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Abstract—Achievable error exponents for the relay channel
are derived using the method of types. In particular, two block-
Markov coding schemes are analyzed: partial decode-forward
and compress-forward. The derivations require combinations of
the techniques in the proofs of the packing lemma for the error
exponent of channel coding and the covering lemma for the error
exponent of source coding with a fidelity criterion.

Index Terms—Relay channel, Error exponent, Partial decode-
forward, Compress-forward

I. INTRODUCTION

We derive achievable error exponents for the discrete mem-
oryless relay channel. This channel, introduced in [1], is a
point-to-point communication system consisting of a sender
X1, a receiver Y3 and a relay with input Y2 and output X2.
The capacity is not known in general but there exists several
coding schemes that are optimal for certain classes of relay
channels, e.g., degraded. These coding schemes, introduced
in the seminal work by Cover-El Gamal [2] include decode-
forward (DF), partial decode-forward (PDF) and compress-
forward (CF). Using PDF, the capacity is lower bounded as

C≥max min{I(X1X2;Y3), I(UY2|X2)+I(X1;Y3|X2U)}
(1)

where the maximization is over all PUX1X2
. DF is a special

case of PDF in which U = X1 and instead of decoding part of
the message as in PDF, the relay decodes the entire message.
In CF, a more complicated coding scheme, the relay sends a
description of Y2 to the receiver. It uses Y3 as side information
à la Wyner-Ziv [3, Ch. 11] to reduce the rate of the description.
One form of the CF lower bound writes

C ≥max min{I(X1; Ŷ2Y3|X2),

I(X1X2;Y3)− I(Y2; Ŷ2|X1X2Y3)} (2)

where the maximization is over PX1 , PX2 and PŶ2|X2Y2
.

Both PDF and CF involve block-Markov coding in which the
channel is used N = nb times over b blocks, each involving
an independent message to be sent and the relay codeword in
block j depends statistically on the message from block j−1.

In addition to capacities, in information theory, error ex-
ponents are also of tremendous interest. They quantify the
exponential rate of decay of the error probability when the
rate of the code is below capacity. Such results allow us to
provide rough bounds on the blocklength needed to achieve
a certain rate. By using maximum mutual information (MMI)
decoding [4], [5], the error exponent we derive for PDF is
universally attainable, i.e., the decoder does not need to know
the channel statistics. Our two main contributions here are the

derivations of error exponents for PDF and CF (though for
CF, the decoder is not universal). For CF, a key technical
contribution is the taking into account of the conditional
correlation between Ŷ2 and X1 (given X2) using a technique
introduced in [6].

A. Related Work

The work that is most closely related to this paper is [7]
in which the authors derived the error exponent for sliding-
window DF based on Gallager’s Chernoff-bounding tech-
niques [8]. We generalize their result to PDF and we use MMI
decoding [4]. For PDF, our work leverages on the proofs of the
various forms of the packing lemmas for multiuser channels in
Haroutunian et al. [9]. For CF, since it is related to Wyner-Ziv,
we leverage on the work of Kelly-Wagner [10] who derived
an achievable exponent for Wyner-Ziv. In a similar vein, [11]
and [12] derived lower bounds for the error exponents of
Gel’fand-Pinsker and content identification respectively. We
also note that Ngo et al. [13] presented an achievable error
exponent for amplify-forward for the AWGN relay channel
but does not take into account block-Markov coding.

