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Abstract—We study the problem of lossless joint source-
channel coding (JSCC) in the finite block length regime from an
unequal message protection (UMP) perspective. We demonstrate
that the problem of lossless JSCC can be cast in terms of UMP
codes previously studied. We show that an optimal JSCC can
be constructed from a matched UMP code. We further derive
a finite block length bound that characterizes the performance
of a JSCC constructed from a UMP code not perfectly matched
to the source. This bound is evaluated for a binary memoryless
source transmitted over a binary symmetric channel. Two-class
schemes previously studied in literature are compared with the
proposed scheme. Empirically the JSCCs based on UMP codes
approach the performance of the optimal matched code quite
fast in number of classes used.

I. INTRODUCTION

We study the problem of lossless joint source-channel
coding (JSCC) where a data source S is transmitted over a
noisy channel W . We assume that the source S needs to be
reconstructed at the channel output without distortion. How-
ever, we are interested in the finite block length regime and so
some probability of incorrect transmission ε is tolerated. If S
is a source that satisfies the asymptotic equipartition property
(e.g., S is a discrete memoryless data source (DMS)) this
problem has a well known solution in the asymptotic regime:
the Source-Channel Separation Theorem [1, Thm. 7.13.1]. The
theorem says that S can first be compressed by encoding its
typical realizations, and discarding atypical ones, and then a
separate channel encoder can encode the compressed source
for transmission over W . Asymptotically, this allows for an
optimal transmission rate with vanishing probability of error.

However, separation does not hold given more refined
analysis, see for example Csiszár [2] or Kostina-Verdú [3].
An optimal finite block length code must be designed jointly
for the channel and the source. Thus, the pleasing idea of
decomposing the problem via separation is suboptimal at
finite block lengths. Other approaches to JSCC design might
perform better. For example, one distinguishing feature of
JSCCs (as opposed to regular channel codes) is that some
source realizations are given better error protection than others:
optimal JSCCs depend on unequal message protection (UMP).
Further understanding this dependence may provide insight
into design of JSCCs.

UMP-based approaches to JSCC have been previously ex-
plored in the literature: Csiszár [2] was the first to study UMP

codes to derive the JSCC error exponent for a DMS over
a discrete memoryless channel (DMC). He analyzed a UMP
code with m classes and showed that if codewords in message
class i have rate Ri, then each class of codewords has an
error exponent E(Ri), where E(R) is the reliability function
of the channel. To construct the JSCC, Csiszár partitioned
the source realizations into a polynomial number of type
classes, and encoded each type class with a message class
from the UMP code. This approach assigned different amounts
of error protection to each class, as well as allowed the
use of different input distributions to generate codewords in
each class. Recently Tauste Campo et al. [6] showed that
the same JSCC exponent is achievable using only two input
distributions. Other notable examples of this approach include
[7] where the same two-distribution partitioning scheme is
used in the moderate deviations regime and [8] where the
dispersion of JSCC is derived using UMP codes.

In this work we revisit Csiszár’s approach for finite block
lengths JSCC from the viewpoint of UMP codes. We rely
on bounds previously studied in [4], [5] and focus on how
unequal protection of messages impacts the optimality of
a JSCC. Our first contribution is formally to cast lossless
JSCC in terms of UMP codes: we show that any lossless
JSCC can be constructed from an appropriately selected m-
class UMP code, where m depends on the distribution of the
source. A consequence of this theorem is that to design a
good lossless JSCC it is sufficient to use a UMP code that
is perfectly matched to the source. However, the theorem
also demonstrates that a UMP code required to maximize
performance may be a complicated one: e.g., for a DMS the
number of classes required, m, scales as a polynomial in
source block length. This raises the natural question of how
well a JSCC based on a UMP code with fewer classes can
perform. To study this we introduce the notion of a JSCC
with m̃ UMP classes, where m̃ < m is the regime of particular
interest. Our second contribution is to bound how well such
“mismatched” codes can perform. Our final contribution is to
conduct a numerical study of our finite block length bound for
a binary memoryless source (BMS) and a binary symmetric
channel (BSC). Empirically, the performance of mismatched
codes approaches the performance of the optimal code quite
fast in the number of UMP classes of the mismatched code.



II. LOSSLESS JSCC VIA UMP CODES

A. Definitions

A general channel from A to B is a stochastic kernel W (b|a)
satisfying

∑
b∈BW (b|a) = 1 for all a ∈ A.

