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Motivation

@ Given a set of n i.i.d. samples drawn from P, a tree distribution.
@ Maximum-Likelihood (ML) learning of the structure.
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e decay exponentially with n?
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Motivation

@ Given a set of n i.i.d. samples drawn from P, a tree distribution.
@ Maximum-Likelihood (ML) learning of the structure.

@ Large-Deviation analysis of the error in learning of the set of
edges or the structure.

@ Questions:

@ When does the error probability

e decay exponentially with n?

@ What is the exact rate of decay of the
exp(-n Rate) probability of error?

© How does the rate (error exponent)
depend on the parameters of the
distribution?
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Main Results

@ Almost every (true) tree distribution results in exponential decay.

@ Quantify the exact rate of decay for a given P.
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Main Results

@ Almost every (true) tree distribution results in exponential decay.
@ Quantify the exact rate of decay for a given P.

@ Rate of decay ~ SNR for learning (Intuitively appealing).
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Notation and Background

@ Assume we have a set of samples x" = {xj, x,,
drawn i.i.d. from P € P(Xx?), where X is a finite set.

.,X,} each
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Notation and Background

@ Assume we have a set of samples x" = {x;,x,,...,X,} each
drawn i.i.d. from P € P(Xx9), where X is a finite set.

@ x=(x1,...,x9) € X9,

@ Vertex set: V:= {1,...,d}. Edge set: & C (%).

4117 Vincent Tan (MIT) Large-Deviations for Learning Trees ISIT 4/17



Notation and Background

@ Assume we have a set of samples x" = {x;,x,,...,X,} each
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@ x=(x1,...,x9) € X9,
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@ P(x)is MarkovonTp = (V,&p), a
tree.

@ P(x) factorizes according to Tp.

@ Example for P with d = 4.
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Notation and Background

@ Assume we have a set of samples x" = {x;,x,,...,X,} each
drawn i.i.d. from P € P(Xx9), where X is a finite set.

@ x=(x1,...,x9) € X9,

@ Vertex set: V:= {1,...,d}. Edge set: & C (%).

@ P(x)is Markovon Tp = (V,&p),a 3 L2
tree.

@ P(x) factorizes according to Tp. o

@ Example for P with d = 4. T4

Pio(x1,x2) “ Pi3(x1,x3) _ Pra(xi,xs)
Pi(x1) Py(x1) Pi(x1)

P(X) = Pl(xl) X
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ML Learning of Tree Distribution (Chow-Liu) |

5/17 Vincent Tan (MIT) Large-Deviations for Learning Trees



ML Learning of Tree Distribution (Chow-Liu) |

@ Solve the ML problem given x" = {x;,x2,...,X,}

Py = argmax log Q"(x").
Q€Trees
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ML Learning of Tree Distribution (Chow-Liu) |

@ Solve the ML problem given x" = {x;,x2,...,X,}

Py = argmax log Q"(x").
Q€Trees

@ P(x) = Py:(x): the empirical distribution of x".
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ML Learning of Tree Distribution (Chow-Liu) |

@ Solve the ML problem given x" = {x;,xa,...,X,}

Py = argmax log Q"(x").
Q€Trees

(x) = Py (x): the empirical distribution of x".

o P
° P,

the pairwise marginal of P on edge e = (i, ).
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ML Learning of Tree Distribution (Chow-Liu) |

@ Solve the ML problem given x" = {x;,xa,...,X,}

Py = argmax log Q"(x").
Q€Trees

@ P(x) = Py:(x): the empirical distribution of x".
@ P,: the pairwise marginal of P on edge e = (i, ).
@ Reduces to a max-weight spanning tree problem (Chow-Liu 1968)

Ew. = argmax I(P,),
- Eo : O€Trees Z ‘

eESQ
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ML Learning of Tree Distribution (Chow-Liu) |

@ Solve the ML problem given x" = {x;,xa,...,X,}

Py = argmax log Q"(x").
Q€Trees

@ P(x) = Py:(x): the empirical distribution of x".
@ P,: the pairwise marginal of P on edge e = (i, ).
@ Reduces to a max-weight spanning tree problem (Chow-Liu 1968)