II. NOTATIONS AND SYSTEM MODEL

We adopt the notation from Csiszár and Körner [5]. Random
variables (e.g., X) and their realizations (e.g., x) are in capital
and small letters respectively. All random variables take values
on finite sets, denoted in calligraphic font (e.g., X ). For a
sequence xn = (x1, . . . , xn) ∈ Xn, its type is the distribution
P (x) = 1

n

∑n
i=1 1{x = xi}. The set of types with denomina-

tor n supported on alphabet X is denoted as Pn(X ). The type
class of P is denoted as TP := {xn ∈ Xn : xn has type P}.
For xn ∈ TP , the set of sequences yn ∈ Yn such that
(xn, yn) has joint type P × V is the V -shell TV (xn). Let
Vn(Y;P ) be the family of stochastic matrices V : X → Y
for which the V -shell of a sequence of type P ∈ Pn(X )
is not empty. Information-theoretic quantities are denoted in
the usual way. For example I(X;Y ) and I(P, V ) denote the
mutual information where the latter expression makes clear
that the joint distribution of (X,Y ) is P × V . In addition,
Î(xn ∧ yn) is the empirical mutual information of (xn, yn),
i.e., if xn ∈ TP and yn ∈ TV (xn), then, Î(xn∧yn) = I(P, V ).
Finally, |a|+ := max{a, 0} and [a] := {1, . . . , dae}.

Definition 1. A 3-node discrete memoryless relay channel
(DM-RC) is a tuple (X1 × X2,W,Y2 × Y3) where W :
X1 ×X2 → Y2 ×Y3 is a stochastic matrix. The sender (node
1) wishes to communicate a message M to the receiver (node
3) with the help of the relay node (node 2).



Definition 2. A (2nR, n) code for the DM-RC consists of a
message set M = [2nR], an encoder f : M → Xn

1 that
assigns a codeword to each message, a sequence of relay
encoders gi : Yi−1

2 → X2, i ∈ [n] each assigning a symbol to
each past received sequence and a decoder ϕ : Yn

3 →M that
assigns an estimate of the message to each channel output.

We assume that M is uniformly on M and the channel is
memoryless. The average error probability is P(ϕ(Y n

3 ) 6= M).
As in [7], for both PDF and CF, we will use block-Markov

coding to send a message M representing NReff bits of
information. We use the channel N = nb times and this total
blocklength is partitioned into b blocks each of blocklength n.
The number of blocks b is fixed and regarded as a constant
(does not grow with n). The message is split into b− 1 sub-
messages Mj , each representing nR bits of information. Thus,
the effective rate is Reff := b−1

b R. Under this setup, we wish
to determine the error exponent under PDF and CF.

Definition 3. The b-block-error exponent is defined as

Eb(Reff) = sup

{
lim inf
N→∞

− 1

N
logP(M̂ 6= M)

}
where N = nb, M is uniform on M := [2NReff ] and the
supremum is over all block-Markov coding schemes with b-
blocks for the DM-RC.

The usual reliability function E(R) is lower bounded
by supb∈NEb(

b−1
b R). In the following, we will study two

schemes that provide lower bounds to Eb(Reff).

III. PARTIAL DECODE-FORWARD

We warm up by deriving the error exponent for PDF. In
PDF, the relay decodes part of the message in each block.
By using the technique to prove the packing lemmas in
Haroutunian et al. [9] and MMI decoding [4], we obtain:

Theorem 1. Fix b ∈ N, auxiliary alphabet U and distribution
QX2

×QU |X2
×QX1|U,X2

∈P(X2 × U × X1). We have

Eb(Reff) ≥ 1

b

[
max

R′+R′′=R
min{F (R′), G(R′), G̃(R′′)}

]
, (3)

where F (R′), G(R′) and G̃(R′′) are exponents defined as

F (R′) := min
V :U×X2→Y2

D(V ‖WY2|UX2
|QUX2)

+ |I(QU |X2
, V |QX2)−R′|+,

G(R′) := min
V :U×X2→Y3

D(V ‖WY3|UX2
|QUX2)

+ |I(QU,X2 , V )−R′|+, (4)

G̃(R′′) := min
V :U×X1×X2→Y3

D(V ‖WY3|UX1X2
|QUX2X1

)

+ |I(QX1|UX2
, V |QUX2

)−R′′|+.

Note that WY2|UX2
, WY3|UX2

and WY3|UX1X2
are virtual

channels induced by W and QX2
, QU |X2

and QX1|U,X2
.

