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Abstract—We present a novel achievability bound for the
Wyner-Ahlswede-Körner (WAK) problem of lossless source cod-
ing with rate-limited side-information. This bound is proved using
ideas from channel simulation and channel resolvability. The
bound improves on all previous non-asymptotic bounds on the
error probability of the WAK problem. We also present achiev-
able second-order coding rates by applying the multidimensional
Berry-Essèen theorem to our new non-asymptotic bound.

Index Terms—Source coding, side-information, finite block-
length, non-asymptotic, second-order coding rate

I. INTRODUCTION

We revisit the classical problem of lossless source coding
with a helper. In this problem, first tackled by Wyner [1]
and Ahlswede-Körner [2] (WAK), a main source Xn is to
be reconstructed almost losslessly from rate-limited versions
of Xn and Y n, a correlated random variable regarded as side-
information or helper. The compression rates of Xn and Y n

are denoted as R1 and R2 respectively. The optimal rate region
is the set of rate pairs (R1, R2) for which there exists a reliable
code. WAK [1], [2] showed that the optimal rate region is

R1 ≥ H(X|U), R2 ≥ I(U ;Y ) (1)

for some PU |Y . For the direct part, the helper encoder
compresses the side-information and transmits a description
represented by U . The main encoder then uses binning as in
the achievability proof of the Slepian-Wolf theorem to help
the decoder recover X given the description U .

With renewed interest in finite blocklength bounds and
second-order coding rates [3], [4], in this paper, we derive
the tightest finite blocklength bound on the error probability
for the WAK problem. The proof makes use of channel resolv-
ability techniques [5, Ch. 6] in the helper’s code construction.
The use of channel resolvability for lossy (and lossless) source
coding is well-recognized in the quantum information theory
community. See [6]–[8] for example. The main idea in our
proof is that, mixed over the common randomness, the joint
distribution of (U, Y ) (in the one-shot notation) is close (in the
variational distance sense) to (Û , Y ), where Û designates the
chosen auxiliary codeword. As a result, by monotonicity of the
variational distance, the joint distribution of (U, Y,X) is also
close to (Û , Y,X). This means that in the asymptotic setting,
the triple (Û , Y,X) is jointly typical with high probability.
This circumvents the need to use the so-called piggyback
coding lemma (PBL) and the Markov lemma [1].

A. Main Contributions

Our main contribution in this paper is to demonstrate an
improved bound for WAK coding using ideas from channel re-
solvability [5, Ch. 6] and channel simulation [9]. The primary
part of the new bound on the error probability is Pr(Ec ∪ Eb)
where Ec represents the covering error and Eb represents the
binning error. Since Pr(Ec) and Pr(Eb) are both information
spectrum [5] quantities, they are amenable to be estimated
by the Berry-Essèen theorem [10] in the n-fold setting. This
yields an achievable second-order coding rate. However, unlike
in the point-to-point setting [3], [4], in the multiuser setting,
the second-order coding rate is expressed in terms of a so-
called dispersion matrix [11].

B. Related Work

Kuzuoka [12] and Miyake and Kanaya [13] used Wyner’s
PBL to derive a finite blocklength achievability bound and an
information spectrum characterization for the WAK problem
respectively. Verdú improved on Kuzuoka’s bound by using
finite blocklength analogues of the packing and covering
lemmas in [14]. Kelly and Wagner [15] derived bounds on the
error exponent for the WAK problem. We review these results
in Section II-C. The second-order coding rate for Slepian-Wolf
coding (a related problem) was derived by Tan and Kosut [11].

II. PRELIMINARIES

In this section, we introduce our notation, state the WAK
problem and review existing results for this problem.

A. Notations

Random variables (e.g., X) and their realizations (e.g., x)
are in capital and lower case respectively. All random variables
take values on finite sets which are denoted in calligraphic
font (e.g., X ). The cardinality of X is denoted as |X |. Let
Xn := (X1, . . . , Xn). The set of all distributions supported
on alphabet X is denoted as P(X ). Information-theoretic
quantities are denoted in the usual manner [5], [16].

