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Abstract—We study the (almost lossless) joint source-channel
coding problem from the moderate deviations perspective where
the bandwidth expansion ratio tends towards the ratio of the
channel capacity and source entropy at a rate larger than n−1/2

(n being the channel blocklength) and the error probability
decays subexponentially. We consider the stationary ergodic
Markov (SEM) source as well as discrete memoryless and additive
SEM channels. We also discuss the loss due to separation in the
moderate deviations setting.

I. INTRODUCTION

We study the (almost lossless) joint source-channel coding
(JSCC) problem in which a source of block length k is
transmitted over a channel using a code of blocklength n.
The study of JSCC has a long history, and here we only
refer to literatures that are directly related to our work.
For the discrete memoryless source (DMS) and the discrete
memoryless channel (DMC), Gallager derived an achievable
bound for the error exponent [1, Prob. 5.16]. In [2], Csiszár
derived an alternative achievable bound for the error exponent,
and he also derived a converse bound for the error exponent.
Csiszár’s bounds were shown to be tight when a certain rate is
above the critical rate of the DMC. Zhong-Alajaji-Campbell
derived an achievable bound and a converse bound for the
error exponent in the DMS and DMC case [3] and for the
stationary ergodic Markov (SEM) source and the additive SEM
noise channel [4]. They also compared their exponents to the
tandem setting, i.e. when source and channel coding are done
separately. They showed that the error exponent for JSCC EJ,
while generally larger than the error exponent in the tandem
setting ET, does not exceed 2ET.

The error exponent is the central object of study in the
so-called large deviation (LD) regime. Other than the LD
regime, the second- and third-order regime have also been
attracting attention in information theory lately [5]–[8]. For
DMS and DMC, Wang-Ingber-Kochman [9] and Kostina-
Verdú [10] derived the second-order result of JSCC.1 Their
result states that a JSCC code with error probability smaller
than ε exists if and only if the bandwidth expansion ratio
satisfies

k

n
=
C(W)

H(PS)
−
√
V (W, PS)

n
Q−1(ε) +O

(
log n

n

)
, (1)

where V (W, PS) is the JSC dispersion defined later.

1In fact, they also derived the result for lossy JSCC.

In this paper, we study the moderate deviation (MD) regime
of JSCC, i.e., the bandwidth expansion ratio behaves like

rn :=
k

n
=
C(W)

H(PS)
− εn (2)

for some εn that vanishes slower than n−1/2. We consider
SEM source and both DMC or the additive SEM channel.
The reason to study the MD regime is clear. In communi-
cation systems, we want to maximize rn so that it reaches
its fundamental limit C(W)/H(PS) and minimize the error
probability at the same time. In the second-order studies (1)
the error probability ε is bounded away from zero while
in the LD regime, lim supn→∞ rn is bounded away from
C(W)/H(PS).

The MD regime interpolates between the LD and second-
order regimes, and has been studied for several information-
theoretic problems. Altuğ-Wagner studied MD for the channel
coding of DMCs with positive2 entries [11]. This was subse-
quently extended by Polyanskiy-Verdú to general DMCs [12].
He et al. [13] and Kuzuoka [14] studied MD for Slepian-Wolf
coding. Sason studied MD for hypothesis testing [15]. One of
the authors studied MD of lossy source coding for DMS and
Gaussian sources [16]. The other authors studied MD of source
coding for SEM and channel coding for additive SEM [17].

One of difficulties in MD analysis is that the error probabil-
ity may converge to zero very slowly and thus the standard ar-
guments of the method of type does not work since polynomial
factors of the blocklength cannot be ignored. Our converse
proof is based on Csiszár’s idea to split the JSCC error
probability into the source and channel error probabilities [2,
Lem. 2]. Although we use the method of (Markov) types [18],
[19], we need a delicate argument to avoid the aforementioned
difficulty, which is one of technical contributions of this paper
(cf. Sec. IV-C for details).

The rest of the paper is organized as follows: we introduce
the problem setup in Sec. II. The main results and their proofs
are given in Sec. III and Sec. IV respectively. Sec. V discusses
the loss due to a separation (or tandem [3], [4]) coding scheme.
We conclude in Sec. VI and discuss future work.