Clearly, for a fixed R′ +R′′ = R, if

R′ < min{I(U ;Y2|X2), I(UX2;Y3)},
R′′ < I(X1;Y3|UX2),

then F (R′), G(R′) and G̃(R′′) are positive. Hence, the error
probability decays exponentially fast if R satisfies the PDF
lower bound (1). Note that F (R′) is the exponent at the
relay and G(R′) and G̃(R′′) are the exponents at the decoder.
Setting U = X1 recovers DF for which the exponent is
provided in [7]. Note that (3) indicates a tradeoff between
rate and error probability: as b increases, Reff increases but
the error exponent decreases. We omit the proof of Theorem 1
here because it is fairly standard. We refer the reader to [14].

IV. COMPRESS-FORWARD (CF)
In this section, we state and prove an achievable error

exponent for CF. CF is more complicated than PDF because
the relay does vector quantization on channel outputs Y n

2 and
forwards the description to the destination. This quantized
version of the channel output is Ŷ n

2 and the error here is
analyzed using techniques that Marton used to derive the error
exponent for rate-distortion [5, Ch. 9]. The receiver decodes
both the bin index and the message. This combination of
covering and packing leads to a more involved analysis that
needs to leverage on ideas in [10] where the error exponent for
Wyner-Ziv was derived. It also leverages on a technique [6] to
analyze the error when two indices are to be simultaneously
decoded given a channel output. At a high level, we operate on
a conditional type-by-conditional type basis for the covering
step at the relay. We also use an α-decoding rule [15] for
decoding the messages and the bin indices at the receiver.

A. Basic Definitions
We find it convenient to define several quantities upfront.

For CF, the following types and conditional types will be
kept fixed and hence can be optimized over eventually: input
distributions QX1

∈Pn(X1), QX2
∈Pn(X2) and test chan-

nel QŶ2|Y2X2
∈ Vn(Ŷ2;QY2|X2

QX2
) for some (adversarial)

channel realization QY2|X2
∈ Vn(Y2;QX2).

1) Auxiliary Channels: Let the auxiliary channel WQX1
:

X2 → Y2 be defined as

WQX1
(y2, y3|x2) :=

∑
x1

W (y2, y3|x1, x2)QX1
(x1).

This is simply the original relay channel averaged over QX1
.

With a slight abuse of notation, we denote its Y2- and Y3-
marginals using the same notation. Define another auxiliary
channel WQY2|X2

,QŶ2|Y2X2
: X1 ×X2 → Ŷ2 × Y3 as

WQY2|X2
,QŶ2|Y2X2

(ŷ2, y3|x1, x2)

:=
∑
y2

W (y3|x1, x2, y2)QŶ2|Y2X2
(ŷ2|y2, x2)QY2|X2

(y2|x2).

This is simply the original relay channel averaged over both
channel realization QY2|X2

and test channel QŶ2|Y2X2
.

2) Other Channels and Distributions: For any two channels
QY2|X2

, Q̃Y2|X2
: X2 → Y2, define two Ŷ2-modified channels

QŶ2|X2
(ŷ2|x2) :=

∑
y2

QŶ2|Y2,X2
(ŷ2|y2, x2)QY2|X2

(y2|x2),

Q̃Ŷ2|X2
(ŷ2|x2) :=

∑
y2

QŶ2|Y2,X2
(ŷ2|y2, x2)Q̃Y2|X2

(y2|x2).



Implicit in these definitions are QŶ2|Y2,X2
, QY2|X2

and Q̃Y2|X2

but these dependencies are suppressed for the sake of brevity.
For any V : X1 ×X2 × Ŷ2 → Y3, let the induced conditional
distributions VQX1

: X2 × Ŷ2 → Y3 and QŶ2|X2
× V : X1 ×

X2 → Ŷ2 × Y3 be defined as

VQX1
(y3|x2, ŷ2) :=

∑
x1

V (y3|x1, x2, ŷ2)QX1(x1),

(Q̃Ŷ2|X2
× V )(ŷ2, y3|x1, x2) :=V (y3|x1, x2, ŷ2)Q̃Ŷ2|X2

(ŷ2|x2).

