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Abstract—We study the non-asymptotic fundamental limits
for transmitting classical information over memoryless quantum
channels, i.e. we investigate the amount of information that can be
transmitted when the channel is used a finite number of times and
a finite average decoding error is permissible. We show that, if we
restrict the encoder to use ensembles of separable states, the non-
asymptotic fundamental limit admits a Gaussian approximation
that illustrates the speed at which the rate of optimal codes
converges to the Holevo capacity as the number of channel
uses tends to infinity. To do so, several important properties of
quantum information quantities, such as the capacity-achieving
output state, the divergence radius, and the channel dispersion,
are generalized from their classical counterparts. Further, we
exploit a close relation between classical-quantum channel coding
and quantum binary hypothesis testing and rely on recent
progress in the non-asymptotic characterization of quantum
hypothesis testing and its Gaussian approximation.

I. INTRODUCTION

One of the landmark achievements in quantum informa-
tion theory is the derivation of the coding theorem for
sending classical information over a noisy quantum chan-
nel by Holevo [10], and independently by Schumacher-
Westmoreland [16]: the so-called HSW theorem. These results
establish that the classical capacity of a quantum channel —
under the restriction that the encoder uses ensembles of prod-
uct (or separable) states — is given by the Holevo capacity.
This restriction of the encoder is necessary to avoid the
problem of the non-additivity of the Holevo capacity [6] for
general channels. In fact, without this restriction, the strong
converse for the classical capacity is not known in general.1

Let W be a quantum channel (formal definitions are
deferred to the next section). In order to characterize the
fundamental limit of data transmission, let M∗(Wn, ε) denote
the maximum size of a length-n block code for memoryless
Wn = W⊗n with average error probability ε ∈ (0, 1). The
HSW theorem, together with the weak converse established

1Some of these results, although not the strong converse, can be extended
to characterize the classical capacity of quantum channels without restriction
on the encoder by means of a technique called regularization. However, we
will not discuss this here.

by Holevo [11] in the 1970s (the Holevo bound), asserts that

lim
ε→0

lim inf
n→∞

1

n
logM∗(Wn, ε) = χ(W),

where χ(W) = supψA maxP I(P,ψA,W) is the Holevo
capacity of the channel and I(P,ψA,W) is the mutual infor-
mation between the classical channel input X ← P and the
output quantum system B induced byW and the ensemble ψA.

The HSW theorem was strengthened significantly by
Ogawa-Nagaoka [13] and Winter [25] who proved the strong
converse for discrete classical-quantum (c-q) channels, namely
that

lim
n→∞

1

n
logM∗(Wn, ε) = χ(W), for all ε ∈ (0, 1).

In the work by Ogawa-Nagaoka [13], the strong converse was
proved using ideas from Arimoto’s strong converse proof [1]
for classical channels. These ideas easily extend and can be
used to show the strong converse for the classical capacity
with separable input ensembles. Winter’s strong converse
proof [25], on the other hand, is based on the method of
types [4] and strictly speaking only applies to discrete mem-
oryless c-q channels.

We are interested in investigating the approximate behav-
ior of logM∗(Wn, ε) without taking the limit n → ∞.
This quantity characterizes the fundamental backoff from the
Holevo capacity for finite block lengths n as a function of
the error tolerance ε. In particular, we want to approximate
logM∗(Wn, ε) for large but finite n. Note that Winter [25]
in fact showed that

logM∗(Wn, ε) = nχ(W) +O(
√
n), for all ε ∈ (0, 1).

Our present work refines the O(
√
n) term by identifying the

implied constant in this remainder term as a function of ε
and a new figure of merit for quantum channels, the quantum
channel dispersion. The resulting Gaussian approximation
generalizes results for classical channels that go back to
Strassen’s seminal work in 1962 [19], where he showed for
most well-behaved discrete memoryless channels that

logM∗(Wn, ε) = nC(W ) +
√
nVε(W ) Φ−1(ε) +O(log n),



where C(W ) is the Shannon capacity, Φ the cumulative nor-
mal Gaussian distribution, and Vε(W ) is another fundamental
property of the channel known as the ε-channel dispersion,
a term coined by Polyanskiy et al. [15]. Refinements to and
extensions of the expansion of logM∗(Wn, ε) were pursued
by Hayashi [7], Polyanskiy et al. [15] as well as the present
authors [21].