II. PROBLEM SETUP AND DEFINITIONS

Let X ,Y and S be finite alphabets. We consider throughout
this paper a communication system with transmission rate (or

2In the full paper version of [11], the positivity condition was removed.



bandwidth expansion ratio) rn in source symbols per channel
use. This consists of a source represented by k-dimensional
distributions PS = {PSk ∈ P(Sk)}∞k=1 and a discrete channel
represented by a sequence of n-dimensional transition matrices
W = {Wn : Xn → Yn}∞n=1 where rn := k/n. A (k, n)-joint
source-channel (JSC) code consists of an encoder fk : Sk →
Xn and a decoder ϕn : Yn → Sk. The error probability of a
JSC code (fk, ϕn) is given by

e(fk, ϕn) :=
∑
s∈Sk

PSk(s)Wn(Yn \ ϕ−1
n (s) | fk(s)). (3)

The minimum error probability over all (k, n)-JSC codes is
denoted as e(f∗k , ϕ

∗
n).

We consider two different models for the channel. First,
we assume that W is a DMC with positive capacity and
dispersion. In this case, Wn(y|x) =

∏n
i=1W (yi|xi). Second,

we assume that W represents a discrete channel with additive
noise in which case X = Y = {0, 1, . . . , B − 1} and the
noise, with alphabet Z = X , is represented by n-dimensional
distributions PZ = {PZn ∈ P(Zn)}∞n=1 such that

Yi = Xi ⊕ Zi (mod B). (4)

We assume that PZ represents SEM noise as described and
analyzed in [4]. In particular, for any tuple z ∈ Zn, we have

PZn(zn) = PZ1(z1)

n∏
i=2

ΓZ(zi|zi−1) (5)

for some initial distribution PZ1 and transition distribution ΓZ
which is assumed to be irreducible. We call this the additive
SEM channel. Let P̃Z be the stationary distribution of PZ. For
PS, we assume it is a discrete SEM source with stationary
distribution P̃S and the transition matrix ΓS is also positive
everywhere. This subsumes the case where PS is a discrete
memoryless source (DMS).

We now define several information quantities. For
a SEM source PS, its entropy rate is H(PS) :=∑
s′ P̃ (s′)

∑
s ΓS(s|s′) log 1

ΓS(s|s′) [20, Thm. 4.2.4], where
P̃ is the stationary distribution of the transition matrix ΓS .
For transition matrix ΓS(s|s′) and parameter θ ∈ (−1,∞),
we introduce the tilted matrix ΓS,θ(s|s′) = ΓS(s|s′)1+θ.
Then, the normalized (in the sense of probability) eigenvector
corresponding to the Perron-Frobenius eigenvalue [21] of ΓS,θ
is denoted as {P̃S,θ(s)}s∈S . The Rényi entropy rate is given
by

H1+θ(PS) = −1

θ
log
∑
s,s′

P̃S,θ(s
′)ΓS,θ(s|s′). (6)

The dispersion of the SEM source is defined as V (PS) :=

limθ→0
2[H(PS)−H1+θ(PS)]

θ [17, Eq. (20) and Thm. 14], which
is assumed to be positive. Note that in the special case that
the source is a DMS [5], V (PS) = Var(− logPS(S)).

For a DMC W : X → Y , the channel capacity is
C(W) := maxP I(P,W ) and the channel dispersion [6],
[7] is V (W) := min

∑
x P
∗(x)Var

(
log W (·|x)

P∗W (·)
)
, where the

minimum is taken over all capacity-achieving input distribu-
tion P ∗. For an additive SEM channel with PZ, the capac-
ity [4] is C(W) = logB − H(PZ) and the dispersion is
V (W) = V (PZ) [17, Thm. 54].

For the MD regime, we assume that rn converges to the
asymptotic limit C(W)/H(PS) as in (2). Furthermore, the
backoff sequence εn satisfies the two conditions

lim
n→∞

εn = 0, lim
n→∞

nε2n =∞. (7)

This setting “interpolates” between the LD (error exponent)
regime [2]–[4] where εn is a constant and the central limit (or
second-order) regime [9], [10] where εn = an−1/2 for a ∈ R.