Definition 1 (UMP Code). An ((Mi)mi=1, (εi)
m
i=1)-UMP code

for W is a tuple ({Mi}mi=1, f, g) consisting of (i) m dis-
joint message classes {M1, . . . ,Mm} forming the message
set M := ∪mi=1Mi and satisfying |Mi| = Mi for each
i ∈ {1, 2, . . .m}; (ii) an encoder f : M → A and (iii) a
decoder g : B → M such that for all i ∈ {1, 2, . . .m}, the
average error probabilities for each message class satisfies

1
Mi

∑
w∈Mi

W (B \ g−1(w)|f(w)) ≤ εi. (1)

If the maximum probability of error for each class also satisfies

max
w∈Mi

W (B \ g−1(w)|f(w)) ≤ εi (2)

we refer to the code as ((Mi)mi=1, (εi)
m
i=1)-UMP code (maxi-

mum probability of error).

Definition 2 (Expected Error). The expected error for an
((Mi)mi=1, (εi)

m
i=1)-UMP code induced by (µ1, . . . , µm) is

ε(µ) =
m∑
i=1

µiεi. (3)

A general source S is a finite alphabet S together with
probability mass function PS(·) defined on S.

Definition 3 (Lossless Joint Source-Channel Code). An ε-
lossless JSCC for a source S over channel W is a tuple (f, g)
consisting of (i) an encoding function f : S→ A and (ii) a
decoding function g : B→S such that

P(S 6= g(Y ))) ≤ ε. (4)

Let us define an equivalence relationship on S by

s ≈ s′ for s, s′ ∈ S if PS(s) = PS(s′). (5)

Note that ≈ induces a partition of S into m ∈ {1, . . . , |S|}
equivalence classes.

Definition 4 (Source Profile). A profile of source S is a set
of tuples (g1, γ1), . . . , (gm, γm) such that

gi = |Si| and γi = PS(s),∀s ∈ Si, (6)

where Si is the ith set in the partition defined by the equiva-
lence relation ≈. We refer to a source with profile consisting
of m tuples as an m-source.

B. Equivalence Theorem

Definition 5 (Matched Code). Consider an m-source
S with profile (g1, γ1), . . . , (gm, γm). We say that an
((Mi)mi=1, (εi)

m
i=1)-UMP code is matched to S if Mi = gi

for all i = 1, . . . ,m.

Theorem 1 (Equivalence). Given an m-source S and a
channel W , there is an ε-lossless JSCC if and only if there is a

matched ((Mi)mi=1, (εi)
m
i=1)-UMP code such that the expected

error induced by (g1γ1, . . . , gmγm) is ε =
∑m
i=1 giγiεi.

Proof: The theorem follows by simply relabeling source
realizations, calling them “messages”, and then grouping real-
izations with the same probability into message classes. For-
mally, consider the partition on S induced by the equivalence
relation ≈ defined in (5). Let si,j refer to jth source symbol
in Si. Likewise, let wi,j refer to jth message in message class
Mi.

First, we show that an existence of a matched UMP code
implies an existence of a JSCC. Suppose there exists an
((Mi)mi=1, (εi)

m
i=1)-UMP code which is matched to the m-

source S, and that the expected error of this code induced by
(g1γ1, . . . , gmγm) is ε. Then we can construct an ε-lossless
JSCC (f ′, g′) as follows,

f ′(si,j) = f(wi,j) and g′(Y ) = si,j if g(Y ) = wi,j . (7)

We can check that

P(S 6=g′(Y ))=
m∑
i=1

gi∑
j=1

P(S=si,j)P(S 6=g′(Y )|S=si,j) (8)

=
m∑
i=1

gi∑
j=1

P(S = si,j)
[
1−W (g′−1(si,j)|f ′(si,j))

]
(9)

=
m∑
i=1

γigi
1
gi

gi∑
j=1

[
1−W (g′−1(si,j)|f ′(si,j))

]
(10)

=
m∑
i=1

γigi
1
Mi

Mi∑
j=1

[
1−W (g−1(wi,j)|f(wi,j))

]
(11)

=
m∑
i=1

γigiεi = ε (12)

where (8) follows from law of total probability, (10) follows
by noting that P(S = si,j) = γi for all j and factoring γi out
of the inner sum, (11) follows from definition of f ′ and g′ and
the fact that the code is matched to the source, finally (12)
follows from the definition of expected error.