B. Problem Formulation

Let us consider a correlated source (X,Y ) taking values
in X × Y and having joint distribution PXY . Throughout, X
is the main source while Y is the helper or side-information.
The WAK problem involves reconstructing X losslessly given
rate-limited versions of both X and Y .



Definition 1. A (possibly stochastic) source coding with side-
information (SSI) code Φ = (f, g, ψ) is a triple of mappings
that includes two encoders f : X → M and g : Y → L and
a decoder ψ : M×L → X . The error probability of the SSI
code Φ is defined as

Pe(Φ) := Pr {X 6= ψ(f(X), g(Y ))} . (2)

In Section IV, we consider n-fold i.i.d. extensions of X and
Y , denoted as Xn and Y n. In this case, we use the subscript n
to specify the blocklength, i.e., the code is Φn = (fn, gn, ψn)
and the compression index sets are Mn and Ln. In this case,
we can define the pair of rates of the code Φn as

R1(Φn) :=
1
n

log |Mn|, R2(Φn) :=
1
n

log |Ln|. (3)

Definition 2. The (n, ε)-optimal rate region R(n, ε) is defined
as the set of all pairs of rates (R1, R2) for which there exists
a SSI code Φn with rates at most (R1, R2) and with error
probability not exceeding ε. In other words,

R(n, ε) :=
{

(R1, R2) ∈ R2
+ : ∃Φn s.t.

1
n

log |Mn| ≤ R1,
1
n

log |Ln| ≤ R2,Pe(Φn) ≤ ε

}
(4)

We also define the asymptotic rate regions

R(ε) := cl

[ ∪
n≥1

R(n, ε)

]
, R :=

∩
0<ε<1

R(ε). (5)

where cl denotes closure in R2.

In the following, we will provide an inner bound to R(n, ε)
that improves on all previous inner bounds [12], [17].

C. Existing Results

In this section, we review some asymptotic and non-
asymptotic bounds for the WAK problem. Let P(PXY ) be
the set of all joint distributions PUXY such that the X × Y-
marginal is PXY , U − Y − X forms a Markov chain and
|U| ≤ |Y| + 1. Define the set

R∗ :=
∪

PUXY ∈P(PXY )

{(R1, R2) : R1≥H(X|U), R2≥I(U ;Y )}.

(6)
Wyner [1] and Ahlswede-Körner [2] proved the following:

Theorem 1 (Wyner [1], Ahlswede-Körner [2]). For every 0 <
ε < 1, we have

R(ε) = R = R∗. (7)

To prove the direct part, Wyner used the PBL and the
Markov lemma [1] while Ahlswede-Körner [2] used the max-
imal code construction. Ahlswede-Gács-Körner [18] proved
the strong converse using entropy and image-size characteri-
zations [16, Ch. 15]. See [16, Thm. 16.4].

The following non-asymptotic version of Wyner’s bound
was proved by Kuzuoka [12] using the Markov lemma. For

fixed alphabet U , joint distribution PUXY ∈ P(PXY ) and
arbitrary positive constants γb and γc, we define

Tb(γb) :=
{
(u, x) ∈ U × X : − logPX|U (x|u) < γb

}
(8)

Tc(γc) :=
{

(u, y) ∈ U × Y : log
PY |U (y|u)
PY (y)

< γc

}
(9)

Theorem 2 (Kuzuoka [12]). For arbitrary γb, γc > 0, there
exists an SSI code Φ with error probability satisfying

Pe(Φ) ≤ 2
√
PUX(Tb(γb)c) + PUY (Tc(γc)c)

+
2γb

|M|
+ exp

{
− |L|

2γc

}
. (10)

The first and second terms are the dominant ones. The
second term represents the encoding of Y with U and the first
term represents the decoding of X given U . The first term can
be large due to the square root resulting from Wyner’s PBL.
Verdú [17] demonstrated a refined version of Theorem 2 in
which the square root in the first term is removed.

