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Channel Model: The Parallel Gaussian Channel
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Channel Model: The Parallel Gaussian Channel

ChannelLaw (g1 =g, =...=ga = 1)
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and Z; g N(0,N;) where I € [1 : d].
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Capacity of the Parallel Gaussian Channel

m Consider a peak power constraint
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Capacity of the Parallel Gaussian Channel

m Consider a peak power constraint

d n

1

w133 rf
n =1 k=1

m Define the capacity functions

d Sy 1
C(s) = ZC <Nz> , where C(P):= 5log(l +P).
=1
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Capacity of the Parallel Gaussian Channel

m Consider a peak power constraint

d 1
Pr{;ZiX,%kgP} =1
I=1 k=1

m Define the capacity functions
d
_ st 1
C(s) = ;c <N1> . where C(P) = log(l +P).

m “Vanishing-error” capacity is given by the water-filling solution
C(P*), where P*=(P},P5,...,P))
and

d
P;=(A—-N)* and\>o0satisfies > P;=P.
=
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Capacity vs. Non-Asymptotic Fundamental Limits

m Define the non-asymptotic fundamental limit
M*(n,e,P) :=max{M € N: 3(n,M, e, P)-code}.

Maximum number of messages that can be supported by a
length-n code with peak power P and average error prob. e.
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m Capacity result can be stated as

1
lim lim inf — logM*(n, e, P) = C(P™).
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Capacity vs. Non-Asymptotic Fundamental Limits

m Define the non-asymptotic fundamental limit
M*(n,e,P) :=max{M € N: 3(n,M, e, P)-code}.

Maximum number of messages that can be supported by a
length-n code with peak power P and average error prob. e.

m Capacity result can be stated as
1
lim lim inf — log M* P) = C(P").
limlim inf  log (n,e,P) = C(P7)

m In fact, the strong converse holds, and we have

1
liminf — logM* (n,e,P) = C(P*), Vee (0,1).

n—oo n
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Strong Converse

1
€ = limsup Pgl), R = liminf — log M* (n, e, P)

n—00 n—oo n
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Second-Order Asymptotics

m Let
_ P(P+2)

0= ey
be the dispersion of the point-to-point AWGN channel.
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be the dispersion of the point-to-point AWGN channel.
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o $3(3)
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Second-Order Asymptotics

m Let
_ P(P+2)

V) =351y
be the dispersion of the point-to-point AWGN channel.
m Define the sum dispersion function to be

o $3(3)

m Then Polyanskiy (2010) and Tomamichel-T. (2015) showed that
logM*(n, e, P) = nC(P*) + /nV(P*)®~!(¢) + O(logn).

where P* = (P}, P3, ..., P}) is the optimal power allocation and
b 2
1 u
O(b) = / ex (— —) du.
)= Fexr( 3
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Feedback

m If feedback is present, then the encoder at time k has access to
message W and previous channel outputs (Y, Y2, ..., Ys1), i.€.,

X =X (W, Y, Vke[l:n.
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m If feedback is present, then the encoder at time k has access to
message W and previous channel outputs (Y, Y2, ..., Ys1), i.€.,

X =X (W, Y, Vke[l:n.
m Define the non-asymptotic fundamental limit
Mgg(n,e,P) := max{M € N: 3 (n,M, e, P)-feedback code}.

m Since feedback does not increase capacity of point-to-point
memoryless channels [Shannon (1956)],

1
lim lim inf — log M¢gg(n, e, P) = C(P¥).
n

el0 n—oo
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Feedback

m If feedback is present, then the encoder at time k has access to
message W and previous channel outputs (Y, Y2, ..., Ys1), i.€.,

X =X (W, Y, Vke[l:n.
m Define the non-asymptotic fundamental limit
Mgg(n,e,P) := max{M € N: 3 (n,M, e, P)-feedback code}.

m Since feedback does not increase capacity of point-to-point
memoryless channels [Shannon (1956)],