In this work (see [23] for the full version), we prove that
an analogue of the expansion for logM∗(Wn, ε) for classical
channels holds also for the classical capacity of quantum
channels if we restrict to separable inputs. We show that

logM∗(Wn, ε) = nχ(W) +
√
nVε(W) Φ−1(ε) + o(

√
n),

for all ε ∈ (0, 1), where the ε-dispersion Vε(W) is, roughly
speaking, the (conditional) quantum relative entropy variance
between the channel and the capacity-achieving output state.

This contribution generalizes and extends a recent second
order analysis by the present authors [22] that covered only
discrete c-q channels. (We also take note of an alternative proof
of second order achievability by Beigi and Gohari [3].) The
model treated here is strictly more general in that it allows to
encode into arbitrary separable states and does not assume —
as does the c-q channel model — that codewords are chosen
as product states where the marginals are taken from a fixed,
finite set of allowed states. This additional generality comes
at a price. Due to the restrictions on permissible codewords,
our previous analysis of the converse was able to employ the
method of types. Here, this is no longer possible. We thus
provide a different proof of the converse that arrives at the
same bounds but utilizes a net over channel output states
instead. Finally, the quantum channel dispersion introduced
here is a non-trivial generalization of the definition in [22].

II. PROBLEM SETUP AND DEFINITIONS

Let A and B be two quantum systems modeled by Hilbert
spaces HA and HB , respectively, where we assume that HB
is finite-dimensional. We denote by S(A) and S◦(A) the set
of normalized quantum states (positive semi-definite operators
with unit trace) and normalized pure (rank one) quantum states
onHA, respectively. Analogously, we define S(B). We choose
the trace norm topology on S(A) and denote by P◦(A) the set
of probability measures on the measurable space (S◦(A),Σ),
where Σ is the Borel σ-algebra with regards to the trace
norm on S◦(A). For a finite set X , we denote by P(X )
the set of probability mass functions on X . For convenience
of exposition, we also introduce the sets X1 := [d2] and
X2 := [d2 + 1] that are used for indices of ensembles that
achieve first and second order, respectively.

A. Channel and Codes

Let W : S(A) → S(B) be a quantum channel, i.e. a
completely positive trace preserving map from linear operators
on HA to linear operators on HB . Without loss of generality,
we assume that the image ofW , denoted Im(W), has full rank
on HB . We denote by S∗ ⊆ S(A) the set of allowed input
states forW . A code C for a quantum channelW with allowed

input states S∗ is defined by the triple {M, ρA,D}, whereM
is a set of messages, e : M → S∗, m 7→ ρmA an encoding
function and D = {QmB }m∈M is a positive operator valued
measure (POVM). We write |C| = |M| for the cardinality of
the message set. We define the average error probability of a
code C for the channel W as

perr(C,W) := Pr[M 6= M ′] = 1− 1

|M|
∑
m∈M

tr
(
W(ρmA )QmB

)
where the distribution over messages PM is assumed to be
uniform on M, M e−−→ A

W−−−→ B
D−−→ M ′ forms a

Markov chain, and M ′ thus denotes the output of the decoder.
To characterize the non-asymptotic fundamental limit of data
transmission over a single use of the channel, we define

M∗(ε;W,S∗) :=

max
{
m ∈ N

∣∣∃ C : |C| = m ∧ perr(C,W) ≤ ε
}
.

We are interested in the fundamental limit for n ≥ 1 uses of
a memoryless channel, Wn =W⊗n that takes quantum states
S(An) on H⊗nA to quantum states S(Bn) on H⊗nB . In this
work, we consider the set of separable states Sn∗ ⊂ S(An),
i.e. arbitrary convex combinations of states ρAn =

⊗n
i=1 ρAi

where ρAi ∈ S(Ai) for all i ∈ [n]. Our goal is to find the
asymptotic expansion of M∗(ε;Wn,Sn∗ ).

B. First Order: Channel Capacity

The Holevo capacity of a channel W is most commonly
defined as follows.

