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Abstract—We derive the second-order capacities (supremum
of second-order coding rates) for erasure and list decoding.
For erasure decoding, we show that second-order capacity is√
V Φ−1(εt) where V is the channel dispersion and εt is the

total error probability, i.e. the sum of the erasure and unde-
tected errors. We show numerically that the expected rate at
finite blocklength for erasures decoding can exceed the finite
blocklength channel coding rate. For list decoding, we consider
list codes of deterministic size 2

√
nl and show that the second-

order capacity is l+
√
V Φ−1(ε) where ε is the permissible error

probability. Both coding schemes use the threshold decoder and
converses are proved using variants of the meta-converse.

I. INTRODUCTION

In many communication scenarios, it is advantageous to
allow the decoder to have the option of either not deciding
at all or putting out more than one estimate of the message.
These are respectively known as erasure and list decoding
respectively and have been studied extensively in [1]–[7]. The
erasure and list options allow for smaller undetected error
probabilities so these options are useful in practice.

In this paper, we revisit the problem or erasure and list
decoding from the viewpoint of second-order asymptotics. The
study of second- and higher-order asymptotics at fixed (non-
vanishing) error probability was first done by Strassen [8]
who showed for a well-behaved discrete memoryless channel
(DMCs) W that the maximum number of codewords at error
probability ε, namely M∗(Wn, ε), satisfies

logM∗(Wn, ε) = nC +
√
nV Φ−1(ε) +O(log n), (1)

where C and V are respectively the capacity and the dispersion
of W . This line of work has been revisited by numerous
authors recently [9]–[14].

A. Main Contributions

In this paper, for erasure decoding, we consider constant
undetected and total (sum of undetected and erasure) error
probabilities (numbers between 0 and 1) and we obtain the
analogue of the second-order

√
n term in (1). We show

that the coefficient of the second-order term, termed the
second-order capacity, is

√
V Φ−1(εt) where εt is the total

error probability. We then compute the expected rate at finite
blocklength allowing erasures and show that it can exceed
the finite blocklength rate without the erasure option. For list
decoding, we consider lists of deterministic size of order 2

√
nl

and show that the second-order capacity is l +
√
V Φ−1(ε).

To the best of the authors’ knowledge, this is the first time
that lists of size other than constant or exponential have been
considered in the literature.

B. Related Work
Previously, the study of erasure and list decoding has been

primarily from the error exponents perspective. Forney [1]
derived the optimal rules by generalizing the Neyman-Pearson
lemma and also proved exponential upper bounds for the
error probabilities using Gallager’s techniques [15]. Shannon-
Gallager-Berlekamp [2] considered lists of size 2nl and
showed that sphere packing error exponent (evaluated at the
code rate minus l) is an upper bound on the reliability function.
Bounds for the error probabilities were derived by Telatar [3]
using a decoder parametrized by an asymmetric relation ≺
which is a function of the channel law. Blinovsky [4] studied
the exponents of the list decoding problem at low (and even
0) rate. Csiszár-Körner [16, Thm. 10.11] present exponential
upper bounds for universally attainable erasure decoding using
the method of types. Moulin [5] generalized the treatment
there and presented improved error exponents. Recently, Mer-
hav also considered alternative methods of analysis [6] and
expurgated exponents for these problems [7].

II. PROBLEM SETTING AND MAIN DEFINITIONS

Let W be a channel from an input alphabet X to an output
alphabet Y . We denote length-n strings x = (x1, . . . , xn) ∈
Xn by boldface. If Wn satisfies Wn(y|x) =

∏n
i=1W (yi|xi)

for every (x,y) ∈ Xn × Yn and the sets X and Y are finite,
Wn is said to be a DMC. We focus on DMCs in this paper but
extensions to other channels such as the AWGN channel are
possible. For an finite alphabet X , let P(X ) and Pn(X ) be the
set of probability mass functions and n-types [16] respectively.