1
lim lim inf — log M¢gg(n, e, P) = C(P¥).

el0 n—oo n

m Natural question: What happens to the second-order terms?
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Main Result

Theorem (Fong-T. (2017))

Feedback does not affect the second-order term for parallel Gaussian
channels with feedback, i.e.,

log Mfg(n,e, P) = nC(P*) + /nV(P*)® ' (e) + o(v/n).
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Main Result

Theorem (Fong-T. (2017))

Feedback does not affect the second-order term for parallel Gaussian
channels with feedback, i.e.,

log Mfg(n,e, P) = nC(P*) + /nV(P*)® ' (e) + o(v/n).

m Recall that without feedback
log M*(n, e, P) = nC(P*) + /nV(P*)d ' () + O(logn).

m No guarantees on third-order term.
m For achievability, encoder can ignore feedback.
m Only need to prove converse part.
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Comparison to AWGN channel with feedback

m For the AWGN channel with feedback (d = 1), information density
Py (Y1)

lo
S ()

has the same distribution for all x* such that ||x*||? = nP.
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Comparison to AWGN channel with feedback

m For the AWGN channel with feedback (d = 1), information density
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py-(Y") 2N
IRCEYARD
= N +c

1 n
= N Zkak +c
k=1
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Comparison to AWGN channel with feedback

m For the AWGN channel with feedback (d = 1), information density

os Py (V') — 2 .
py-(Y") 2N
IRCEYARD
= N +c

1 n
= N Zkak +c
k=1

has the same distribution for all x* such that ||x*||? = nP.

m This spherical symmetry argument [Polyanskiy (2011, 2013) and
Fong-T. (2015)] yields

log Mgg(n, e, P) = nG(P) + /nV(P)®™ () + O(logn).
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Comparison to AWGN channel with feedback

m For the AWGN channel with feedback (d = 1), information density

os Py (V') — 2 .
py-(Y") 2N
IRCEYARD
= N +c

1 n
= N Zkak +c
k=1

has the same distribution for all x* such that ||x*||? = nP.

m This spherical symmetry argument [Polyanskiy (2011, 2013) and
Fong-T. (2015)] yields

log Mgg(n, e, P) = nG(P) + /nV(P)®™ () + O(logn).
m Symmetry argument doesn’t work for parallel Gaussians.
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Elements of Converse Proof

Want to show

log M. P) — pP*
1imsup Og FB(nNSa ) I’lC( )S

m su Y V(P! (o).
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power types
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m Apply Curtiss’ theorem to the information spectrum term for
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Elements of Converse Proof

Want to show

1imsuplogMFB(n,ff, ) — nC( )S

m su v VP 3! (e).

m Discretizing the power allocation: Turn power allocations into
power types
m Apply the meta-converse [Polyanskiy-Poor-Verdu (2010)]

m Apply Curtiss’ theorem to the information spectrum term for
close-to-optimal power types

m Apply large deviations bounds to far-from-optimal power types
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Turn Power Allocation into Types: Part |

m Given a channel input x* € R?*", define its power type to be
1
o) = = K1 112, - 2]

1 n n n
— 2 2 2
= E X1k E Xoks e E Xd k
k=1 k=1 k=1

d
eRY.
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Turn Power Allocation into Types: Part |

m Given a channel input x* € R?*", define its power type to be
1 2 2
o) = = K1 112, - 2]
1 n n n
2 2
= ; [Z_X%J” ZXZJ{, ey Zxd7k
k=1 k=1 k=1

m Create a new code such that almost surely,

d
eRY.