χ(W) := sup
ρA:X1→S(A)

max
P∈P(X1)

I(P, ρA,W), where

I(P, ρA,W) := H
(
ρPB
)
−
∑
x∈X1

P (x)H
(
W(ρA(x))

)
=
∑
x∈X1

P (x)D
(
W(ρA(x))

∥∥ρPB). (1)

Here, H(ρ) := − tr(ρ log ρ) is the von Neumann entropy,
D(ρ‖σ) := tr(ρ(log ρ − log σ)) is the relative entropy,
and ρPB :=

∑
x∈X1

P (x)W(ρA(x)) the average output state
induced by P . We note that I(P, ρA,W) is the mutual
information between the channel input, X ← P , and the
corresponding channel output,W

(
ρA(X)

)
, for a fixed ensem-

ble ρA. We find the following equivalent expressions for the
Holevo capacity useful:

Proposition 1. The following expressions for the Holevo
capacity χ(W) are equivalent to (1).

χ(W) = sup
P∈P◦(A)

∫
dP(ψA)D

(
W(ψA)

∥∥ρPB), (2)

= min
σB∈S(B)

sup
ψA∈S◦(A)

D
(
W(ψA)

∥∥σB). (3)

Proof Ideas: The equality (1) = (2) follows by Cara-
theodory’s theorem, see, e.g., [17, Sec. V] and the convexity
of D(·‖·) in the first argument. The equality (2) = (3) is a
consequence of Sion’s minimax theorem [18].



The latter expression offers a powerful geometrical inter-
pretation of the Holevo quantity as a divergence radius.

Proposition 2. The minimizer in (3), denoted ρ∗B , is unique
and satisfies ρ∗B > 0. We call it the capacity achieving output
state (CAOS) and define

Γ := arg max
ψA∈S◦(A)

D
(
W (ψA)

∥∥ρ∗B) ⊆ S◦(A),

the set of capacity achieving input states. Then, ρ∗B lies in the
convex hull of W(Γ). Moreover, we have D(W(ψA)‖ρ∗B) ≤
χ(W) with equality if and only if ψA ∈ Γ.

Finally, the set of capacity achieving input distributions that
achieve the supremum in (2) is non-empty and given by

Π :=

{
P ∈ P◦(A)

∣∣∣∣P(Γ) = 1 ∧
∫

dP(ψ)W(ψ) = ρ∗B

}
.

so that we can write

χ(W) = sup
P∈Π

∫
dP(ψA)D

(
W(ψA)

∥∥ρ∗B) . (4)

We refer to the full version for the proof [23], which is
based on ideas taken from the literature [14], [17], [22].

For later reference, let us define Ων1 ,Ω
ν
2 ⊆ S∗(A)×n for

some 0 < ν ≤ 1, which describe sets of sequences of pure
states of length n that are close to capacity achieving. The
first set ensures that the input states are close to Γ,

Ων1 :=

{
φn ∈ S∗(A)×n

∣∣∣∣ 1

n

n∑
i=1

∆(φi,Γ) ≤ ν
}
,

where ∆(φi,Γ) := minϑ∈Γ
1
2‖φi − ϑ‖1. The second set

ensures that the average output state is close to the CAOS,
and is defined as

Ων2 :=

{
φn ∈ S∗(A)×n

∣∣∣∣∣ 1

2

∥∥∥∥ 1

n

n∑
i=1

W(φi)− ρ∗B
∥∥∥∥

1

≤ ν

}
.

The interesting, close to capacity achieving sequences are
those that are in Ων1 ∩ Ων2 .

We also define the set Πν ⊆ P◦(A) of approximately
capacity achieving input probability measures on S◦(A) as
follows.

Πν :=

{
P ∈ P◦(A)

∣∣∣∣∣
∫

dP(ψ)∆(ψ,Γ) ≤ ν ∧

1

2

∥∥ρPB − ρ∗B∥∥1
≤ ν

}
Clearly, the empirical distribution of a sequence φn, defined
as Pφn(ψ) = 1

n

∑n
i=1 1{ψ = φi}, is in Πν if and only if

φn ∈ Ων1 ∪ Ων2 . We observe that Π =
⋂
ν>0 Πν .