For information-theoretic quantities, we will mostly follow
the notation in Csiszár and Körner [16]. For a DMC, we denote
its capacity by C := maxP∈P(X ) I(P,W ). We let Π be the set
of capacity-achieving input distributions. If (X,Y ) ∼ P ×W ,
define V (P,W ) := EX

[
Var

(
log W (Y |X)

PW (Y ) |X
)]

to be the
conditional information variance. The ε-dispersion of the
DMC W [8]–[10] is defined as

Vε :=

{
Vmin := minP∈Π V (P,W ) ε < 1/2
Vmax := maxP∈Π V (P,W ) ε ≥ 1/2

. (2)



For integers l ≤ m, we denote [l : m] := {l, l + 1, . . . ,m}
and [m] := [1 : m]. Let Φ(x) :=

∫ x
−∞

1√
2π

e−t
2/2 dt be the

cumulative distribution function of a standard Gaussian and
Φ−1(·) be its inverse. We now define erasure codes.

Definition 1. An M -erasure code for W : X → Y is a pair
of mappings (f, ϕ) such that f : [M ] → X and ϕ : Y →
[0 : M ]. The disjoint decoding regions are denoted as Dm :=
ϕ−1(m) and the conditional undetected, erasure and total error
probabilities are defined as

λu(m) :=
∑

m̃∈[M ]\{m}

W (Dm̃|f(m)) (3)

λe(m) := W (D0|f(m)) (4)

λt(m) :=
∑

m̃∈[0:M ]\{m}

W (Dm̃|f(m)) (5)

Note that λu(m) + λe(m) = λt(m). Typically, the code is
designed so that λu(m)� λe(m).

Definition 2. An (M, εu, εt)a,b-erasure code for W is an M -
erasure code for the same channel where

1) If (a,b) = (max,max),

max
m∈[M ]

λu(m) ≤ εu, max
m∈[M ]

λt(m) ≤ εt. (6)

2) If (a,b) = (max, ave)

max
m∈[M ]

λu(m) ≤ εu,
1

M

∑
m∈[M ]

λt(m) ≤ εt. (7)

3) If (a,b) = (ave,max),

1

M

∑
m∈[M ]

λu(m) ≤ εu, max
m∈[M ]

λt(m) ≤ εt. (8)

4) If (a,b) = (ave, ave),

1

M

∑
m∈[M ]

λu(m) ≤ εu,
1

M

∑
m∈[M ]

λt(m) ≤ εt. (9)

Definition 3. A number r ∈ R is an (εu, εt)a,b-achievable
erasure second-order coding rate for the DMC Wn with
capacity C if there exists a sequence of (Mn, εu,n, εt,n)a,b-
erasure codes such that

lim inf
n→∞

1√
n

(logMn − nC) ≥ r, (10)

lim sup
n→∞

εu,n ≤ εu, and lim sup
n→∞

εt,n ≤ εt. (11)

The (εu, εt)a,b-erasure second-order capacity r∗era,a,b(εu, εt)
is the supremum of all (εu, εt)a,b-achievable erasure second-
order coding rates.

We now turn our attention to codes which allow their
decoders to output a list of messages. Let

(
[M ]
j

)
be the set

of subsets of [M ] of size j. Furthermore, we use the notation(
[M ]
≤L
)

:= ∪0≤j≤L
(

[M ]
j

)
to denote the set of subsets of [M ] of

size not exceeding L.

Definition 4. An (M,L)-list code for W : X → Y is a pair of
mappings (f, ϕ) such that f : [M ]→ X and ϕ : Y →

(
[M ]
≤L
)
.

The decoding regions are denoted as Dm := {y ∈ Y : m ∈
ϕ(y)} and the conditional error probability is defined as

λ(m) := W (Y \ Dm|f(m)). (12)

Definition 5. An (M,L, ε)a-list code for W is an (M,L)-list
code for the same channel where if a = max,

max
m∈[M ]

λ(m) ≤ ε, (13)

or if a = ave,
1

M

∑
m∈[M ]

λ(m) ≤ ε. (14)

Definition 6. A number r ∈ R is an (l, ε)a-achievable list
second-order coding rate for the DMC Wn with capacity C if
there exists a sequence of (Mn, Ln, εn)a-list codes such that
in addition to (10), the following hold

lim sup
n→∞

1√
n

logLn ≤ l, and lim sup
n→∞

εn ≤ ε. (15)

The (l, ε)a-list second-order capacity r∗list,a(l, ε) is the supre-
mum of all (l, ε)a-achievable list second-order coding rates.