R _ _ By (xx;
EML = argmax Z I(Pe), I(Pe) = ZPiJ(xi7xj) log /\1‘1(71-1)

Ep : Q€Trees €€ i Pi(xi)Pj(xj)

e Samples = {I(P.) : e € (%)} = max-weight spanning tree.
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ML Learning of Tree Distribution (Chow-Liu) Il

Vincent Tan (MIT) Large-Deviations for Learning Trees



ML Learning of Tree Distribution (Chow-Liu) Il

True MIs {I(P,)} Max-weight spanning tree &p

Vincent Tan (MIT) Large-Deviations for Learning Trees



ML Learning of Tree Distribution (Chow-Liu) Il

True MIs {I(P,)} Max-weight spanning tree &p
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ML Learning of Tree Distribution (Chow-Liu) Il

I3 Q

True MIs {I(P,)}

Empirical Mls {1(136)} from x* Max-weight spanning tree &, # Ep
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Problem Statement
@ Define &, to be the ML edge set and the error event to be:

{&w # Ep}.
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Problem Statement
@ Define &, to be the ML edge set and the error event to be:

{&w # Ep}.

Ty

@ Find the error exponent Kp:

. 1
Kp := lim ——logP ({&u # Ep}) -

n—oo n
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Problem Statement
@ Define &, to be the ML edge set and the error event to be:

{&w # Ep}.

@ Find the error exponent Kp:

. 1
Kp := lim ——logP ({&u # Ep}) -

n—oo n

@ Alternatively, P ({&w. # Ep}) = exp(—nKp).
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Problem Statement
@ Define &, to be the ML edge set and the error event to be:

{&w # Ep}.

@ Find the error exponent Kp:

. 1
Kp := lim - logP ({&w # Ep}) -

n—oo

@ Alternatively, P ({&w. # Ep}) = exp(—nKp).

@ Easier to consider crossover events first.
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The Crossover Rate |
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The Crossover Rate |

Given two node pairs e, ¢’ € (¥) with distribution P, .- € P(X*), s.t.

I(Pe) >I(Pe’)'
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The Crossover Rate |

Given two node pairs e, ¢’ € (%) with distribution P, ,, € P(X*), s.t

1(P.) > I(Py).

Consider the crossover event of the empirical mutual informations

{1(P) <1(P)}.
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The Crossover Rate |

Given two node pairs e, ¢’ € (¥) with distribution P, , € P(X*), s.t.
I(P,) > I(Py).
Consider the crossover event of the empirical mutual informations
{1(P.) <1(Py)}.

Def: Crossover Rate

Jeor = lim —1log]P’({ ( )<I(13 )})

n—oo
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The Crossover Rate |

Given two node pairs e, ¢’ € (¥) with distribution P, , € P(X*), s.t.

I(P,) > I(P,).
Consider the crossover event of the empirical mutual informations
{I(P,) <I(P,)}.

Def: Crossover Rate

Joor = nlggo—llog]P’({ 1(P,) < I(?’e/)}).

This event may potentially lead to an error in structure learning. Why?
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The Crossover Rate |l

Theorem
The crossover rate for empirical mutual informations is

Jeo = min {D(QI|Pee) : [(Qe) = 1(Qe) }-

QeP(Xx4)
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The Crossover Rate |l

Theorem
The crossover rate for empirical mutual informations is

Jew = min, {D(QI|Peer) :1(Q0) = 1(Q0)}.

Pe,e’

@ Sanov’s Theorem and The

D(Q; /[|Pe.er) Contraction Principle.

ee!

1(0.)=1(0u)} @ Exact but not very intuitive.