3) Sets of Distributions and α-Decoder: Define the set
of joint types PX1X2Ŷ2Y3

with marginals consistent with
QX1 , QX2 and QŶ2|X2

as

Pn(QX1
, QX2

, QŶ2|X2
) :={PX1X2Ŷ2Y2

∈Pn(X1×X2×Ŷ2×Y3)

: (PX1
, PX2

, PŶ2|X2
) = (QX1

, QX2
, QŶ2|X2

)}.

We will use the notation P(QX1
, QX2

, QŶ2|X2
) (without

subscript n) to mean the same set without the restriction to
types but all distributions in P(X1×X2× Ŷ2×Y3). For any
four sequences (xn1 , x

n
2 , ŷ

n
2 , y

n
3 ), define the function α as

α(xn1 , ŷ
n
2 , y

n
3 |xn2 ) := D(V ‖WQY2|X2

,QŶ2|Y2X2
|P ) +H(V |P ),

where P is the joint type of (xn1 , x
n
2 , ŷ

n
2 ) and V : X1 ×X2 ×

Ŷ2 → Y3 is the conditional type of yn3 given (xn1 , x
n
2 , ŷ

n
2 ).

Roughly speaking, to decode the bin index and message, we
will maximize α over bin indices, messages and conditional
types QY2|X2

. This is analogous to maximum-likelihood de-
coding [15]. See (10). Define the set of conditional types

Kn(QY2|X2
, QŶ2|Y2X2

) :=
{
V ∈ Vn(Y3;QX1QX2QŶ2|X2

) :

α(QX1QX2QŶ2|X2
, V )

≥ α(QX1QX2QŶ2|X2
,WQY2|X2

,QŶ2|Y2X2
)
}
.

Intuitively, the conditional types in Kn(QY2|X2
, QŶ2|Y2X2

) are
those corresponding to sequences yn3 that lead to an error as
the likelihood computed with respect to V is larger than that
for the true averaged channel WQY2|X2

,QŶ2|Y2X2
. We will use

the notation K (QY2|X2
, QŶ2|Y2X2

) (without subscript n) to
mean the same set without the restriction to conditional types
but all conditional distributions from X1 ×X2 × Ŷ2 to Y3.

B. Error Exponent for Compress-Forward

Theorem 2. Fix b ∈ N and “Wyner-Ziv rate” R2 ≥ 0,
distributions QX1

∈P(X1) and QX2
∈P(X2) and auxiliary

alphabet Ŷ2. We have

Eb(Reff) ≥ 1

b
min{G1(R,R2), G2(R,R2)}

where the constituent exponents are defined as

G1(R,R2) := min
V :X2→Y3

D(V ‖WQX1
|QX2

)+|I(QX2
, V )−R2|+

G2(R,R2) := min
QY2|X2

:X2→Y2

D(QY2|X2
‖WQX1

|QX2
)

+ max
QŶ2|Y2X2

:Y2×X2→Ŷ2

J(R,R2, QŶ2|Y2X2
, QY2|X2

).

The quantity J(R,R2, QŶ2|Y2X2
, QY2|X2

) that constitutes
G2(R,R2) is defined as

J(R,R2, QŶ2|Y2X2
, QY2|X2

) := min
PX1X2Ŷ2Y3

∈P(QX1
,QX2

,QŶ2|X2
)

D(PŶ2Y3|X1X2
‖WQY2|X2

,QŶ2|Y2,X2
|QX1

QX2
)

+ min
Q̃Y2|X2

:X2→Y2

min
V ∈K (QY2|X2

,QŶ2|Y2X2
)

min
l=1,2

ψl(V, Q̃Y2|X2
, R,R2, PX1X2Ŷ2Y3

) (5)

where the functions ψl, l = 1, 2 are defined as

ψ1(V, Q̃Y2|X2
, R,R2, PX1X2Ŷ2Y3

)