According to (15), we stipulate that the list size grows as
2Θ(
√
n). This differs from previous works in which the list

size is either constant [7], [15] or exponential [2], [4]–[7],
[16]. In fact if the list size grows polynomially (e.g. nα for
some α > 0), the central object of study would the third-order
coding rate [11]–[14]. We defer this to future work.

III. MAIN RESULTS

In this section, we summarize the main results of this paper.
For simplicity, we assume that the DMC W satisfies Vmin > 0.

A. Decoding with Erasure Option

Theorem 1. For any 0 < εu ≤ εt < 1,

r∗era,a,b(εu, εt) =
√
VεtΦ

−1(εt), (16)

where (a,b) can be any element in {max, ave}2.

The proof of Theorem 1 can be found in Section IV-A.
A few comments are in order: First, Theorem 1 can be inter-

preted as follows. Suppose M∗(Wn; εu, εt) is the maximum
number of codewords that can be transmitted over Wn with
undetected and total error εu and εt respectively, then

logM∗(Wn; εu, εt) = nC +
√
nVεtΦ

−1(εt) + o(
√
n). (17)

Second, the direct part of the proof of Theorem 1 uses
threshold decoding, i.e. declare that m is sent if a certain score
function, the empirical mutual information, is higher than a
threshold. If no message’s score exceeds the threshold, then
an erasure is declared. This simple rule is not the optimal one.
The optimal rule was derived using a generalized version of
the Neyman-Pearson lemma by Forney [1, Thm. 1], i.e.

D∗m :=

{
y : Wn(y|f(m)) ≥ γ

∑
m̃∈[M ]\{m}

Wn(y|f(m̃))

}
,

(18)
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Fig. 1. Comparison of non-asymptotic rates with and without erasure option.
Observe that E[R(n)

e ] can be larger R(n)
c for finite n.

for some γ > 0. However, this rule is difficult for second-order
analysis. Forney also suggested the simpler rule [1, Eq. (11a)]

D′m :=

{
y :Wn(y|f(m))≥γ max

m̃∈[M ]\{m}
Wn(y|f(m̃))

}
.

(19)
We analyzed this rule in the same way as one analyzes
the random coding union (RCU) bound [9, Thm. 16] in the
asymptotic setting but the analysis based on the rule in (19)
could not be proved to be second-order optimal.

Third, the converse is based on Strassen’s idea [8,
Eq. (4.18)], connecting channel coding to hypothesis testing.

B. Expected Rate
From (17), we see that the backoff from the capacity at

blocklength n is approximately −
√
Vεt/nΦ−1(εt) indepen-

dent of εu. Thus, denoting εe := εt − εu as the erasure proba-
bility, the expected rate in erasures decoding with blocklength
n with undetected and total errors εu and εt respectively is

E
[
R(n)

e

]
:= (1− εe)

[
C +

√
Vεt
n

Φ−1(εt)

]
, (20)

assuming the Gaussian approximation is sufficiently accurate.
It was numerically shown in [9] that the Gaussian approxi-
mation is accurate for moderate blocklengths. The reduction
in rate by 1 − εe was observed by Forney [1, Eq. (49)]. One
may use an automatic repeat request (ARQ) scheme1 to resend
information if it is erased. For channel coding with error εu,
the non-asymptotic channel coding rate is approximated [9] by

R(n)
c := C +

√
Vεu
n

Φ−1(εu). (21)

Clearly if 0 < εu < εe < εt < 1 are constants,

C = lim
n→∞

R(n)
c > lim

n→∞
E
[
R(n)

e

]
= (1− εe)C, (22)

so there is no advantage in allowing for erasures. However, in
finite blocklength regime, for small enough εe, we may have

R(n)
c < E

[
R(n)

e

]
(23)

1Forney [1] calls this decision feedback, but nowadays, the term ARQ is
more common.

so erasure decoding may be advantageous in expectation. We
illustrate this with an example.

