏i)
o

.

(46)

By generalizing Definition 3 to lossy source coding it should
be possible to apply the construction in this work and ob-
tain (46). Unlike for lossless source coding, in the lossy setup
we do not expect to find one source-partition code which is
optimal for every �i. The key step is to show that a source-
partition code which is sufficiently good for all �i exists.

B. Optimization of normal approximation (21)

In Section IV we propose a procedure for obtaining a
good solution to the optimization problem (21). Although this
problem is not convex, it does have a lot of symmetry and
structure. We leverage this structure to reduced the numerical
optimization of (21) to a search in one dimension, with each
search step having complexity of O(m). Thus, it appears
that the complexity of our current approach scales linearly
in m. However, it is not clear how the precision of the one-
dimensional search behaves, in general. It too may scale with
m leading to a less desirable complexity of this approach. It
would be of interest to gain better analytical understanding of
the proposed procedure, or even derive alternative approaches
to the optimization of the normal approximation (21).

C. Refined Asymptotics

Other questions of interest include obtaining more refined
version of Theorem 1. The constant for the O(log n) (and
O(log k)) third order terms are generally known for both chan-
nel and source coding. As such, there is hope for characterizing
the third order term of m-class source-channel codes as well.
Another asymptotic question of interest is the behavior of m-
class source-channel codes in the regime were m is allowed to
scale in n. In that set up the more refined results of [11] may
prove to be helpful. Finally, much of the normal approximation
analysis cited here has been extended to Markov sources and
Markov channels [8], [18]. The m-class source-channel coding
results of Theorem 1 should also hold for a wider class of
sources and channels than those studied here.

APPENDIX

A. Proof Outline of Theorem 1

We begin by proving Theorem 1 for m = 2 (separation)
case. Fix ✏1 and �1 such that

(1� �1)✏1 + �1✏1  ✏. (47)

Consider an m-class (n, k, ✏)-source channel code constructed
by concatenating a (k,Mk, �1)-source code and an (n,Mn, ✏)-
channel code with Mk = Mn. From (9) and (11) we obtained

kH(S) +
p
kVQ�1

(�1) +O(log k) = nC �
p
nV Q�1

(✏1)



+O(log n). (48)

We know that k
n ! C

H(S) for a sequence of optimal codes and
O(log k) = O(log n). Rearranging we obtain

nC � kH(S) =
p
kVQ�1

(�1) +
p
nV Q�1

(✏1) +O(log n).

Optimizing over the two parameters �1 and ✏1 we recover
performance of the separation scheme

nC � kH(S) = min

E2(✏)

np
kVQ�1

(�1) +
p
nV Q�1

(✏1)
o

+O(log n). (49)

Finally, we need to be careful about the O(log k) and O(log n)
terms since those depend on �1 and ✏1 and can be potentially
unbounded for �1 and ✏1 approaching zero or one. However,
we can argue that for sufficiently large n and k the optimizing
�1 and ✏1 would be each bounded away from zero and one.
Hence, the worst case correction terms (c.f. equation (21)) still
scale as O(log n).

Now, consider an m-class source-channel code for some
arbitrary fixed number m � 2. Each m-class (n, k, ✏)-
source code can be expressed as a concatenation of
an

�

(Mk,i)
m�1
i=1 , (�i)

m�1
i=1

�

-source partition code and an
�

(Mn,i)
m�1
i=1 , (✏i)

m�1
i=1

�

-UMP code for �i’s and ✏i’s belonging
to Em(✏).

Just as above, Mk,i = Mn,i since each UMP class should
have enough codewords to accommodate each source partition.
We obtain the first equation from (13) and (7) ,

kH(S) +
p
kVQ�1

(�1) +O(log k) = nC �
p
nV Q�1

(✏1)

� log

1

�1
+O(log n).

(50)

Next, we calculate the number of source symbols in class i > 1

by applying (13) twice,

Mk,i = exp

n

kH(S) +
p
kVQ�1

(�i)
o

� exp

n

kH(S) +
p
kVQ�1

(�i�1)

o

(51)

= exp

n

kH(S) +
p
kVQ�1

(�i)
o

⇣

1� exp

np
kV(Q�1

(�i�1)�Q�1
(�i))

o⌘

. (52)

To accommodate all the elements in the ith partition with the
ith UMP class it must hold that,

kH(S) +
p
kVQ�1

(�i) + ✓k = nC �
p
nV Q�1

(✏i)� log

1

�i

where

✓k = log

⇣

1� exp

np
kV

�

Q�1
(�i�1)�Q�1

(�i)
�

o⌘

.

Taking �i =

1
m , noting that ✓k = o(log k) (follows from

Taylor expansion of log(1 � x) an the fact that Q�1
(·) is

a decreasing function), and optimizing over Em(✏) gives the
desired result. Similar to the m = 2 case, we can argue that
the dependence of third order terms on �i’s and ✏i’s is not a
problem since for sufficiently large n and k all �i’s and ✏i’s
will be bounded away from zero and one.

B. Symmetry of the error expression

To argue that constraint set Em(✏) is symmetric observe,
m
X

i=1

(�i�1 � �i)✏i =
m
X

i=1

�i�1✏i �
m
X

i=1

�i✏i (53)

=

m�1
X

i=1

�i✏i+1�
m�1
X

i=1

�i✏i+✏1=
m�1
X

i=1

�i(✏i+1�✏i)+�0(✏1�✏0)

=

m�1
X

i=0

�i(✏i+1 � ✏i) =
m
X

j=1

✏̃j(�̃j�1 � �̃j). (54)

The last line comes from relabeling �i = ✏̃j and ✏i = �̃j with
i+ j = m.
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