:= |I(QX1
, Q̃Ŷ2|X2

× V |QX2
)−R|+ (6)

ψ2(V, Q̃Y2|X2
, R,R2, PX1X2Ŷ2Y3

)

:=
∣∣I(Q̃Ŷ2|X2

, VQX1
|QX2

)+|I(QX1
, Q̃Ŷ2|X2

× V )−R|+

− |I(Q̃Y2|X2
, QŶ2|Y2,X2

|QX2
)−R2 |+

∣∣+. (7)

C. Remarks on the Error Exponent for Compress-Forward

In this Section, we dissect the main features of the CF error
exponent presented in Theorem 2.

We are free to choose the input distributions QX1
and QX2

,
though these will be n-types for finite n ∈ N. We also have
the freedom to choose any “Wyner-Ziv rate” R2 ≥ 0.

In CF [2], the relay transmits a description ŷn2 (j) of its
received sequence yn2 (j) via a covering step. This explains
the final mutual information term in (7), namely I(Y2; Ŷ2|X2).
Since covering results in super-exponential decay in the error,
this does not affect the overall exponent. See (11).

The exponent G1(R,R2) is analogous to G(R′) in (4). This
represents the error rate in the estimation of X2’s index given
Y n

3 using MMI decoding. However, in the CF proof, we do
not use the packing lemma. Rather we construct a random
code and show that on expectation, the error probability decays
exponentially fast with the exponent given by G1(R,R2).

In G2(R,R2), QY2|X2
is the realization of the condi-

tional type of yn2 (j) given xn2 (j). The divergence term
D(QY2|X2

‖WQX1
|QX2) represents the deviation from the true

channel behavior WQX1
. We can optimize for the conditional

distribution QŶ2|Y2,X2
explaining the inner maximization over

QŶ2|Y2,X2
and outer minimization over QY2|X2

. This is a
game-theoretic-type result similar to [10]–[12].

The first part of J given by ψ1 in (6) represents incorrect
decoding of the index of Xn

1 (message Mj) as well as the
conditional type QY2|X2

given that the bin index of the
description Ŷ n

2 is decoded correctly. The second part of J
given by ψ2 in (7) represents the incorrect decoding the bin
index of Ŷ n

2 , the index of Xn
1 (message Mj) as well as

the conditional type QY2|X2
. We see the different sources

of “errors” in (5): a minimization over the different types
of channel behavior represented by PX1X2Ŷ2Y3

and another
minimization over conditional types Q̃Y2|X2

. Subsequently, the
error in α-decoding of the message and the bin index of the
description sequence is represented by the minimization over
V ∈ K (QY2|X2

, QŶ2|Y2X2
).



The choice of the “Wyner-Ziv rate” R2 allows us to operate
in two distinct regimes. This can be seen from the two different
cases involving R2 in (7). The number of Wyner-Ziv bins is de-
signed to be .

= exp(nI(Q̃Y2|X2
, QŶ2|Y2,X2

|QX2)), where the
choice of QŶ2|Y2,X2

depends on the realized conditional type
QY2|X2

. Thus, when R2 ≤ I(Q̃Y2|X2
, QŶ2|Y2,X2

|QX2), we
do additional binning as there are more bins than description
sequences. If R2 is larger than I(Q̃Y2|X2

, QŶ2|Y2,X2
|QX2

), no
binning is required.

For the analysis of the bin and message indices, if we simply
apply the packing lemmas in [5], [9], [15], this would result in
a suboptimal rate vis-à-vis CF. This is because the conditional
correlation of X1 and Ŷ2 given X2 would not be taken into
account. Thus, we need to analyze this error exponent more
carefully using techniques introduced in [6] for the multiple-
access channel. Note that the first two mutual informations
(ignoring the | · |+) in (7) can be written as

I(Ŷ2;Y3|X2) + I(X1; Ŷ2Y3|X2)

= H(X1|X2)+H(Ŷ2|X2)+H(Y3|X2)−H(X1Ŷ2Y3|X2),

demonstrating the symmetry between X1 and Ŷ2 when they
are decoded jointly at Y3.