Theorem 3 (Verdú [17]). For arbitrary γb, γc > 0, there exists
an SSI code Φ with error probability satisfying

Pe(Φ)≤PUX(Tb(γb)c)+PUY (Tc(γc)c)+
2γb

|M|
+exp

{
−|L|

2γc

}
.

(11)

In Section III, we further improve on Verdú’s bound. We
show that the two information spectrum terms in (11) (first
two terms) can be combined under a single probability.

In another line of work, Kelly and Wagner [15] demon-
strated bounds on the error exponent for the WAK problem.
Here we present only the direct part (lower bound).

Theorem 4 (Kelly-Wagner [15]). There exists a sequence of
SSI codes {Φn}∞n=1 of rates (R1, R2) such that

lim inf
n→∞

1
n

log
1

Pe(Φn)
≥ ηL(PXY , R1, R2) (12)

where

ηL(PXY , R1, R2) :=min
QY

max
QU|Y

min
QX|Y U :

H(QX)≥R1

D(QXY U ||PXY QU |Y )

+

 |R1 +R2 −H(QX|U |QU )
−I(QY , QU |Y )|+ I(QY , QU |Y ) ≥ R2

|R1 −H(QX|U |QU )|+ I(QY , QU |Y ) < R2

(13)

The proof in [15] is based on the method of types [16].
The helper encoder quantizes its observation Y n using the
test channel QU |Y and the primary encoder uses binning for
each source type class. The decoder finds the sequence in the
specified bin with the smallest empirical conditional entropy.

III. NOVEL NON-ASYMPTOTIC BOUND FOR WAK

We now present our non-asymptotic bound for WAK coding.
Fix U and PUXY ∈ P(PXY ). Also recall the definitions of
the sets Tb(γb) and Tc(γc) in (8) and (9) respectively. The
following is our Channel-Simulation-type (CS-type) bound.



Theorem 5 (CS-type bound). For arbitrary γb, γc, δ > 0,
there exists an SSI code Φ with

Pe(Φ) ≤ PUXY [(u, x) ∈ Tb(γb)c ∪ (u, y) ∈ Tc(γc)c]

+
1

|M|
∑

(u,x′)∈Tb(γb)

PU (u) +

√
∆(γc, PUY )

|L|
+ δ (14)

where

∆(γc, PUY ) :=
∑

(u,y)∈Tc(γc)

PU (u)
PY |U (y|u)2

PY (y)
. (15)

See Appendix A for a proof sketch. Using the definitions
of Tb(γb) and Tc(γc), we obtain the following.

Corollary 6 (Simplified CS-type bound). For arbitrary
γb, γc, δ > 0, there exists an SSI code Φ with

Pe(Φ) ≤ PUXY [(u, x) ∈ Tb(γb)c ∪ (u, y) ∈ Tc(γc)c]

+
2γb

|M|
+

√
2γc

|L|
+ δ. (16)

If (Xn, Y n) ∼ Pn
XY , then by designing γb and γc appro-

priately, we see that the dominating term in (16) is the first
one. The other terms vanish with n. In particular, δ stems from
the amount of common randomness known to all parties and
since the amount of common randomness can be arbitrarily
large, δ can be arbitrarily small. In addition, ∆ in (15) results
from approximating an arbitrary distribution with one that is
simulated by a channel [19, Lem. 2]. This is precisely the
channel resolvability problem [5, Ch. 6] in which given a
channel W : A → B and an input distribution PA, we
would like to approximate the output distribution PB(b) =∑

a PA(a)W (b|a) by using as small an amount of randomness
as possible. This is done by means of a deterministic map from
a finite set J to a codebook C = {aj}j∈J ⊂ A.

Notice that the sum of the information spectrum terms (first
two terms) in Verdú’s bound in (11) is the result upon invoking
the union bound on the first term in our simplified bound
in (16). We illustrate the differences numerically in Section IV.

IV. ACHIEVABLE SECOND-ORDER CODING RATES

In this section, we derive an inner bound to R(n, ε), defined
in (4) by using Gaussian approximations. For this purpose,
given a Gaussian random vector Z ∼ N (0,V) where V ∈
R2×2 is a positive-semidefinite matrix, define

S (V, ε) := {z ∈ R2 : Pr(Z ≤ z) ≥ 1 − ε}. (17)

This set was introduced in [11] and is, roughly speaking, the
multidimensional analogue of the Q−1 function.