In Fig. 1, we consider a binary symmetric channel (BSC)
with crossover probability p = 0.11 so C = 0.5 bits/channel
use and V = 0.891 bits2/channel use. We keep the undetected
error probability at εu = 10−6 and vary the erasure error prob-
ability εe ∈ [10−6, 10−0.5] and blocklength n ∈ {103, 105}.
We observe that for some moderate erasure probabilities,
the gain of erasure coding over channel coding is rather
pronounced. This gain is reduced if (i) εe is increased because
we retransmit the whole block more often on average via the
use of decision feedback or (ii) n becomes large because the
second-order term becomes less significant (cf. (22)).

C. List Decoding

Theorem 2. For any 0 < ε < 1,

r∗list,a(l, ε) = l +
√
VεΦ

−1(ε). (24)

where a can be any element in {max, ave}.

The proof of Theorem 2 can be found in Section IV-B.
Theorem 2 shows that if we allow the list to grow as

2
√
nl, then the second-order capacity is increased by l. This

is unsurprising and concurs with the intuition we obtain from
the error exponent analysis in [2].

IV. PROOFS

In this section, we prove both theorems. For the direct parts,
we show that the second-order capacities are also universally
attainable–i.e. the codes do not require channel knowledge.2

A. Decoding with Erasure Option: Proof of Theorem 1

1) Converse Part: Before we start, let us define the function

βα(P,Q) := min
D⊂Y:P (D)≥α

Q(D), (25)

where P,Q are two probability measures on Y . Let us fix any
(Mn, εu,n, εt,n)max,max-erasure code for Wn. This means that

min
m∈[Mn]

Wn(Dm|f(m)) ≥ 1− εt,n. (26)

In addition, we assume that the code is constant composition,
i.e. all codewords are of the same type P . Then, for any
permutation invariant output distribution Q ∈ P(Yn), we have

1 ≥
Mn∑
m=1

Q(Dm) ≥
Mn∑
m=1

min
D⊂Yn:

Wn(D|f(m))≥1−εt,n

Q(D) (27)

=

Mn∑
m=1

β1−εt,n(Wn(·|f(m)), Q)=Mnβ1−εt,n(Wn(·|x), Q),

(28)

where the final equality follows from the fact that
β1−εt,n(Wn(·|f(m)), Q) does not depend on m for permu-
tation invariant Q (which is what we choose Q to be) and
constant composition codes [8]. We also used x to denote any

2A simpler proof based on thresholding the likelihood can also be be used;
however, channel knowledge is required.



element in the type class TP . Choose Q = (PW )n. Since εt,n
satisfies (11), for every η ∈ (0, 1−εt), there exists sufficiently
large n such that εt,n ≤ εt + η. Hence, from (28),

Mn ≤ β−1
1−εt−η(Wn(·|x), Q). (29)

Now one may use the asymptotic expansion of
− log β1−ε(W

n(·|x), Q) [8, Sec. 2] and continuity arguments
[11, Lem. 7] to complete the converse for the (max,max)
setting. Removing the constant composition assumption
simply adds an O( logn

n ) term to the rate which is
inconsequential for second-order asymptotics. To get to
the (ave, ave) setting, we use an expurgation argument as
in [9, Eq. (284)] or the converse technique in [11] which is
directly applicable to the average error criterion.

2) Direct Part: It suffices to prove that
√
VεeΦ

−1(εe) is
an achievable (0, εe)ave,ave-erasure second-order coding rate
for Wn. Indeed, here the total error εt = εe. However,
any achievable (0, εt)ave,ave-second-order coding rate is also
an achievable (εu, εt)ave,ave-second-order coding rate for any
εu ∈ [0, εt). Furthermore, by an expurgation argument, the
same statement can be proved under the (max,max) setting.

Fix a type P ∈ Pn(X ). Generate Mn codewords uniformly
at random from the type class TP . Denote the random code-
book as {X(m) : m ∈ [Mn]} ⊂ TP . The number Mn is to be
chosen later. At the receiver, we decode to m̂ if and only if
m̂ is the unique message to satisfy

Î(X(m̂) ∧Y) ≥ γ (30)

where Î(x∧y) is the empirical mutual information of (x,y),
i.e. the mutual information of the random variables (X̃, Ỹ )
whose distribution is the joint type Px,y and γ is to be chosen
later. Assume as usual that the true message m = 1. We use
the following elementary result which can be proved using the
method of types. See the proof of [16, Lem. 10.1] for details.