From the exponents in Theorem 2, it is clear upon elimi-
nating R2 (if R2 is chosen small enough so that Wyner-Ziv
binning is necessary) that we recover the CF lower bound in
(2). Indeed, if ψ1 is active in the minimization in (5), the first
term in (2) is positive if and only if the error exponent G2

is positive for some choice of distributions QX1
, QX2

and
QŶ2|Y2,X2

. Also, if ψ2 is active in the minimization in (5) and
R2 is chosen sufficiently small, G2 is positive if

R < R2 + I(X1; Ŷ2Y3|X2) + I(Ŷ2;Y3|X2)− I(Y2; Ŷ2|X2)

< I(X1; Ŷ2Y3|X2) + I(Ŷ2;X2Y3)− I(Y2; Ŷ2|X2)

= I(X1X2;Y3)− I(Ŷ2;Y2|X1X2Y3). (8)

where we used the Markov chain Ŷ2 − (X1, X2) − (Y2, Y3)
[3, pp. 402]. Equation (8) matches the second term in (2).

D. Proof Sketch of Theorem 2

We only provide a sketch here. See [14] for details.
Proof: Random Codebook Generation: Fix types

QX1
∈Pn(X1) and QX2

∈Pn(X2) as well as rates R,R2 ≥
0. For each j ∈ [b], generate a random codebook in the follow-
ing manner. Randomly and independently generate exp(nR)
codewords xn1 (mj) ∼ Unif[TQX1

]. Randomly and indepen-
dently generate exp(nR2) codewords xn2 (lj−1) ∼ Unif[TQX2

].
Now for every QY2|X2

∈ Vn(Y2;QX2
) fix a different test

channel QŶ2|Y2,X2
(QY2|X2

) ∈ Vn(Ŷ2;QY2|X2
QX2

). For every
QY2|X2

∈ Vn(Y2;QX2) and every xn2 (lj−1) construct a
conditional type-dependent codebook B(QY2|X2

, lj−1) ⊂ Ŷn
2

of integer size |B(QY2|X2
, lj−1)| whose rate satisfies

R̃2(QY2|X2
) := I(QY2|X2

, QŶ2|Y2,X2
(QY2|X2

)|QX2
) + νn,

where νn ∈ Θ( log n
n ). Each sequence in B(QY2|X2

, lj−1) is
indexed as ŷn2 (kj |lj−1) and is drawn independently according

to Unif[TQŶ2|X2
(xn2 (lj−1))] where QŶ2|X2

is the marginal
induced by QY2|X2

and QŶ2|Y2,X2
(QY2|X2

). Depending on the
choice of R2, do one of the following:
• If R2 ≤ R̃2(QY2|X2

), partition the conditional type-
dependent codebook B(QY2|X2

, lj−1) into exp(nR2)
equal-sized bins Blj (QY2|X2

, lj−1) indexed by lj ∈
[exp(nR2)] (Wyner-Ziv binning).

• If R2 > R̃2(QY2|X2
), assign each element of

B(QY2|X2
, lj−1) a unique index in [exp(nR2)].

Transmitter Encoding: The encoder transmits xn1 (mj) in
block j ∈ [b].

Relay Encoding: At the end of block j ∈ [b], the
relay encoder has xn2 (lj−1) (by convention l0 := 1) and
its input sequence yn2 (j). It computes the conditional type
QY2|X2

∈ Vn(Y2;QX2). Then it searches in B(QY2|X2
, lj−1)

for a description sequence

ŷn2 (k̂j |lj−1) ∈ TQŶ2|Y2,X2
(QY2|X2

)(y
n
2 (j), xn2 (lj−1)). (9)

If more than one such sequence exists, choose one uniformly at
random in B(QY2|X2

, lj−1) from those satisfying (9). If none
exists, choose uniformly at random from B(QY2|X2

, lj−1).
Identify the bin index l̂j of ŷn2 (k̂j |lj−1) and send xn2 (l̂j).