> Xjx=mP, forsomem € [l:n]and Vi€ [l:d|
k=1

and
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Turn Power Allocation into Types: Part Il

Power allocation vector set

d
P
S .= {n-a a=(ay,ap,...,aq) € Zﬂ,Zal:n}
=1
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Turn Power Allocation into Types: Part Il

Power allocation vector set

d
P
S .= {n-a a=(ay,ap,...,aq) € Zﬂ,Zal:n}
=1

a

(0,n)

P/n
P/n
ai

n,0)
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Turn Power Allocation into Types: Part Il

m Set of quantized power allocation vectors s with quantization level
P/n that satisfy the equality power constraint
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Turn Power Allocation into Types: Part Il

m Set of quantized power allocation vectors s with quantization level
P/n that satisfy the equality power constraint

ZS]ZP.

=1

m With the above construction, almost surely,

(X" e S,
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Turn Power Allocation into Types: Part Il

m Set of quantized power allocation vectors s with quantization level
P/n that satisfy the equality power constraint

Z s; = P.
=1
m With the above construction, almost surely,

(X" e S,

m So we can pretend that the codewords are discrete and leverage
some existing theory from second-order analysis for DMCs.
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Application of the Meta-Converse (PPV’10)

m By a relaxation of the meta-converse, for any £ > 0,

Py (Y1)
logM¢g(n,e,P) <log&—log |1 —e—Prqlog————— >log¢
gy (Y")
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Application of the Meta-Converse (PPV’10)

m By a relaxation of the meta-converse, for any £ > 0,

Pyx(Y'X")
log Mfg(n, e, P) < log&—log (l —e—Pr {1 gL > logé&

m Choose auxiliary output distribution gy» carefully.
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m By a relaxation of the meta-converse, for any £ > 0,
Pyx(Y'X")
log Mfg(n, e, P) < log&—log (l —e—Pr {1 gL > logé&

m Choose auxiliary output distribution gy. carefully.
m Inspired by Hayashi (2009), we choose

1

n
qy(¥") = 2's ,l)’ Z H/\/ (Vi3 0, 51+N1) + HN 5 0, Pr+Np)
seSt Lk Lk
4y (v") 4y (¥")
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Pyx(Y'X")
log Mfg(n, e, P) < log&—log (l —e—Pr {1 gL > logé&

m Choose auxiliary output distribution gy. carefully.
m Inspired by Hayashi (2009), we choose

1
n
qy(¥") = 2's ,l)’ Z H/\/ (Vi3 0, 51+N1) + HN 5 0, Pr+Np)
seSt Lk Lk
4y (v") 4y (¥")

] qg,,)( ™): Unif. mixture of output dist. induced by input power types
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Application of the Meta-Converse (PPV’10)

m By a relaxation of the meta-converse, for any £ > 0,

Pyx(Y'X")
log Mfg(n, e, P) < log&—log (l —e—Pr {1 gL > logé&

m Choose auxiliary output distribution gy. carefully.
m Inspired by Hayashi (2009), we choose

1
n
qy(¥") = 2's ,l)’ Z H/\/ (Vi3 0, 51+N1) + HN 5 0, Pr+Np)
seSt Lk Lk
4y (v") 4y (¥")

] qg,,)( ™): Unif. mixture of output dist. induced by input power types

[ | qg,,)( "): Capacity-achieving output dist.
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Almost-Optimal Types: Part |

Define the set of almost-optimal power types

" .= {s e s !

Is = P*||> < ,11/6}
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Almost-Optimal Types: Part |

Define the set of almost-optimal power types

" .= {s e s !

Is = P*||> < ,11/6}

Q)
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Almost-Optimal Types: Part I

m Define threshold

log & := nC(P¥) +f(\/T¢> (c+71 ) +log (2ys<")\)
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Almost-Optimal Types: Part I

m Define threshold
log ¢ := nC(P*) —i—f(W(I) (e+7 ) + log (2]8(”)0
m Contribution of information spectrum term on 11 is
{WZU‘” > ¢~ (z—:+7)}
where