To enlarge our inner bound to R(n, ε), we use a “time-
sharing” variable T , which is independent of (X,Y ) [20]. Note
that in the finite blocklength setting, the region R(n, ε) does
not have to be convex unlike in the asymptotic case; cf. (1).
For fixed finite sets U and T , let P̃(PXY ) be the set of all
PUTXY ∈ P(U × T ×X ×Y) such that the X ×Y-marginal
of PUTXY is PXY and U − (Y, T ) −X .

Definition 3. The entropy-information density vector for the
WAK problem for PUTXY ∈ P̃(PXY ) is defined as

j(U,X, Y |T ) :=

[
− logPX|UT (X|U, T )

log PY |UT (Y |U,T )

PY (Y )

]
. (18)

Note that the mean of the entropy-information density vector
is the vector of the entropy and mutual information, i.e.,

E[j(U,X, Y |T )] = J(PUTXY ) =
[
H(X|U, T )
I(U ;Y |T )

]
. (19)

Definition 4. The entropy-information dispersion matrix for
the WAK problem for PUTXY ∈ P̃(PXY ) is defined as

V(PUTXY ) := ET [Cov(j(U,X, Y |T ))] . (20)

We abbreviate the deterministic quantities J(PUTXY ) ∈ R2
+

and V(PUTXY ) � 0 as J and V respectively when the
distribution PUTXY is obvious from the context.

Definition 5. If V(PUTXY ) 6= 02×2, Rin(n, ε;PUTXY ) is the
set of rate pairs (R1, R2) such that R := [R1, R2]T satisfies

R ∈ J +
S (V, ε)√

n
+

2 log n
n

1. (21)

If V(PUTXY ) = 02×2, Rin(n, ε;PUTXY ) is defined as the
set of rate pairs (R1, R2) such that

R ∈ J +
2 log n
n

1. (22)

From Corollary 6, we can derive the following:

Theorem 7. For every 0 < ε < 1 and all n sufficiently large,
the (n, ε)-optimal rate region R(n, ε) satisfies∪

PUT XY ∈P̃(PXY )

Rin(n, ε;PUTXY ) ⊂ R(n, ε). (23)

See Appendix B for a proof sketch. For comparison, for a
fixed PUXY ∈ P(PXY ), define RV

in(n, ε;PUXY ) to be the set
of rate pairs that satisfy

R1≥H(X|U)+

√
VH(X|U)

n
Q−1(λε) +

2 log n
n

(24)

R2≥I(U ;Y )+

√
VI(U ;Y )

n
Q−1((1 − λ)ε) +

2 log n
n

(25)

for some λ ∈ [0, 1] where VH(X|U) := Var(logPX|U (X|U))
and VI(U ;Y ) := Var(log(PY |U (Y |U)/PY (Y ))). Verdú’s
bound on the error probability of the WAK problem yields
the following inner bound on R(n, ε).∪

PUXY ∈P(PXY )

RV
in(n, ε;PUXY ) ⊂ R(n, ε). (26)

Example: We now consider the case where (X,Y ) is a
discrete symmetric binary source DSBS(α) where α = 0.11.
The optimal rate region in (1) reduces to

R1 ≥ h(β ∗ α), R2 ≥ 1 − h(β), (27)

where β ∈ [0, 1/2] and h( · ) is the binary entropy. The above
region is attained by setting the backward test channel from Y



0.5 0.6 0.7 0.8 0.9 1.0
R10.0

0.2

0.4

0.6

0.8

1.0

R2

Fig. 1. A comparison between R̃in(n, ε) without time-sharing (solid line)
and the time-sharing region (dashed line) for ε = 0.1. The regions are to
the top right of the curves. The blue and red curves are for n = 500 and
n = 10, 000 respectively. The black curve is the first-order region (1).

to U to be a BSC with some crossover probability β. All the
elements in the entropy-information dispersion matrix V(β)
can be evaluated in closed form in terms of β. Define J(β) :=
[h(β∗α), 1−h(β)]T . In Fig. 1, we plot the second-order region

R̃in(n, ε) :=
∪

0≤β≤ 1
2

{
(R1, R2) :R∈J(β)+

S (V(β), ε)√
n

}
.