For the other direction, let (f ′, g′) be an ε-lossless JSCC.
Construct a matched UMP code as follows, Mi = {si,j : 1 ≤
j ≤ gi}, f(si,j) = f ′(si,j) and g(Y ) = g′(Y ). Then

εi =
1
gi

gi∑
j=1

[
1−W (g′−1(si,j)|f ′(si,j))

]
(13)

and computing the expected error,
m∑
i=1

giγiεi=
m∑
i=1

γi

gi∑
j=1

[
1− PY |X(g′−1(si,j)|f ′(si,j))

]
(14)

=
m∑
i=1

gi∑
j=1

P (S=si,j)
[
1−PY |X(g′−1(si,j)|f ′(si,j))

]
=ε, (15)

which concludes the proof.
As Theorem 1 demonstrates, to construct an ε-lossless JSCC

for an m-source S, a UMP code with m classes is needed.



Such a code might be difficult to design if m is large.1 We
are interested in investigating whether simpler codes perform
well at finite blocklengths. This motivates the next definition.

Definition 6 (JSCC with m̃ UMP classes). Let (i) S be an
m-source, (ii)

(
{Mi}m̃i=1, f, g

)
be an

(
(Mi)m̃i=1, (εi)

m̃
i=1

)
-UMP

code with
∑m̃
i=1Mi = |S|, (iii) and h : S→M be a one-to-

one mapping with an associated equivalence relation ∼ on S
defined by

s ∼ s′ for s, s′ ∈ S iff h(s), h(s′) ∈Mi. (16)

If it is true that
m̃∑
i=1

∑
s∈Si

PS(s)εi ≤ ε (17)

we refer to (f ◦h, h−1 ◦g) as an ε-lossless JSCC with m̃ UMP
classes.

To relate Definition 3 to Definition 6 observe that (i) if we
use

(
(Mi)m̃i=1, (εi)

m̃
i=1

)
-UMP code (maximum probability of

error) then the ε-lossless JSCC with m̃ UMP classes is also
an ε-lossless JSCC in the sense of Definition 3.2 (ii) if S is
an m̃-source and the partition induced by ∼ is the same as
the one induced by ≈ (cf. (5)) then the ε-lossless JSCC with
m̃ UMP classes is also an ε-lossless JSCC in the sense of
Definition 3. (iii) Otherwise, the mapping h could be chosen
badly and associate more likely elements in Si with worse
codewords in Mi. This difficulty could be circumvented by
considering a randomized map h.

III. FINITE BLOCK LENGTH BOUNDS

To state our bounds we define the information density of
joint distribution PX × PY |X at (x, y) as

iX;Y (x; y) := log
PY |X=x

PY
(y) (18)

and the information of distribution S at outcome s as

iS(s) := log
1

PS(s)
. (19)

Finally, define Lm = {λ = (λ1, . . . , λm) ∈ Rm+ :
∑m
i=1 λi =

1} to be the m-simplex. We first state the following theorem
without proof.

Theorem 2 (Achievability for UMP Codes). Let M =⋃m
i=1Mi be a message set with m disjoint message classes

and |Mi| = Mi. Fix a λ ∈ Lm, and let PX be a distribution
on A. Assume the CDF of P [i(x, Y ) ≤ α] does not depend
on x for any α when Y is distributed according to PY .3

Then there exists a ((Mi)mi=1, (εi)
m
i=1)-UMP code (maximum

probability of error) with

εi ≤ E
[
exp

{
−[iX;Y (X;Y )− logMi + log λi]+

}]
. (20)

1See [5, Theorem 8] for motivation for why UMP codes with more classes
may be more complex.

2This is the case for our bounds in Section IV.
3BSC and BEC with PX being the equiprobable input distribution satisfy

this assumption.

If we drop the assumption on the CDF of P [i(x, Y ) ≤ α]
and let µ ∈ Lm, we can say the following: For some error
vector (εi)mi=1 there exists a ((Mi)mi=1, (εi)

m
i=1)-UMP code

with expected error induced by µ not exceeding

ε(µ)≤
m∑
i=1

µiE

[
exp

{
−
[
iX;Y (X,Y )− log

Mi

λi

]+}]
. (21)

In both, (20) and (21), (X,Y ) ∼ PXPY |X .

The next bound lets us evaluate the performance of ε-
lossless JSCCs with m̃ UMP classes. The dummy random
variable S̃ can be through of as capturing the partition induced
by equivalence relation ∼ (cf. (16)), or equivalently map h,
in Definition 6.

Theorem 3 (Almost Lossless JSCC). Let S be an m-source
defined on S and S̃ be some other m̃-source also supported
on S. Then, there exists an ε-JSCC with m̃ UMP classes for
source S over channel W satisfying

ε ≤ E
[
exp

(
− |iX;Y (X;Y )− iS̃(S)|+

)]
(22)

=E

[
exp

(
−
∣∣∣∣iX;Y (X;Y )− iS(S)− log

PS(S)
PS̃(S)

∣∣∣∣+
)]

(23)

where the expectation is with respect to PSPXPY |X .