III. MAIN RESULTS

Let us define a fundamental quantity before stating our main
theorem. If the source has entropy rate H(PS) and dispersion
V (PS) and the channel has capacity C(W) and dispersion
V (W), define the JSC dispersion

V (W, PS) :=
1

H(PS)2

[
V (W) +

C(W)

H(PS)
V (PS)

]
. (8)

Theorem 1 (Moderate Deviations for JSC Coding). Let PS be
a SEM source and W be either a DMC (under the assumptions
in Sec. II) or an additive SEM. Then,

lim
n→∞

− 1

nε2n
log e(f∗k , ϕ

∗
n) =

1

2V (W, PS)
(9)

IV. PROOF OF THEOREM 1

We first consider the case where W is a DMC. Subse-
quently, we make the necessary changes to handle the case
when W is an additive SEM channel. Finally, we provide
some remarks concerning the proof.

A. Channel is a DMC

Direct Part: Define Gallager’s channel function [1,
Sec. 5.4] for the DMC W : X → Y as

Eo(τ, P,W ) := − log
∑
x

P (x)

(∑
y

W (y|x)
1

1+τ

)1+τ

,

(10)
where 0 ≤ τ ≤ 1 and P ∈ P(X ). Then [1, Prob. 5.16] tells
us that there exists a (k, n)-JSC code (fk, ϕn) whose error
probability e(fk, ϕn) is upper bounded by( ∑

s∈Sk
PSk(s)

1
1+τ

)1+τ ∑
y∈Yn

( ∑
x∈Xn

Pn(x)Wn(y|x)
1

1+τ

)1+τ

(11)
for any 0 ≤ τ ≤ 1 and P ∈ P(X ). Using the reparametrization
τ = −θ

1+θ for the source term and the approximation of
the Rényi entropy [17, Lem. 5], we see that (11) can be
overbounded by

exp

(
−(k − 1)θH1+θ(PS)− δ(θ)

1 + θ

)
exp

(
− nEo(τ, P,W )

)
(12)

where H1+θ(PS) is defined in (6) and δ(θ) is a constant that
does not depend on n. We know that by Taylor expanding



θ 7→ θH1+θ(PS) and τ 7→ Eo(τ, P,W ) in the neighborhood
of θ, τ = 0 that

θH1+θ(PS) = θH(PS)− θ2

2
V (PS) +O(θ3), (13)

Eo(τ, P,W ) = τI(P,W )− τ2

2
V (P,W ) +O(τ3). (14)

The first Taylor expansion is by [17, Eqs. (19) and (20)] and
the second by [11, Lem. 2.1]. We now set P to be capacity-
achieving, meaning that I(P,W ) = C(W) and V (P,W ) =
V (W). Plugging these expansions into the exponent in (12),
using the rate relation in (2) and the fact that τ = −θ

1+θ , we
obtain

e(fk, ϕn) ≤ exp

(
− n

[
− τ2

2

(
V (W) +

C(W)

H(PS)
V (PS)

)
+ εnτH(PS) +

εnτ
2

2
V (PS) +O(τ3)

])
. (15)

Now we set τ to be

τ :=
εnH(PS)

V (W) + C(W)
H(PS)V (PS)

(16)

which is in [0, 1] for large enough n. Uniting (15)–(16) yields

e(fk, ϕn) ≤ exp

(
− n

[ ε2n
2V (W, PS)

+O(ε3n)
])
. (17)

By taking the logarithm and normalizing by −nε2n, we obtain

lim inf
n→∞

− 1

nε2n
log e(fk, ϕn) ≥ 1

2V (W, PS)
, (18)

which completes the proof of the direct part.
Converse Part: For the converse, we make use of the

method of types for Markov sources [18], [19]. For a string
s ∈ Sk, let kij(s) be the number of transitions from i ∈ S
to j ∈ S in s with the cyclic convention that s1 follows sk.
The matrix [kij(s)/k]i,j∈S is called the Markov type of s.
The set of all Markov types formed from length-k sequences
is denoted as P(2)

k (S). Let T kP be the set of all length-k
sequences with Markov type P , i.e. the Markov type class.
We may further partition T kP into the following subsets:

T kP (i, j) :=
{
s = (s1, . . . , sk) ∈ T kP : s1 = i, sk = j

}
. (19)

All sequences in a given subset are equiprobable under the
SEM source PSk .