(28)
The first-order region and the second-order region with time-
sharing (|T | = 2) are also shown for comparison. The time-
sharing is between β = 0 and β = 1/2. As expected, as
the blocklength increases, the (n, ε)-optimal rate region tends
to the first-order one. Interestingly, at small blocklengths,
time-sharing makes the second-order (n, ε)-optimal rate region
in (28) larger compared to that without time-sharing.

We also consider the region R̃V
in(n, ε) which is the analogue

of R̃in(n, ε) but derived from Verdú’s bound in Theorem 3.
In Fig. 2, we compare the second-order coefficients, namely
that derived from our bound S (V(β), ε) and

S V(V(β), ε) :=
∪

0≤λ≤1

{
(z1, z2) : z1 ≥

√
VH(β)Q−1(λε),

z2 ≥
√
VI(β)Q−1((1 − λ)ε)

}
. (29)

Note that the difference between the two regions is quite small
even for ε = 0.5. This is because, for this example, the co-
variance of the entropy- and information-density (off-diagonal
in the dispersion matrix) is negative so the difference between
Pr(Z1 ≥ z1 or Z2 ≥ z2) and Pr(Z1 ≥ z1) + Pr(Z2 ≥ z2) is
small. The union bound is not very loose in this case.

V. CONCLUSION

In this paper, we proved a new non-asymptotic bound on
the error probability for the WAK problem. The same channel
resolvability and channel simulation technique can be used to
strengthen finite blocklength bounds for the Wyner-Ziv [14,
Thm. 11.3] and Gel’fand-Pinsker [14, Thm. 7.3] problems
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Fig. 2. A comparison between S (V(β), ε) (defined in (17)) and
S V(V(β), ε) (defined in (29)) for β = h−1(0.5) and ε = 0.5. The
red and blue curves are the boundaries of S (V(β), ε) and S V(V(β), ε)
respectively. The regions lie to the top right of the curves.

leading to improved second-order coding rates. These prob-
lems are investigated in the full version of this paper [21]
(see also independent and concurrent result by Yassaee-Aref-
Gohari [22]).

APPENDIX A
PROOF SKETCH FOR THEOREM 5

Proof: Fix PUXY ∈ P(PXY ) and γb, γc > 0. Let K ∈ K
denote common randomness [6]–[9] where K is finite. The
realization of K is known to all parties. Construct a stochastic
encoder g : K×Y → L based on a channel resolvability code.
Generate C := {u11, . . . , u|K||L|} where ukl ∼ PU . Define

P̄Y |U (y|u) := PY |U (y|u)1{(u, y) ∈ Tc(γc)} (30)
P̄UXY (u, x, y) := PU (u)P̄Y |U (y|u)PX|Y (x|y). (31)

The marginals P̄UY and P̄Y are induced by P̄UXY . Define

P̄KLŨỸ (k, l, u, y) =
1

|K||L|
P̄Y |U (y|u)1{ukl = u}. (32)

The stochastic encoder is

gC(l|k, y) :=
P̄LỸ |K(l, y|k)
P̄Ỹ |K(y|k)

. (33)

The helper encoder, given k and y, generates L̂ ∼ gC( · |k, y).
Define the quantized source Û = uKL̂. The joint distribution
of the random variables K, L̂, Û ,X, Y is given by

PKL̂ÛXY (k, l, u, x, y) =
1
|K|

gC(l|k, y)PXY (x, y)1{ukl = u}
(34)

We also introduce a “smoothed” version of PKL̂ÛXY , namely,

P̄KL̂ÛXY (k, l, u, x, y) =
1
|K|

gC(l|k, y)P̄XY (x, y)1{ukl = u}
(35)

The following lemmas form the basis of the bound on the error
probability in (14). They can be proved by using monotonicity
and the data-processing lemma for the variational distance
d(P,Q) := 1

2

∑
a |P (a) −Q(a)| as well as [19, Lem. 2].