Proof: Let (Si)m̃i=1 be the partition of S induced by ≈
with respect to the random variable S̃ and define,

Mi = |Si|, for i = 1, . . . , m̃. (24)

By Theorem 2 there exists a
(
(Mi)m̃i=1, (εi)

m̃
i=1

)
-UMP code

which satisfies (20) for any λ ∈ Lm if the condition on the
CDF of P [i(x, Y ) ≤ α] is satisfied. Regardless, there exists a(
(Mi)m̃i=1, (εi)

m̃
i=1

)
-UMP code satisfying (21) for any µ,λ ∈

Lm. By construction
∑m̃
i=1Mi = |S| and we pick any one-to-

one map h that assigns source realizations from Si to messages
in Mi. Next observe that,

ε(µ)≤
m̃∑
i=1

µiE

[
exp

{
−
[
iX;Y (X;Y )− log

Mi

λi

]+}]
(25)

=
m̃∑
i=1

∑
s∈Si

PS(s)E

[
exp

{
−
[
iX;Y (X;Y )−log

1
PS̃(s)

]+}]
(26)

where (25) is the expected error bound for the constituent
UMP code and (26) follows by setting

µi =
∑
s∈Si

PS(s), λi =
∑
s∈Si

PS̃(s). (27)

Thus, combining (3) and (17) with (26) we see that the(
(Mi)m̃i=1, (εi)

m̃
i=1

)
-UMP code and the map h gives the re-

quired ε-lossless JSCC with m̃ UMP classes.
For S̃ = S, Theorem 3 recovers [9] and is dispersion-

tight [3]. If m̃ < m, we are only allowed m̃ message classes to
construct a JSCC for S. In this case, we construct an optimal
JSCC for the m̃-source S̃ instead. We use this code for S and
the performance degradation due to transmitting the wrong
source is captured by the log PS(S)

PS̃(S) term, whose expectation is
exactly the redundancy in source coding [1, Theorem 5.4.3]).
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Fig. 1. Rate-block length tradeoff for ε = 10−6, δ = p = 0.11 for two-
class codes compared to the perfectly matched code, and a finite block length
converse [3, Thm. 12]. The rate of the class size-based partition is at or below
the rate of the likelihood-based partition. The partitions used to construct the
JSCC at the point (n, k) = (500, 237) are plotted in detail in Figure 2.

IV. NUMERICAL EVALUATION - BMS OVER BSC

We present numerical evaluations of Theorem 3 for a BMS
with bias δ < 0.5 over a BSC with crossover probability p <
0.5. If S is distributed as Bernoulli(δ) we refer to our BMS
of interest as Sk ∼

∏k
i=1 PS(si). We use S̃ to refer to an

arbitrary random variable on S = {0, 1}k.
Fix some S̃ with profile (g1, γ1), . . . , (gm̃, γm̃) and let

(Si)m̃i=1 be the partition of S induced by ≈ with respect to S̃.
To evaluate our bound we select an UMP code with Mi = gi
and λi = giγi for all i. Evaluating (20) for the BSC we obtain
the probability of error for the ith message class,

εi≤
n∑
t=0

(
n

t

)
pt(1− p)n−tmin

[
1,

1
γi

2−np−t(1−p)t−n
]
. (28)

Thus, by Theorem 3, there exists an ε-lossless JSCC with m̃
UMP classes such that ε ≤

∑m̃
i=1

∑
sk∈Si

PSk(sk)εi.
Next we address the issue of selecting a good S̃. We will

construct S̃ by first defining the partition (Si)m̃i=1 and defining
all elements in each Si to be equiprobable. We propose
the following likelihood-based partition scheme. For some
(Pj)m̃j=0 such that P0 = 1, Pm̃ = 0 and δk ≤ Pm̃−1,≤ · · · ≤
P1 ≤ (1− δ)k the likelihood-based m̃ partition of S is

Si =
{
sk : Pi < PSk(sk) ≤ Pi−1

}
, 1 ≤ i ≤ m̃. (29)

We define S̃ to have the following distribution

PS̃(sk) = γi, where γi =
PSk(Si)
|Si|

and sk ∈ Si. (30)

The intuition behind the likelihood-based partition is that
it constructs S̃ which approximates Sk well by combining
realizations with similar likelihoods.
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Fig. 2. Average probability of error for each type class of {0, 1}k (type
classes are indexed by the # of ones they contain). The likelihood-based
partition and the perfectly matched code are compared to the rate-based
partition (top) and typicality-based separation (bottom) for n = 500, k = 237
and δ = p = 0.11. The probability of error for the perfectly matched code
is 8.64× 10−7; for the likelihood-based partition it is 1.17× 10−4; for the
class size-based partition it is 1.23×10−4; for the typicality-based separation
it is 1.25× 10−4.