We define for some R > 0 to be specified later,

P(2)
k (S;R) :=

{
(i, j, P )∈S2×P(2)

k (S) : |T kP (i, j)|≤2kR
}
.

(20)
Let P∗e(M ;PS) to be the error probability of the optimal
source code of size smaller than or equal to M for source PS .
We have the following lemma which is proven in Appendix A.

Lemma 2. We have

P∗e

(
|S|2(k + 1)|S|

2

2kR;PSk
)

≤
∑

(i,j,P )/∈P(2)
k (S;R):T kP (i,j)6=∅

∑
s̃∈T kP (i,j)

PSk(s̃). (21)

Let P∗e(M ;W ) to be the average error probability of the
optimal channel code of size larger than or equal to M for
channel W . By using Lemma 2, we have the following lemma
which says that the JSC error can be decomposed into a source
and channel error. See Appendix B for the proof.

Lemma 3. For any R ≥ 0, we have

e(f∗k , ϕ
∗
n) ≥ P∗e

(
|S|2(k + 1)|S|

2

2kR;PSk
)
· P∗e

(
2kR;Wn

)
.

(22)

Now we can lower bound the error probabilities of source
coding and channel coding separately. From the MD result for
single-terminal almost lossless source coding [17, Thm. 13],
we have the following:

Lemma 4. Let H(PS) be the entropy rate of the Markov
chain. Let R := H(PS) + δεn for some δ > 0. For arbitrarily
small ξ > 0 and sufficiently large n, we have3

− log P∗e

(
|S|2(k + 1)|S|

2

2kR;PSk
)
≤ (δ + ξ)2

2V (PS)
kε2n. (23)

On the other hand, from Wolfowitz’s strong converse [1,
Thm. 5.8.5] and Haroutunian’s sphere-packing bound [22] (see
also [11, Eq. (24)]) we have the following:

Lemma 5. For every γ > 0 and ψ < ∞, there exists a
sufficiently large n such that

P∗e(M ;Wn)≥exp

(
− n

1−γ

[
E
( logM

n
− ψ√

n

)
+

1

n

])
, (24)

where E(R) := maxP minV :I(P,V )≤RD(V ‖W |P ) is the
sphere-packing exponent of the DMC W .

By combining Lemmas 3, 4 and 5 and by setting R =
H(PS) + δεn, we have

e(f∗k , ϕ
∗
n)

≥ exp

(
− (δ + ξ)2

2V (PS)
kε2n

)
· exp

(
− n

1−γ

[
E
(k(H(PS)+δεn)

n
− ψ√

n

)
+

1

n

])
(25)

Now, we approximate the sphere-packing exponent as in [6,
Sec. 5] [11, Lem. 4.2] and we also apply (2). Note that δ is a
constant and is chosen in the following (cf. (30)). By noting
V (W) > 0 and using the Taylor approximation, we have

E
(k(H(PS) + δεn)

n
− ψ√

n

)
= E

(
C(W)+εn

(C(W)

H(PS)
δ−H(PS)

)
+δε2n+

ψ√
n

)
(26)

≤
ε2n
( C(W)
H(PS)δ −H(PS)

)2
2V (W)

+ o(ε2n), (27)

3Although εn in the statement of [17, Thm. 13] is εn = n−t for some
t ∈ (0, 1/2), the statement can be extended for arbitrary εn satisfying (7)
without any modification in the proof.



where (27) follows from the fact that nε2n → ∞ as n → ∞.
Uniting (25)–(27), normalizing and taking the limit, we obtain

lim sup
n→∞

− 1

nε2n
log e(f∗k , ϕ

∗
n)

≤ (δ + ξ)2C(W)

2V (PS)H(PS)
+

( C(W)
H(PS)δ −H(PS)

)2
2(1− γ)V (W)

. (28)

Since ξ, γ > 0 are arbitrary, we can let these constants tend
to zero. As such the right-hand-side can be expressed as

δ2C(W)

2V (PS)H(PS)
+

( C(W)
H(PS)δ −H(PS)

)2
2V (W)

(29)

By choosing the constant

δ :=
C(W)(

1
V (PS)

C(W)
H(PS) + 1

V (W)
C(W)2

H(PS)2

)
V (W)

(30)

we see, after some algebra, that (29) reduces to
(2V (W, PS))−1 as desired. It is worth noting that

C(W)

H(PS)
δ −H(PS) < 0, (31)

and thus the approximation in (27) is justified.