Lemma 3. Let P ∈ Pn(X ) be any n-type. Let X(1) and X(2)
be selected independently and uniformly at random from the
type class TP . Let Y be the channel output when X(1) is the
input, i.e. Y ∼

∏n
i=1W ( · |Xi(1)). Then, for every γ > 0,

Pr
[
Î(X(2) ∧Y) > γ

]
≤ (n+ 1)|X |+|X ||Y|2−nγ . (31)

The undetected error probability is bounded as

Pr[Eu] ≤ Pr

[
max
m≥2

Î(X(m) ∧Y) ≥ γ
]

(32)

≤ (Mn − 1) Pr
[
Î(X(2) ∧Y) ≥ γ

]
(33)

≤ (Mn − 1)(n+ 1)|X ||Y|+|X |2−nγ (34)

where (34) follows from Lemma 3.
We let the random conditional type of Y given X(1) be V .

The erasure probability can be bounded as

Pr[Ee] = Pr
[
Î(X(1) ∧Y) ≤ γ

]
(35)

= Pr

[
I(P,W ) +

∑
x,y

(V (y|x)−W (y|x))I ′W (y|x)

+O(‖V −W‖2) ≤ γ
]

(36)

where the final step follows by Taylor expanding V 7→ I(P, V )

around V = W and I ′W (y|x) := ∂I(P,V )
∂V (y|x)

∣∣
V=W

. We also can
bound the remainder term uniformly [17] yielding

Pr[Ee] ≤ Pr

[
I(P,W ) +

∑
x,y

(V (y|x)−W (y|x))I ′W (y|x)

≤ γ +O

(
log n

n

)]
+O(n−2). (37)

Wang-Ingber-Kochman [17] computed the relevant first- and
second-order statistics of the random variable

∑
x,y(V (y|x)−

W (y|x))I ′W (y|x) allowing us to applying the Berry-Esseen
theorem [18, Ch. XVI.5], leading to

Pr[Ee] ≤ Φ

(
γ +O( logn

n )− I(P,W )√
V (P,W )/n

)
+O(n−1/2). (38)

Hence, we set

γ = I(P,W ) +

√
V (P,W )

n
Φ−1(ε′e) (39)

to assert that
Pr[Ee] ≤ ε′e +O(n−1/2). (40)

We then set Mn to be the smallest integer satisfying

logMn ≥ nγ −
(
|X ||Y|+ |X |+ 1

2

)
log n. (41)

Then we may assert from (34) that

Pr[Eu] ≤ n−1/2. (42)

Hence, we have that

logMn≥nI(P,W )+
√
nV (P,W )Φ−1(ε′e)+O (log n) . (43)

By choosing P to be a type that is the closest to an input dis-
tribution achieving Vεe , we obtain, by the usual approximation
arguments [11, Lem. 7],

logMn ≥ nC +
√
nVε′eΦ

−1(ε′e) +O (log n) . (44)

We have proved the the random ensemble satisfies (40)
and (42) but it is not clear yet there exists a single deterministic
code that satisfies the same two bounds. To show this, let
θ ∈ (0, 1). Set εe := 1

1−θ (ε′e +O(n−1/2)) and εu := 1
θn
−1/2.

Then, making the expectation over the random code C explicit,
(40) and (42) can be written as

E[Pr[Ee|C]] ≤ (1− θ)εe, E[Pr[Eu|C]] ≤ θεu. (45)

Put η := θ/2. By Markov’s inequality,

Pr(A) ≤ 1− θ, Pr(B) ≤ θ − η, (46)

where event A := {Pr[Ee|C] > 1
1−θE[Pr[Ee|C]]} and event

B := {Pr[Eu|C] > 1
θ−ηE[Pr[Eu|C]]}. This implies that there

exists a deterministic code C∗n for which

Pr[Ee|C∗n] ≤ 1

1− θ
E[Pr[Ee|C]] ≤ εe, and (47)

Pr[Eu|C∗n] ≤ 1

θ − η
E[Pr[Eu|C]] ≤

θ

θ − η
εu =

2

θ
√
n
. (48)



Letting n → ∞, we conclude there exists a sequence of
deterministic codes {C∗n}n≥1 such that

lim sup
n→∞

Pr[Ee|C∗n] ≤ εe, lim
n→∞

Pr[Eu|C∗n] = 0 (49)

and per (44) and the relation between εe and ε′e,

lim inf
n→∞

1√
n

(logMn−nC)≥
√
V(1−θ)εeΦ

−1((1−θ)εe). (50)

Now take θ ↓ 0 to complete the proof.