C. Second Order: ε-Dispersion

The ε-channel dispersion of a channel W is defined in
analogy with [22] based on the relative entropy variance

V (ρ‖σ) := tr
(
ρ(log ρ−log σ−D(ρ‖σ))2

)
introduced in [12],

[20]. We recall the following definitions, for P ∈ P(X2),

U(P,ψA,W) := V

( ∑
x∈X2

P (x)|x〉〈x| ⊗W(ψA(x))

∥∥∥∥∥∑
x∈X2

P (x)|x〉〈x| ⊗ ρPB

)
, (5)

V (P,ψA,W) :=
∑
x∈X2

P (x)V
(
W(ψA(x))

∥∥ ρPB). (6)

Also, from [22, Lm. 3], we know that for a fixed ensem-
ble ψA and P ∈ arg maxP∈P(X2) I(P,ψA,W), we have
U(P,ψA,W) = V (P,ψA,W).

The ε-channel dispersion is given by a generalization of the
second expression, Eq. (6).

Vε(W) :=

{
Vmin(W) ε < 1

2

Vmax(W) ε ≥ 1
2

, where

Vmin(W) := inf
P∈Π

∫
dP(ψ)V

(
W(ψ)

∥∥ρ∗B) and

Vmax(W) := sup
P∈Π

∫
dP(ψ)V

(
W(ψ)

∥∥ρ∗B).
The following lemma follows by an elementary application

of Caratheodory’s theorem (see, e.g., [5, Th. 18, (ii)]).

Lemma 3. Let χ = χ(W) and let ν ∈ {Vmin(W), Vmax(W)}.
There exists an ensemble ψA : X2 → S◦(A) (of size d2 + 1)
and a distribution P ∈ P(X2) with ρPB = ρ∗B and

I(P,ψA,W) = χ, U(P,ψA,W) = V (P,ψA,W) = ν.

D. Hypothesis Testing Divergence

A fundamental quantity we employ in our analysis is the
ε-hypothesis testing divergence [20]. To define this quantity,
let 0 ≤ ε < 1 and ρ ≥ 0 be a normalized state (i.e. trρ = 1)
and σ ≥ 0 an arbitrary state. Define

Dε
h(ρ‖σ) := − log

β1−ε(ρ‖σ)

1− ε
, where

β1−ε(ρ‖σ) := min
0≤Q≤id:

tr(Qρ)≥1−ε

tr(Qσ).

Various properties of Dε
h(ρ‖σ) are summarized in [22]. In

particular, we will extensively employ [22, Prop. 8], which
we partially restate here for the reader’s convenience.

Proposition 4. Let n ≥ 1, {ρi}ni=1, for ρi ∈ S(A) a set of
states and let σ ∈ S(A) such that σ � ρi for all i ∈ [n].
Moreover, let ε ∈ (0, 1) and δ < min{ε, 1−ε

4 }. Define

Dn :=
1

n

n∑
i=1

D(ρi‖σ), Vn :=
1

n

n∑
i=1

V (ρi‖σ),

Tn :=
1

n

n∑
i=1

T (P ρ
i,σ‖Qρ

i,σ),



where T (P ρ
i,σ‖Qρi,σ) is defined in [22, Sec. III]. Then,

Dε
h

( n⊗
i=1

ρi
∥∥∥σ⊗n) ≤ nDn +

√
nVn

1− ε− 4δ
+ F1(ε, δ, σ) .

(7)

Moreover, if Vn > 0, we have

Dε
h

( n⊗
i=1

ρi
∥∥∥σ⊗n) ≤ nDn +

√
nVnΦ−1

(
ε+ 4δ +

6Tn√
nV 3

n

)
+ F1(ε, δ, σ) (8)

where F1(ε, δ, σ) := log nϑ(σ)(1−ε)(ε+3δ)
δ4(1−(ε+3δ)) and ϑ(σ) is defined

in [22, Sec. III.C].

III. MAIN RESULT AND PROOF

Theorem 5. Let ε ∈ (0, 1) and let W be a quantum channel
with χ = χ(W) and ν = Vε(W). Then, we find the following
asymptotic expansion:

logM∗(ε;Wn,Sn∗ ) = nχ+
√
nν Φ−1(ε) + o(

√
n).

Remark 1. Our achievability result in fact states that

logM∗(ε;Wn,Sn∗ ) ≥ nχ+
√
nν Φ−1(ε) +O(log n).

It is expected that, as in the classical case, the third order term
is indeed of the form O(log n) for most channels. However,
we did not investigate this issue further.