B. Channel is an additive SEM

Conceptually, the proof for additive SEM channels is similar
to that for the DMC case. For the direct part, the only change
involves the approximation of the random coding exponent
in (14). This is justified by [17, Thm. 13] since the channel
Gallager function reduces to the Gallager function of the
single-terminal source coding in the case of additive channels.
For the converse part, we use the result in [17, Thm. 53] to
bound P∗e

(
2kR;Wn

)
in (22). Then, after a similar algebra as

in (29) and (30), we can get the desired MD bound.

C. Remarks on the proof

We observe that in the converse part, we basically con-
sidered those source sequences belonging to the complement
of P(2)

k (S;R) in the lower bounding of the error probability
in Lemma 3. In Zhong-Alajaji-Campbell [4, Thm. 5] and
Csiszár [2, Lem. 2], only a single dominant type was identified.
This was because the authors focused on finding the error
exponent of JSC coding and the analysing performance of
the dominant type was sufficient. In our work, if we had just
identified the dominant Markov type, we would require the
condition ε2nn/ log n → ∞ (cf. [16]) instead of the weaker
condition in (7). Thus, the coarser partitioning of sequences
into two classes, namely P(2)

k (S;R) and its complement,
allows us to prove a stronger MD result.

V. THE LOSS DUE TO SEPARATION

One of Shannon’s main contributions is to show that rate-
wise, separating the tasks of source and channel coding is
optimal. However, there is a loss in the LD regime [2]–[4]
the the second-order (dispersion) regime [9], [10]. Here we
examine the analogue of Theorem 1 if we use a separation

or tandem coding scheme. We focus on the DMS-DMC case
(with (W,PS)) noting that the generalization to the SEM
source and the additive SEM channel is straightforward.

The error probability for the separation scheme [2] satisfies

esep(fk, ϕn)≤exp

(
−n sup

R≥0
min

{
rnEs

( R
rn

)
, E
(
R
)})

,

(32)
where rn is given in (2), Es(R) := maxQ:H(Q)≥RD(Q‖P )
is the almost lossless source coding error exponent [23,
Prob. 2.7(c)] and E(R) is the channel error exponent. The
polynomial factor for the source term may be omitted and the
channel term involving E(R) can be obtained using Gallager’s
method [1, Sec. 5.4]. We parametrize the optimization variable
R above as follows:

R = C(W )− ηn (33)

where W is the DMC and ηn is a vanishing sequence that we
optimize. We will see that ηn → 0 as n → ∞. By using the
facts that

Es(H(PS) + ξ) =
ξ2

2V (PS)
+O(ξ3), (34)

E(C(W )− ξ) =
ξ2

2V (W )
+O(ξ3), (35)

we can simplify the exponent in (32). Indeed, to find the
optimal ηn, we substitute (33)–(35) into the exponent in (32)
and equate two contributions (to maximize the minimum). The
optimal ηn is found to be a linear function of εn as follows:

ηn =
H(PS)

√
H(PS)
C(W )√

V (PS)
V (W ) +

√
H(PS)
C(W )

εn + o(εn) (36)

As such, by evaluating η2
n/(2V (W )), we can deduce that

lim inf
n→∞

− 1

nε2n
log esep(fk, ϕn) ≥ 1

2Vsep(W,PS)
, (37)

where the separation JSC dispersion is

Vsep(W,PS) := V (W,PS) +
2
√

C(W )
H(PS)V (W )V (PS)

H(PS)2
(38)

and V (W,PS) is the DMS-DMC version of the JSC dispersion
in (8). Since Vsep(W,PS) > V (W,PS) for channels with
positive capacity and dispersion and non-deterministic sources,
separation incurs a penalty of the (positive) second term
in (38). This also corroborates the derivation by Wang-Ingber-
Kochman in [9, Sec. 5] in which the authors used a different
method that is based on second-order asymptotics (with excess
distortion probability ε tending to zero) instead of starting
from the LD technique which we did in (32).