A. Two-class Codes

In Figures 1 and 2 we compare our proposed likelihood-
based partition to two other two-class partitions previously
studied in literature. We define the class size-based partition
to be

S1 =
{
sk : |T (sk)| ≥ 2kR0

}
, S2 = S \ S1 (31)

where T (sk) denotes the type-class corresponding to sk. This
is the partition studied in [6] and we use it to construct S̃.

Likewise, for some ε0 > 0 the typicality-based partition is

S1 =
{
sk : 2−k(H(S)+ε0)≤PSk(sk)≤2−k(H(S)−ε0)

}
, (32)

S2 = S \ S1, where H(S) = ES [iS(S)] .

The typicality-based partition is the classical near-lossless
source coding approach of encoding typical realizations used
in e.g. [1, Thm. 7.13.1]. The error of the resulting JSCC is
thus

ε ≤ ε∗(|S1|, n) + PSk(S2) (33)

where ε∗(|S1|, n) is the error of a classical channel code of
block length n and |S1| codewords as given by the Dependence
Testing bound [10].

We optimize over P1, R0 and ε0 and plot the resulting
bounds in Figure 1. The typicality-based separation approach
has the worst performance of the three schemes, with the
difference being more dramatic when the tolerated probabil-
ity of error ε gets smaller. The class-based and likelihood-
based partitions perform similarly, but on closer examination
thelikelihood-based partition is always as good or better than
the class-based partition. After considering Figure 2 this
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construct the JSCC at the point (n, k) = (200, 115) are plotted in Figure 4.

difference is easy to explain. The class-based partition mimics
the likelihood-based partition with the exception that it places
twice as many messages in the “good” class.

B. Codes with m̃ UMP classes

We compare our proposed likelihood-based partition for
m̃ ∈ {2, 3, 4, 5} in Figures 3 and 4. Figure 3 demonstrates
that the rate-block length tradeoff of an ε-lossless JSCC with
m̃ UMP classes approaches that of the perfectly matched
code. The code with four UMP classes already performs
well compared with to the perfectly matched code. Note that
the number of classes of the perfectly matched code grows
polynomially in block length. In Figure 4 we can see how
the code with m̃ UMP classes approximates the error profile
for the perfectly matched code. The plots do not reflect that
most of the probability mass of this source is centered around
k = 22, which is where the optimal 2− 4 class partitions try
best to approximate the curve.

V. CONCLUDING REMARKS

We make some comments regarding the normal approxima-
tion of Theorem 3. In particular, following the approach of [3]
we can apply the Berry-Esseen theorem to show that if S and
S̃ are DMSs and W is a DMC with positive dispersion, then
there exists an ε-joint source channel code for Sk over Wn if

nC − kH(S) ≥ kD(S‖S̃) +
√
nV + kV(S‖S̃)Q−1(ε) + θn

where V(S‖S̃) = VarS(iS̃(S)) and θn ≤ 1
2 log n+O(1).

By letting S̃ = S the bound reduces exactly to [3, Theorem
10(e)]. Taking S̃ to be a 1-source we recover the normal
approximation for channel coding (we only use one class for
JSCC, and we must treat every source realization equally).
Taking S̃ as some arbitrary DMS gives us a mismatched
coding result. That is, we get a bound on the performance of
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Fig. 4. Average probability of error for each type class of {0, 1}k (type
classes are indexed by the # of ones they contain). Partitions for two, three,
four, and five (from left to right) UMP class codes compared to the perfectly
matched code for (n, k) = (200, 115) and δ = p = 0.11 are plotted. The
probability of error for the perfectly matched code is 0.0085; 5-class code
it is 0.0129; 4-class code it is 0.0156; 3-class code it is 0.022, and 2-class
code it is 0.049.

a JSCC designed for S̃ when the actual source is S. Of course
our goal is to obtain a similar statement about ε-lossless joint
source channel codes with m̃ UMP classes for any m̃. Since
in general an m̃-source S̃ will not have a product measure we
can not apply the Berry-Esseen theorem to obtain the required
result. Some other limit theorem is needed, and this is left for
future work.
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