The proof is split into several parts. First we discuss single-
shot bounds and then treat the direct and converse asymptotic
expansions separately.

A. One-Shot Bounds

We consider the following straightforward generalization of
the one-shot bounds in [22] by the present authors, which is
itself based on prior results in [8] and [24].

Theorem 6. Let X be a finite set and let ε ∈ (0, 1), η ∈ (0, ε)
and µ ∈ (0, 1 − ε). For every ρA : X → S∗ and every P ∈
P(X ), we have

Dε−η
h

(
ρ

(ρA,P )
XB

∥∥ρ(P )
X ⊗ ρ(ρA,P )

B

)
− F3(ε, η) (9)

≤ logM∗(ε;W,S∗)
≤ min
σB∈S(B)

sup
ρA∈S∗

Dε+µ
h

(
W(ρA)

∥∥σB)+ F4(ε, µ), (10)

where F3(ε, η) := log 4ε(1−ε+η)
η2 , F4(ε, µ) := log ε+µ

µ(1−ε−µ) ,
and

ρ
(ρA,P )
XB :=

∑
x∈X

P (x)|x〉〈x| ⊗W(ρA(x)).

B. Achievability

We refer to the full version [23] for a proof of the achievabil-
ity. The essential idea is to use the achievability result in [22]
for a fixed ensemble, and then apply Lemma 3 to show that a
finite ensemble indeed achieves the second order asymptotics.

C. Converse

Theorem 6 applied to n uses of the channel shows that

logM∗(ε;Wn,Sn∗ ) ≤ min
σBn∈S(B)⊗n

sup
φn∈S⊗n

∗

Dε+µ
h

(
Wn(φn)‖σBn

)
+ F4(ε, µ).

In the following we let µ = 1/
√
n ensuring that F4(ε, µ) =

O(log n). Thus, it remains to bound the first term involving
the hypothesis testing divergence. To do so, we need an
appropriate choice of output state σBn to further upper bound
logM∗(ε;Wn,Sn∗ ) above. We require the following auxiliary
result whose proof we omit (it is based on a construction
from [9, Lm. II.4] and uses continuity results for the relative
entropy [2, Thm. 2]). This result essentially states that there
exists a γ-net on the set of mixed states in the output space of
the channel whose cardinality can be bounded appropriately.

Lemma 7. Let S be the set of quantum states on a d-
dimensional Hilbert space. For every 0 < γ < 1, there exists
a set of states Gγ ⊆ S of size |Gγ | ≤ (5/γ)2d2(2d/γ + 2)d−1

such that, for every ρ ∈ S, there exists a state τ ∈ Gγ with
minimum eigenvalue at least γ/(2d+ γ) which satisfies

1

2
‖ρ− τ‖1 ≤ γ and D(ρ‖τ) ≤ γ · 4(2d+ 1).

Now, we choose the output state σBn ∈ S(B)⊗n as follows:

σBn =
1

|Gγ |+ 1

[
(ρ∗B)⊗n +

∑
τB∈Gγ

(τB)⊗n
]
. (11)

Note that σBn is normalized and is, in fact, a convex combina-
tion of the n-fold tensor product of the CAOS and the n-fold
tensor product of the elements of the net, of which there are
only finitely many. With this choice of σBn we bound

cv(φn) := Dε+µ
h

(
Wn(φn)‖σBn

)
in the following. In particular, we show that it is no larger
than nχ(W) +

√
nVε(W)Φ−1(ε) + o(

√
n) for all φn. The

technique for bounding cv(φn) differs depending on the state
sequence φn. We consider the three cases: 1) φn /∈ Ων1 , 2)
φn /∈ Ων2 and finally, 3) φn ∈ Ων1 ∩ Ων2 in the following.

Before we commence, we state three auxiliary results.

Lemma 8. Let I be a finite index set and let ρ, σi ∈ S(B) for
i ∈ I be quantum states. Let {αi}i∈I ∈ P(I) be non-negative
numbers that sum to one. Then,

Dε
h

(
ρ

∥∥∥∥ ∑
i∈I

αiσi

)
≤ min

i∈I

{
Dε
h(ρ‖σi)− logαi

}
Lemma 9. Let the minimum eigenvalue of a state σ ∈ S(B)
be ξ > 0. Define the function g : N \ {1} → R+ as g(2) :=
0.6 log2 e and g(d) := log2 d for d ≥ 3. We have

max
ρ∈S(B)

V (ρ‖σ) ≤ g(dimHB) + log2 ξ.