@ Non-Convex.
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The Crossover Rate Ill

@ Euclidean Information Theory [Borade & Zheng '08]:

1
o~P = DQIP) ~ Sllo-Plp
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The Crossover Rate Ill

@ Euclidean Information Theory [Borade & Zheng ’08]:

1
o~P = DQIP) ~ 5[0~ Pl;

@ Def: Very noisy learning condition on P,

Pe %Pe/ =
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The Crossover Rate Ill

@ Euclidean Information Theory [Borade & Zheng ’08]:

1
o~P = DQIP) ~ 5[0~ Pl;

@ Def: Very noisy learning condition on P,

Po~Py =  I(P)~IPy).
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The Crossover Rate Ill

@ Euclidean Information Theory [Borade & Zheng ’08]:

1
o~P = DQIP) ~ 5[0~ Pl;

@ Def: Very noisy learning condition on P,

P.~Py, =  I(P)~IPy).

@ Def: Given a P, = P;; the information density function is

v (xi,xj) S X2,
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The Crossover Rate IV

Joo = lim —llogIF’({ 1(P.) < I(P, )})

n—oo
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The Crossover Rate IV

Jeor = lim —1log]P’({ ( )<I(13 )})

n—oo

Theorem
The approximate crossover rate is:

7 , — (I(Pe’)_I(Pe))z
“e 2 Var(sy — o)

Signal-to-noise ratio for structure learning.

SNR — ( mean )2

stddev
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The Crossover Rate V

Convexifying the optimization problem by linearizing the constraints.
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The Crossover Rate V

Convexifying the optimization problem by linearizing the constraints.

Pe,e’
%HQ:,el —Peer HJZDM/

Q: e/ Q(Pe,e’)

)
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The Crossover Rate V

Convexifying the optimization problem by linearizing the constraints.

Pe,e’
%HQ:,el —Peer HJZDM/
Q: o/ Q(Pe,e’)

Non-Convex problem becomes a Least-Squares problem.
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The Crossover Rate V

How good is the approximation? We consider a binary model.

0.025 T T
=—3— True Rate
—H— Approx Rate
0.02 q

0015
v

e

Rate J

0.01

0.005

0.01 0.02 0.03 0.04 0.05 0.06 0.07
1P )-1P,)
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Error Exponent for Structure Learning |

@ We have characterized the rate for the crossover event

~ ~

{I(Pe) < I(Pe/)} . We called the rate J, ..
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Error Exponent for Structure Learning |

@ We have characterized the rate for the crossover event

~ ~

{I(Pe) < I(Pe/)} . We called the rate /..

Crossovers ~ ~
= {(P.) <I1(P.)}
Error < {&w # Ep}
Event
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Error Exponent for Structure Learning |

@ We have characterized the rate for the crossover event

~ ~

{I(Pe) < I(Pe/)} . We called the rate J, ..

Crossovers ~ ~
= {(P.) <I1(P.)}
Error = {&w # Ep}
Event

@ How to relate this to K, the overall error exponent?

P({&w # Ep}) = exp(—nKp)
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Error Exponent for Structure Learning Il

Theorem

Kp = min min Jeeo | -
e'¢Ep \ecPath(e’;Ep)
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Error Exponent for Structure Learning Il

Theorem

Kp = min min Jeeo | -
e'¢Ep \ecPath(e’;Ep)
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Positivity of the Error Exponent

Theorem
The following statements are equivalent:

(a) The error probability decays exponentially i.e.,

Kp > 0.

(b) Tp is a spanning tree, i.e., not a proper forest.
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Conclusions

@ Goal: Find the rate of decay of the probability of error:

. 1
Kp := n]l)l’go —’; IOgP ({8ML ?é SP}) .

@ Employed tools from Large-Deviation theory and basic properties
of trees.
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Conclusions

@ Goal: Find the rate of decay of the probability of error:

) 1
Kp := lim ——logP ({& # Ep}).

n—oo n

@ Employed tools from Large-Deviation theory and basic properties
of trees.

@ Found the dominant error tree that relates crossover events to
overall error event.

@ Used Euclidean Information Theory to obtain an intuitive
signal-to-noise ratio expression for the crossover rate.

@ More details available on arXiv (http://arxiv.org/abs/0905.0940).
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