Lemma 8. We have

d(PÛXY , P̄UXY ) ≤ PUXY ((u, y) ∈ Tc(γc)c)
2

+d(P̄ÛY , P̄UY ).
(36)

Lemma 9. For every γ > 0, we have

EC [d(P̄ÛY , P̄UY )] ≤ 1
2

√
∆(γc, PUY )

|L|
+

1
2

√
2γ

|K||L|
+ PU (− logPU (U) > γ). (37)

Lemmas 8 and 9 yield a bound on EC [d(PÛXY , P̄UXY )]
which is an measure of the atypicality of PÛXY relative to
P̄UXY (or equivalently the unsmoothed version PUXY ). This
is a surrogate for Wyner’s PBL and the Markov lemma [1].

As in Slepian-Wolf coding, the main encoder f assigns a bin
index m ∈ M to each x ∈ X uniformly and independently.

Let ψ′ : M × U → X be defined as follows. ψ′ outputs
x̂ if it is the unique element in bin m (i.e., f−1(m)) such
that (u, x̂) ∈ Tb(γb). Otherwise, ψ′ outputs any prescribed
constant x0 ∈ X . For the common randomness k ∈ K,
messages m ∈ M and l ∈ L, the decoder is defined
as ψ(m, l; k) := ψ′(m,ukl). For a fixed random binning
specified by (random) function f , define

Ef := {(u, x, y) : ψ′(f(x), u) 6= x}. (38)

Lemma 10. Averaged over the common randomness, the error
probability can be bounded as∑

k

1
|K|

Pe(k, f, gC) ≤ P̄UXY (Ef ) +
PUXY ((u, y) ∈ Tc(γc)c)

2

+ d(PÛXY , P̄UXY ). (39)

Lemma 11. Averaged over the random binning, the first term
in (39) can be bounded as

Ef [P̄UXY (Ef )] ≤ PUXY [(u, x) ∈ Tb(γb)c ∩ (u, y) ∈ Tc(γc)]

+
1

|M|
∑

(u,x′)∈Tb(γb)

PU (u). (40)

The proof of the CS-type bound is completed by uniting
Lemmas 8–11 and choosing γ and |K| to be sufficiently large
so that the last two terms in (37) are arbitrarily small.

APPENDIX B
PROOF SKETCH FOR THEOREM 7

Proof: Fix a PUTXY ∈ P̃(PXY ). We only consider
the case V(PUTXY ) � 0 here. See [11] to deal with the
singular case. Suppose that (R1, R2) are such that R ∈
Rin(n, ε;PUTXY ), defined in (21). Then the vector

z̃ :=
√
n

(
R − J − 2 log n

n
1
)

∈ S (V, ε). (41)

Also fix a sequence tn ∈ T n whose type is O(1/n)-close
to PT . Then, consider the test channel PUn|Y n(un|yn) :=
Pn

U |TY (un|tn, yn) ∈ P̃(Pn
XY ). Set γc := log |Ln| − log n,

γb := log |Mn| − log n and δ := 1/n. Then, by using
Corollary 6, there exists an SSI code Φn satisfying

1−Pe(Φn)≥Pr

{
1
n

n∑
i=1

j(Ui, Xi, Yi|ti)≤R− log n
n

1

}
− 3√

n
.

(42)

The multi-dimensional Berry-Essèen theorem [10] yields

1 − Pe(Φn)≥Pr
{
Z ≤ z̃ +

log n√
n

1
}
−O

(
1√
n

)
. (43)

Since z̃ satisfies (41), by using Taylor’s approximation theo-
rem, we can assert that the probability in (43) is ≥ 1 − ε −
O(1/

√
n) and so Pe(Φn) ≤ ε for all n sufficiently large.
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[17] S. Verdú, “Non-asymptotic achievability bounds in multiuser informa-
tion theory,” in Allerton Conference, 2012.
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