Lemma 10. Let φn ∈ S∗(A)⊗n be fixed and let 0 < ν ≤ 1.
If φn /∈ Ων1 , then there exists a set Ξν ⊆ [n] of cardinality
|Ξν | > nν2 such that, for all i ∈ Ξν , we have ∆(φi,Γ) > ν

2 .



For the proof of Lemma 8, see Properties 3 and 4 in [22,
Lm. 5]. For proofs of the other lemmas, we refer the reader
to the full version.

1) Sequences φn /∈ Ων1: Applying Lemma 8 to cv(φn) with
our choice of σBn in (11) and picking out the CAOS (ρ∗B)⊗n

yields an upper bound of the form

cv(φn) ≤ Dε+µ
h

(
Wn(φn)‖(ρ∗B)⊗n

)
+ log

(
|Gγ |+ 1

)
.

Furthermore, by using the Chebyshev-type upper bound in
Proposition 4, we obtain

cv(φn) ≤
n∑
i=1

D(W(φi)‖ρ∗B) +O(
√
n) ,

where we also employed Lemma 9 since the minimum eigen-
value of the CAOS ρ∗B is positive so V (W(φ)‖ρ∗B) < ∞
uniformly in φ. Also note that F1(ε, δ) = O(log n) for
δ = 1/

√
n. Now, we define

χ̂ := sup
φ∈S(B): ∆(φ,Γ)> ν

2

D
(
W(φ)

∥∥ρ∗B) < χ.

This leads us to use Lemma 10 to bound

cv(φn) ≤
∑
i∈Ξν

χ̂+
∑
i/∈Ξν

χ+O(
√
n)

≤ nχ− n(χ− χ̂)
ν

2
+O(

√
n).

Hence, for these sequences, we have cv(φn) ≤ nχ +√
nVεΦ

−1(ε) + o(
√
n) as desired.

2) Sequences φn /∈ Ων2: For these sequences, we extract
the state (τB)⊗n from the convex combination that defines
σBn in (11), where τB ∈ arg minτ∈Gγ D(ρB‖τ) is the state
closest (in the relative entropy sense) to the average output
state ρB = 1

n

∑n
i=1W(φi) in Gγ and the constant γ > 0 is

to be chosen later. Then, by using the Chebyshev-type upper
bound in Proposition 4 we have

cv(φn) ≤
n∑
i=1

D(W(φi)‖τB) +

√∑n
i=1 V (W(φi)‖τB)

1− ε− µ− 4δ

+ F1(ε, δ) + log
(
|Gγ |+ 1

)
. (12)

Because the states in the net have minimum eigenvalue
at least γ/(2d + γ) > 0 (cf. Lemma 7), we have that
V (W(φi)‖τB) ≤ g(d) + log2

(
γ/(2d+ γ)

)
, a finite constant.

Thus, the second term in (12) can be upper bounded by
O(
√
n). The sum of the third, fourth and fifth terms is of the

order O(log n). Hence, continuing the bounding of cv(φn),
we obtain

cv(φn) ≤
n∑
i=1

D(W(φi)‖ρB) + nD(ρB‖τB) +O(
√
n)

≤ nI(Pφn ,W) + n · 4γ(2d+ 1) +O(
√
n),

where the second inequality follows from the properties of the
γ-net stated in Lemma 7. Then, we know that χ̃ < χ and

cv(φn) ≤ nχ− n(χ− χ̃− 4γ(2d+ 1)) +O(
√
n).

By choosing γ small enough such that χ−χ̃−4γ(2d+1) > 0,
we arrive at the desired asymptotics, i.e. that cv(φn) ≤ nχ+√
nVεΦ

−1(ε) + o(
√
n).

3) Sequences φn ∈ Ων1 ∩Ων2: These are the sequences that
are close to capacity-achieving. The treatment of these is simi-
lar to the presentation in [22] and the Berry-Esseen bound (8)
can be employed. However, a few additional considerations
have to be made and we refer to the full version for a proof.
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