Decoding: At the end of block j+1, the receiver has channel
output yn3 (j + 1). It does MMI decoding [4] as follows:

l̂j := arg max
lj∈[exp(nR2)]

Î(xn2 (lj) ∧ yn3 (j + 1)).

Having identified l̂j−1, l̂j above, find message m̂j , index k̂j
and conditional type Q̂(j)

Y2|X2
∈ Vn(Y2;QX2) satisfying

(m̂j , k̂j , Q̂
(j)
Y2|X2

) = arg max
(mj ,kj ,QY2|X2

):ŷn
2 (kj |l̂j−1)∈Bl̂j

(QY2|X2
,l̂j−1)

α
(
xn1 (mj), ŷ

n
2 (kj |l̂j−1), yn3 (j)|xn2 (l̂j−1)

)
. (10)

Declare that m̂j was sent.
Analysis of Error Probability: We now analyze the error

probability. Assume that Mj = 1 and let Lj−1, Lj and Kj be
indices chosen by the relay in block j. Note that [3, Thm. 16.4]

P(M̂j 6= Mj for any j ∈ [b−1]) ≤ (b−1) (εR + 2εD,1 + εD,2) ,

where εR is the error event that there is no description
sequence ŷn2 (k̂j |lj−1) in the bin B(QY2|X2

, lj−1) that sat-
isfies (9), εD,1 := P(L̂j 6= Lj) is the error probabil-
ity in decoding the wrong lj bin index, and εD,2 :=
P(M̂j 6= 1|Lj , Lj−1 decoded correctly) is the error prob-
ability in decoding the message incorrectly.

Covering Error εR: For εR, we follow the proof idea in
[10, Lem. 2]. For every realized conditional type QY2|X2

,

εR ≤ P(F|Y n
2 = yn2 , X

n
2 = xn2 , y

n
2 ∈ TQY2|X2

(xn2 )),

where F is the event that every sequence ŷn2 (kj |lj−1) ∈
B(QY2|X2

, lj−1) does not satisfy (9). Now we use the inde-
pendence of the codewords in B(QY2|X2

, lj−1) and properties
of types to assert that with the right choice of νn ∈ Θ( log n

n ),

εR ≤ e−(n+1)2 , ∀n ∈ N. (11)



Thus, εR decays super-exponentially fast.
First Packing Error εD,1: For εD,1, we leverage on tech-

niques to prove the random coding error exponent for channel
coding [5, Ch. 10]. This is standard so we omit the proof.

Second Packing Error εD,2: We partition the sample space
into subsets where the conditional type of relay input yn2 given
relay output xn2 is QY2|X2

∈ Vn(Y2;QX2
). That is,

εD,2 =
∑

QY2|X2
∈Vn(Y2;QX2

)

P(Y n
2 ∈ TQY2|X2

(Xn
2 ))ϕn(QY2|X2

)

where ϕn(QY2|X2
) is defined as

ϕn(QY2|X2
) :=P

(
M̂j 6=1

∣∣Lj , Lj−1 correct, Y n
2 ∈TQY2|X2

(Xn
2 )
)
.

By using properties of types,

P(Y n
2 ∈ TQY2|X2

(Xn
2 ))

.
≤ exp

[
−nD(QY2|X2

‖WQX1
|QX2

)
]
.

