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Motivation

Given a set of n i.i.d. samples drawn from P, a tree distribution.

Maximum-Likelihood (ML) learning of the structure.

Large-Deviation analysis of the error in learning of the set of
edges or the structure.

Questions:
1 When does the error probability

decay exponentially with n?

2 What is the exact rate of decay of the
probability of error?

3 How does the rate (error exponent)
depend on the parameters of the
distribution?
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Main Results

Almost every (true) tree distribution results in exponential decay.

Quantify the exact rate of decay for a given P.

Rate of decay ≈ SNR for learning (Intuitively appealing).
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Notation and Background

Assume we have a set of samples xn = {x1, x2, . . . , xn} each
drawn i.i.d. from P ∈ P(X d), where X is a finite set.

x = (x1, . . . , xd) ∈ X d.

Vertex set: V := {1, . . . , d}. Edge set: EP ⊂
(V

2

)
.

P(x) is Markov on TP = (V, EP), a
tree.

P(x) factorizes according to TP.

Example for P with d = 4.

P(x) = P1(x1)×
P1,2(x1, x2)

P1(x1)
× P1,3(x1, x3)

P1(x1)
× P1,4(x1, x4)

P1(x1)
.
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ML Learning of Tree Distribution (Chow-Liu) I

Solve the ML problem given xn = {x1, x2, . . . , xn}

PML = argmax
Q∈Trees

log Qn(xn).

P̂(x) = P̂xn(x): the empirical distribution of xn.

P̂e: the pairwise marginal of P̂ on edge e = (i, j).

Reduces to a max-weight spanning tree problem (Chow-Liu 1968)

EML = argmax
EQ : Q∈Trees

∑
e∈EQ

I(P̂e), I(P̂e) :=
∑
xi,xj

P̂i,j(xi, xj) log
P̂i,j(xi, xj)

P̂i(xi)P̂j(xj)
.

Samples⇒ {I(P̂e) : e ∈
(V

2

)
} ⇒ max-weight spanning tree.
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ML Learning of Tree Distribution (Chow-Liu) II

True MIs {I(Pe)} Max-weight spanning tree EP

Empirical MIs {I(P̂e)} from xn Max-weight spanning tree EML 6= EP
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Problem Statement
Define EML to be the ML edge set and the error event to be:

{EML 6= EP} .

Find the error exponent KP:

KP := lim
n→∞

−1
n

log P ({EML 6= EP}) .

Alternatively, P ({EML 6= EP})
.= exp(−nKP).

Easier to consider crossover events first.
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The Crossover Rate I

Given two node pairs e, e′ ∈
(V

2

)
with distribution Pe,e′ ∈ P(X 4), s.t.

I(Pe) > I(Pe′).

Consider the crossover event of the empirical mutual informations

{I(P̂e) ≤ I(P̂e′)}.

Def: Crossover Rate

Je,e′ := lim
n→∞

−1
n

log P
({

I(P̂e) ≤ I(P̂e′)
})

.

This event may potentially lead to an error in structure learning. Why?
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The Crossover Rate II

Theorem
The crossover rate for empirical mutual informations is

Je,e′ = min
Q∈P(X 4)

{
D(Q ||Pe,e′) : I(Qe′) = I(Qe)

}
.

v

v
Pe,e′

Q∗e,e′
{I(Qe)= I(Qe′)}

D(Q∗e,e′ ||Pe,e′)
Sanov’s Theorem and The
Contraction Principle.

Exact but not very intuitive.

Non-Convex.
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The Crossover Rate III

Euclidean Information Theory [Borade & Zheng ’08]:

Q ≈ P ⇒ D(Q ||P) ≈ 1
2
‖Q− P‖2

P

Def: Very noisy learning condition on Pe,e′

Pe ≈ Pe′ ⇒ I(Pe) ≈ I(Pe′).

Def: Given a Pe = Pi,j the information density function is

se(xi, xj) := log
Pi,j(xi, xj)

Pi(xi)Pj(xj)
, ∀ (xi, xj) ∈ X 2.
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The Crossover Rate IV

Je,e′ := lim
n→∞

−1
n

log P
({

I(P̂e) ≤ I(P̂e′)
})

.

Theorem
The approximate crossover rate is:

J̃e,e′ =
(I(Pe′)− I(Pe))2

2 Var(se′ − se)
.

Signal-to-noise ratio for structure learning.

SNR =
( mean

stddev

)2
.
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The Crossover Rate V

Convexifying the optimization problem by linearizing the constraints.

v

v
Pe,e′

Q∗e,e′
{I(Qe)= I(Qe′)}

D(Q∗e,e′ ||Pe,e′)
v

v

Pe,e′

Q∗e,e′ Q(Pe,e′)

1
2‖Q

∗
e,e′−Pe,e′‖2

Pe,e′

Non-Convex problem becomes a Least-Squares problem.
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The Crossover Rate V
How good is the approximation? We consider a binary model.
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Error Exponent for Structure Learning I

We have characterized the rate for the crossover event{
I(P̂e) ≤ I(P̂e′)

}
. We called the rate Je,e′ .

Crossovers

Error
Event

�

{I(P̂e) ≤ I(P̂e′)}�

{EML 6= EP}

How to relate this to KP, the overall error exponent?

P ({EML 6= EP})
.= exp(−nKP)
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Error Exponent for Structure Learning II

Theorem

KP = min
e′ /∈EP

(
min

e∈Path(e′;EP)
Je,e′

)
.
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Positivity of the Error Exponent

Theorem
The following statements are equivalent:

(a) The error probability decays exponentially i.e.,

KP > 0.

(b) TP is a spanning tree, i.e., not a proper forest.
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Conclusions

Goal: Find the rate of decay of the probability of error:

KP := lim
n→∞

−1
n

log P ({EML 6= EP}) .

Employed tools from Large-Deviation theory and basic properties
of trees.

Found the dominant error tree that relates crossover events to
overall error event.

Used Euclidean Information Theory to obtain an intuitive
signal-to-noise ratio expression for the crossover rate.

More details available on arXiv (http://arxiv.org/abs/0905.0940).
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