VI. CONCLUSION AND FURTHER WORK

Theorem 1 in this paper showed that if the difference
between C(W)/H(PS) and the bandwidth expansion ratio rn
is εn satisfying (7), the optimal error probability is roughly

e(f∗k , ϕ
∗
n) ≈ exp

(
− nε2n

2V (W, PS)

)
(39)



where V (W, PS), defined in (8), is a fundamental quantity of
the channel and source known as the JSC dispersion.

There are several avenues for further research. Firstly, we
can extend the above analysis to the lossy JSC coding setting.
This may be achieved using the methods of Wang-Ingber-
Kochman [9] or Kostina-Verdú [10]. Second, the proof above
hinged on the (Markov) method of types. It may also be
possible to use information spectrum methods [24, Sec. 3.8]
to obtain the same conclusion as in Theorem 1. This has
the added advantage of providing easily computable finite
blocklength bounds that hold for all n. Lastly, the use of
information spectrum methods will also yield second-order
results for the SEM source and general additive SEM channel,
which includes the channel coding with SEM side-information.
We note that Tomamichel and Tan [25, Thm. 8] have already
derived the second-order coding rate of channel coding with
SEM side-information using information spectrum methods.

APPENDIX A
PROOF OF LEMMA 2

Consider a lossless source code that encodes all length-k
sequences s belonging to⋃

(i,j,P )∈P(2)
k (S;R):T kP (i,j)6=∅

T kP (i, j). (40)

This set has size no larger than |S|2(k+1)|S|
2

2kR by the def-
inition of P(2)

k (S;R) and the fact that the number of Markov
types does not exceed (k+ 1)|S|

2

[18], [19]. Furthermore the
probability of error is the PSk -probability of the complement
of the set in (40) which can be upper bounded as (21) by the
union bound. This completes the proof.

APPENDIX B
PROOF OF LEMMA 3

Define Ds := {y ∈ Yn : ϕn(y) = s} be the decoding
region for source sequence s ∈ Sk. The error probability of
any code (fk, ϕn) can be written as follows:

e(fk, ϕn)

≥
∑

(i,j,P )/∈P(2)
k (S;R):

T kP (i,j)6=∅

∑
s∈T kP (i,j)

PSk(s)Wn(Dcs|fk(s)) (41)

=
∑

(i,j,P )/∈P(2)
k (S;R):

T kP (i,j)6=∅

( ∑
s̃∈T kP (i,j)

PSk(s̃)

)

·
∑

s∈T kP (i,j)

PSk(s)∑
s̃∈T kP (i,j) PSk(s̃)

Wn(Dcs|fk(s)) (42)

=
∑

(i,j,P )/∈P(2)
k (S;R):

T kP (i,j)6=∅

∑
s̃∈T kP (i,j)

PSk(s̃)eT kP (i,j)(fk, ϕn). (43)

In (43), we used the notation eM(fk, ϕn) to denote the average
error probability of a channel code with fk as encoder and
ϕn as decoder restricted to the message set M. Now, since

T kP (i, j) satisfies |T kP (i, j)| > 2kR for (i, j, P ) /∈ P(2)
k (S;R)

(cf. the definition of P(2)
k (S;R) in (20)), we have

eT kP (i,j)(fk, ϕn) ≥ P∗e
(
2kR,Wn

)
. (44)

Thus, by substituting this inequality into (43) and by using
Lemma 2, we complete the proof.
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finite blocklength regime. IEEE Trans. on Inf. Th., 56:2307–2359, May
2010.

[8] M. Tomamichel and V. Y. F. Tan. A tight upper bound for the third-order
asymptotics of most discrete memoryless channels. IEEE Trans. on Inf.
Th., 59(11):7041–7051, Nov 2013.

[9] D. Wang, A. Ingber, and Y. Kochman. The dispersion of joint source-
channel coding. In Allerton Conference, 2011.
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