Following [6], we now bound ϕn(QY2|X2
) by first condition-

ing on joint types PX1X2Ŷ2Y3
∈Pn(QX1 , QX2 , QŶ2|X2

)

ϕn(QY2|X2
) ≤

∑
PX1X2Ŷ2Y3

∈Pn(QX1
,QX2

,QŶ2|X2
)

P
(
TPX1X2Ŷ2Y3

)
× P

( ⋃
V ∈Kn(QY2|X2

,QŶ2|Y2X2
)

EV
∣∣∣∣ TPX1X2Ŷ2Y3

)
(12)

where QŶ2|X2
is induced by QŶ2|Y2X2

and QY2|X2
and the

event EV is defined as

EV :=
⋃

Q̃Y2|X2
∈Vn(Y2;QX2

)\{QY2|X2
}

EV (Q̃Y2|X2
),

where the constituent events are defined as

EV (Q̃Y2|X2
) :=

⋃
m̃j 6=1

⋃
k̃j∈BL̂j

(Q̃Y2|X2
,L̂j−1)

EV (Q̃Y2|X2
, m̃j , k̃j),

and EV (Q̃Y2|X2
, m̃j , k̃j) is defined as the event that(

Xn
1 (m̃j), X

n
2 (Lj−1), Ŷ n

2 (k̃j |Lj−1), Y n
3 (j)

)
has joint type

QX1
QX2

Q̃Ŷ2|X2
V . Ineq. (12) reflects the error in α-decoding.

Now, we bound the constituent elements in (12). By a
simple calculation using the method of types [5],

P
(
TPX1X2Ŷ2Y3

)
.
≤ exp

[
− nD(PŶ2Y3|X1X2

‖WQY2|X2
,QŶ2|Y2,X2

|QX1QX2)
]
.

Hence, all that remains is to bound the probability of the
union in (12). There are two cases: For the case where
the decoded bin index k̃j is correct (i.e., equal to Kj) but
message is m̃j wrong (i.e., not equal to 1), the analysis is
relatively straightforward. Thus, we consider the case where
both decoded bin index and message are wrong.

For any conditional distribution Q̃Y2|X2
, define the excess

rate ∆R2(Q̃Y2|X2
) := R̃2(Q̃Y2|X2

) − R2. Assume for the
moment that ∆R2(Q̃Y2|X2

) ≥ 0 (the other case can be
dealt with similarly). Equivalently, this means that R2 ≤
I(Q̃Y2|X2

, QŶ2|Y2,X2
|QX2

) + νn so Wyner-Ziv binning is
required. Using bars to denote random variables generated

uniformly from their respective marginal type classes and
arbitrary sequences in the respective marginal type classes,
define as in [6]

ξn(V, Q̃Y2|X2
)

:= exp
[
n∆R2(Q̃Y2|X2

)
]
P
[
(x̄n2 ,

¯̂
Y n

2 , y
n
3 )∈TQX2

Q̃Ŷ2|X2
VQX1

]
,

ζn(V, Q̃Y2|X2
)

:= exp(nR)P
[
(x̄n2 ,

¯̂yn2 , X̄
n
1 , ȳ

n
3 ) ∈ TQX2

QX1
(Q̃Ŷ2|X2

×V )

]
.

By applying the union bound one at a time to the two unions
that define EV (Q̃Y2|X2

) as was done in [6], we obtain

P
[
EV (Q̃Y2|X2

)
∣∣ TPX1X2Ŷ2Y3

]
≤ γn(V, Q̃Y2|X2

)

where

γn(V, Q̃Y2|X2
) :=min{1, ξn(V, Q̃Y2|X2

) min{1, ζn(V, Q̃Y2|X2
)}}.

Hence, γn(V, Q̃Y2|X2
) has the following exponential behavior:

γn(V, Q̃Y2|X2
)
.
= exp

[
− n

∣∣I(Q̃Ŷ2|X2
, VQX1

|QX2
)

−∆R2(Q̃Y2|X2
) +

∣∣I(QX1
, Q̃Ŷ2|X2

× V |QX2
)−R

∣∣+∣∣+].
Observe the exponent of γn(V, Q̃Y2|X2

) matches (7) upon
using the definition of the excess rate ∆R2(Q̃Y2|X2

). Putting
all the bounds together completes the proof.
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