B. List Decoding: Proof of Theorem 2

1) Converse Part: First by the definition of an
(Mn, Ln, εn)-list code, for every y ∈ Yn, we have

Ln ≥
Mn∑
m=1

1{y ∈ Dm} (51)

where Dm ⊂ Yn is the set of all y such that m is contained
in the list ϕ(y). Let Q ∈ P(Yn) be any output distribution.
Multiplying by Q(y) in (51) and summing over all y yields

Ln ≥
∑
y

Q(y)

Mn∑
m=1

1{y ∈ Dm} =

Mn∑
m=1

Q(Dm). (52)

Now emulate the erasures setting in Sec. IV-A1. A similar
non-asymptotic bound for list decoding was also obtained by
Kostina-Verdú in [19, Thm. 4].

2) Direct Part: The codebook generation is the same as in
Sec. IV-A2. Now the decoder outputs all messages m whose
empirical mutual information exceeds γ ≥ 0, i.e. the list is

L := {m ∈ [Mn] : Î(X(m) ∧Y) ≥ γ}. (53)

We now analyze the error probability assuming that message
m = 1 was sent. The two error events are

E1 := {Î(X(1) ∧Y) < γ}, and E2 := {|L| > 2
√
nl}. (54)

The probability of E1 can be analyzed using the Berry-Esseen
theorem [18, Ch. XVI.5] just as for the erasures case. Indeed
from the steps leading to (38), we have

Pr[E1] ≤ Φ

(
γ +O( logn

n )− I(P,W )√
V (P,W )/n

)
+O(n−1/2). (55)

Consider the expectation of the size of the list. Indeed

E[|L|] = E

[
Mn∑
m=1

1{Î(X(m) ∧Y) ≥ γ}

]
(56)

≤ 1 +

Mn∑
m=2

Pr
[
Î(X(m) ∧Y) ≥ γ

]
(57)

≤ 1 +Mn(n+ 1)|X ||Y|+|X |2−nγ (58)

where (58) follows from Lemma 3. By Markov’s inequality,
the probability of the second error event can be bounded as

Pr[E2] ≤ E[|L|]
2
√
nl
≤ 1 +Mn(n+ 1)|X ||Y|+|X |2−nγ

2
√
nl

. (59)

Now choose for some large enough K > 0,

γ = I(P,W ) +

√
V (P,W )

n
Φ−1 (ε)− K log n

n
. (60)

This ensures that Pr[E1] ≤ ε − 2√
n

for large enough n.
Furthermore, choose Mn to be smallest integer satisfying

logMn ≥ nγ +
√
nl −

(
|X ||Y|+ |X |+ 1

2

)
log n, (61)

ensuring that Pr[E2] ≤ 2√
n

and thus Pr[E1 ∪ E2] ≤ ε.
Approximating P ∗ achieving Vε with a type P completes the
proof as we have demonstrated that there exists a code with
list size no larger than 2

√
nl, error probability not exceeding

ε, and second-order coding rate at least l +
√
VεΦ

−1(ε).
Note that unlike the erasures setting, in this case we do

not need to augment the proof with the argument involving
Markov’s inequality (cf. argument leading to (48)) because
here, there is only a single error criterion.
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[14] Y. Altuğ and A. Wagner. The third-order term in the normal approxi-
mation for singular channels. 2013. arXiv:309.5126.

[15] R. G. Gallager. Information Theory and Reliable Communication. Wiley,
New York, 1968.

[16] I. Csiszár and J. Körner. Information Theory: Coding Theorems for
Discrete Memoryless Systems. Cambridge University Press, 2011.

[17] D. Wang, A. Ingber, and Y. Kochman. The dispersion of joint source-
channel coding. In Allerton Conference, 2011. arXiv:1109.6310.

[18] W. Feller. An Introduction to Probability Theory and Its Applications.
John Wiley and Sons, 2nd edition, 1971.
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