—( )lek+2XlkZlk+P

d
kell:
; P*—i—Nz) [ n]

and ¢(X") € TI™,
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Almost-Optimal Types: Part I

m Define threshold
log ¢ := nC(P*) —i—f(\/ PO e+ ) + log (2]8(”)0

m Contribution of information spectrum term on 11 is

| i o 28 e )

where

—( )lek+2XlkZlk+P

d
kell:
; P*—i—Nz) [ n]

and ¢(X") € 1,
m Because of feedback, U,EP*) is not independent across time!
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Almost-Optimal Types: Part Il

m Would like to approximate the nasty {U,EP*) |k € [1:n]} with the
independent and identically distributed random variables

(B 2o
V, Z kel:n]
k 2(Pf +Ny)
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Almost-Optimal Types: Part Il

m Would like to approximate the nasty {U,EP*) |k € [1:n]} with the
independent and identically distributed random variables

(% )Z,Zk+2fz,k+Pl

P
1:

m Due to our discretization procedure and the fact that ¢(X") € T1(*)

- LN - ISy P)

lim E <—§ U ) — lim E (—E v )

wioo [P\ £k e} [e"p Vi ek
for all r € R.
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Almost-Optimal Types: Part IV

m Curtiss’ (aka Lévy’s continuity) theorem:
lim Elexp(zX,)] = lim Elexp(tY,)], VreR,
n— o0 n—o0
implies that
lim Pr{X, <a} = lim Pr{Y, <a}, VaeR.
n—o00

n—oo
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Almost-Optimal Types: Part IV

m Curtiss’ (aka Lévy’s continuity) theorem:

lim Elexp(zX,)] = lim Elexp(tY,)], VreR,
n— o0 n—o0

implies that
. _ <
nlg(r)loPr{X,, <a} nlg(r)loPr{Yn <a}, VaeR.
m Thus,
1 - "
lim Pr{ ——— S ") >0 (e +7)
n—00 nV(P*) P
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implies that
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n—o00 n—o00

m Thus,

k=1
. 1 N S B
= lim Pr{ ——— \% >0 (e +
sy { V(P ,; o2t
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n—oo

m Thus,

k=1
~ () |
= lim Pr \% >0 (e +
L e+
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Far-From-Optimal Types

m Contribution of information spectrum term on S \ 11"

NPr{;zn:U,ES) > C(P*)—C(s)}, Vs e S\

k=1
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Far-From-Optimal Types

m Contribution of information spectrum term on S \ 11"

el N o
NPr{nZUk > C(P*) C(s)}, Vs e S\ I

k=1
m Recall
SO\ 1) — {s c s

. 1
Is =Pl > i |
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Far-From-Optimal Types

m Contribution of information spectrum term on S \ 11"

zpr{iZU,@ > C(P*)—C(s)}, Vs e s\

k=1
m Recall
SO\ 1) — {s c s

. 1
Is =Pl > i |
m On this set,

C(P*) — C(s) = O <,,l11/3) .
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Far-From-Optimal Types

m Contribution of information spectrum term on S \ 11"

el N o
NPr{nZUk > C(P*) C(s)}, Vs e S\ I

k=1
m Recall
SO\ 1) — {s c s

. 1
T 1/6}
m On this set,
¥ 1
m Thus, by a standard exponential Markov inequality argument
max_ Pr {:l SuP > o) - C(s)} < exp (- 0(n'/3)).
k=1

S€SI\TT0)
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Far-From-Optimal Types

m Contribution of information spectrum term on S \ 11"

el N o
NPr{nZUk > C(P*) C(s)}, Vs e S\ I

k=1
m Recall
SO\ 1) — {s c s

. 1
Is =Pl > i |
m On this set,
N 1

m Thus, by a standard exponential Markov inequality argument

max Pr {:l 2”: U,Es) > C(P") — C(s)} <exp(— 0(n1/3)).
k=1

S€SI\TT0)

m Polynomially many power types.
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Wrap-Up and Future Work

m For parallel Gaussian channels with feedback,

log Mig(n, e, P) = nC(P*) + /nV(P*)® ! () + o(v/n).
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Wrap-Up and Future Work

m For parallel Gaussian channels with feedback,
log Mg (n, &, P) = nG(P*) + v/nV(P*)® () + o(V/n).

m Careful quantization of power allocation vector into power types
m Bounding main information spectrum term using Curtiss’ theorem
m For third-order, need speed of convergence, i.e.,

sup [E[exp(,)] ~ Efexp(1¥,)]| < f(n). ~ for some f(n) = o(1).

do we have

sup |Pr{X, < a} — Pr{Y, <a}| < g(n), forsome desirable g(n)?
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Wrap-Up and Future Work

m For parallel Gaussian channels with feedback,

log Mig(n, e, P) = nC(P*) + /nV(P*)® ! () + o(v/n).

m Careful quantization of power allocation vector into power types
m Bounding main information spectrum term using Curtiss’ theorem
m For third-order, need speed of convergence, i.e.,

sup [E[exp(,)] ~ Efexp(1¥,)]| < f(n). ~ for some f(n) = o(1).

do we have

sup |Pr{X, < a} — Pr{Y, <a}| < g(n), forsome desirable g(n)?
acR

m Esséen smoothing lemma? Stein’s method?
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Coding Rate of the Parallel Gaussian
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Abstract—This paper investigates the asymptotic expansion
for the maximum rate of fixed-length codes over a parallel
Gaussian channel with feedback under the following setting: a
peak power constraint is imposed on every transmitted codeword,
and the average error probabilities of decoding the transmitted
‘message are non-vanishing as the blocklength increases. The main

where {Z¢4},c. are independent Gaussian noises. For each
¢ € L, the variance of the noise induced by the £ channel
is assumed to be some positive number Ny > 0 for all
channel uses, ie., Var[Z;x] = N for all k € N. To keep
notation compact, let Xz, ¥, and Z; denote the random

contribution of this paper is a self-contained proof of an upper column vectors [X1x X2k ... Xzl [Yik Yok ... Yoil'
bound on the first- and second-order asymptotics of the parallel and [Z, ¢ Zox ... Zz)' respectively. Then, the channel
Gaussian channel with feedback. The proof techniques involve 1,/ (1) can be written as

developing an information spectrum bound followed by using
Curtiss’ theorem to show that a sum of dependent random vari-
ables associated with the information spectrum bound converges
in distribution to a sum of independent random variables, thus
facilitating the use of the usual central limit theorem. Combined
with existing achievability results, our result implies that the
presence of feedback does not improve the first- and second-
order asymptotics.

Index Terms—Curtiss’ theorem, feedback, fixed-length codes,
= A

Yi=Xi+Z @

Throughout this paper, we consider fixed-length codes over

the parallel Gaussian channel, where the block length is

denoted by n unless specified otherwise. Every codeword X"

transmitted by the source over n channel uses is subject to the

following peak power constraint where P > 0 denotes the
issible power for X":

parallel Gaussian channel, d:
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The Department of Electrical and Computer Engineering (ECE) at the National University of Singapore is offering
positions for postdoctoral fellows who will work in information theory, machine learning and their intersection.

The Department of Electrical and Computer Engineering (ECE) at the National University of Singapore (NUS) is of-
fering positions for postdoctoral fellows who will work closely with Dr. Vince at the intersection of informa-
tion theory, statistical signal processing, and machine learning. Some sampletop\cs inclu
+ Fundamental performance limits (and algorithms) for dictionary learning (e.g., matrix factorization),

ranking, and deep learning architectures;

+ Learning in the presence of privacy constraints;
+ Learning in the large alphabet regime;
- Learning of graphical models and other statistical models.

‘Working in traditional topics in Shannon's information theory of interest to the Pl will also be highly encouraged.
Some sample topics include:
- Multi-user information theory;

- Strong converse and second-order asymptotics;
+ Error exponent analysis and the method of types;

+ Information-theoretic security;
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