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Abstract—In this work, achievable dispersions for the discrete
memoryless interference channel (DM-IC) are derived. In other
words, we characterize the backoff from the Han-Kobayashi
(HK) achievable region, the largest inner bound known to
date for the DM-IC. In addition, we also characterize the
backoff from Sato’s region in the strictly very strong interference
regime, and the backoff from Costa and El Gamal’s region in
the strong interference regime. To do so, Feinstein’s lemma is
first generalized to be applicable to the interference channel.
Making use of the generalized Feinstein’s lemma, it is found
that the dispersions for the DM-IC can be represented by the
information variances of eight information densities when HK
message splitting is involved, and of six information densities
for another encoding strategy. We also derive an outer bound
that leverages on a known dispersion result for channels with
random state by Ingber-Feder. It is shown that for the strictly
very strong interference regime, the inner and outer bound have
similar algebraic forms.

I. INTRODUCTION

In information theory, the capacity is defined as the max-
imum rate at which reliable communication is admissible
for an arbitrarily small probability of error, provided the
code blocklength can grow without bound. However, practical
codes (such as LDPC, turbo, polar codes) operate at finite
blocklengths. Thus, it is important to assess the penalizing
deviation from the channel capacity required to maintain the
error probability below the desired value at a given finite
blocklength. Strassen [1] was the first to address this question
for the discrete memoryless (DM) point-to-point channel. In
other words, Strassen derived an asymptotic expansion for
the logarithm of the maximal size of length-n codes with
probability of error ε ∈ (0, 1). Recently, the interest in this
topic has been revived by the works [2] and [3]. It has been
shown that the maximal codebook size M∗(n, ε), for the DM
point-to-point channel, is approximated by the expression

logM∗(n, ε) = nC −
√
nV Q−1(ε) +O (log n) , (1)

where C is the capacity of the channel, V is the conditional
information variance evaluated at the capacity-achieving input
distribution (assuming it is unique), and Q(·) is the tail prob-
ability of the standard normal distribution. The conditional
information variance is also known as the dispersion [3]. Thus,√
V/nQ−1(ε) is roughly the penalty in terms of rate that one
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has to pay for operating at a finite blocklength, for the case
ε < 1

2 . The quantity
√
V Q−1(ε) is equivalent to the second-

order coding rate in [2]. Recently, the class of DM point-to-
point channel for which the third-order rate is known has been
enlarged [4].

While the dispersion for the point-to-point channel is fairly
well-understood, the understanding of dispersions for multi-
user settings is still limited. Achievable dispersions, which are
the dispersions for achievable regions, for the DM multiple-
access channel have been characterized recently [5]–[7]. The
authors in [5] also characterized achievable dispersions for the
broadcast channel with degraded message sets and Slepian-
Wolf coding.

In this work, we characterize achievable dispersions for
the discrete memoryless interference channel (DM-IC). We
find that the dispersions can be expressed as information
variances of eight information densities when Han-Kobayashi
(HK) message splitting is used, and of six such quantities for
another encoding strategy. These information densities will
be clearly defined below. Furthermore, we define a class of
channels called strictly very strong interference channels, in
which, we show that a general outer bound, using results
from [8], has similar algebraic form to our inner bound.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The discrete1 memoryless interference channel (DM-IC)
consists of two finite input alphabets X1 and X2, two finite
output alphabets Y1 and Y2, and a channel transitional proba-
bility pY1Y2|X1X2

(y1y2|x1x2), whose n-th extension satisfies

pY n
1 Y n

2 |Xn
1 Xn

2
(yn1 y

n
2 |xn

1x
n
2 ) =

n∏
k=1

pY1Y2|X1X2
(y1ky2k|x1kx2k).

Transmitter j ∈ {1, 2}, wishes to communicate a message
wj ∈ Wj = {1, 2, . . . ,Mj} to receiver j ∈ {1, 2}, where
Wj are message sources. Messages m1 and m2 from each
message set W1 and W2 respectively are equally probable.
It is assumed that W1 and W2 are statistically independent.
Let 0 < ε1, ε2 < 1 be fixed constants. An (M1,M2, n, ε1, ε2)
code for the DM-IC consists of encoding functions

fj : Wj → Xn
j for j = 1, 2; (2)

and two decoding functions

dj : Yn
j → Wj for j = 1, 2; (3)

1The assumption of discreteness is not restrictive, and is made to ensure
that some moments are positive and finite.



such that pe,1 ≤ ε1 and pe,2 ≤ ε2, where pe,1 and pe,2 denote
the average error probabilities, pe,j := Pr(Ŵj �= Wj).

Definition 1. A rate pair (R1, R2) is (n, ε1, ε2)-achievable
for the DM-IC if there exists an (M1,M2, n, ε1, ε2)- code for

the channel such that 1
n log(M1) ≥ R1 and 1

n log(M2) ≥ R2.

The (n, ε1, ε2)-capacity region of the DM-IC is defined as the

set of all (n, ε1, ε2)-achievable rate pairs.

First, we make a few important definitions. A well-known
achievability technique in the interference channel is HK
message splitting in which messages are split into private
and common messages. To do so, auxiliary random variables
(RVs) U,U1 and U2 are introduced, and U is a time-sharing
RV.

Definition 2. In the DM-IC, fix a joint distribution

p(u)p(u1|u)p(u2|u)p(x1|u1u)p(x2|u2u)p(y1y2|x1x2). (4)

Define the information densities

i11 = i(X1;Y1|U1U2U) = log
p(y1|x1u1u2u)

p(y1|u1u2u)
(5)

i12 = i(U2X1;Y1|U1U) = log
p(y1|x1u1u2u)

p(y1|u1u)
(6)

i13 = i(X1;Y1|U2U) = log
p(y1|x1u2u)

p(y1|u2u)
(7)

i14 = i(U2X1;Y1|U) = log
p(y1|x1u2u)

p(y1|u) . (8)

Similarly, we define i(X2;Y2|U1U2U), i(U1X2;Y2|U2U),
i(X2;Y2|U1U) and i(U1X2;Y2|U) and denote their shortened

notations as i21, i22, i23 and i24.

Remark: When we want to emphasize the dependence
of these quantities on the various RVs, we shall use the
second set of notations, e.g., i(X1;Y1|U1U2U). For the sake
of notational convenience and space, we shall often use the
first set of notations, e.g., i11.

Denote the mean of i11 as I11, and observe that

E[i(X1;Y1|U1U2U)] = I(X1;Y1|U1U2U) = I11. (9)

Similarly, we can find expression for the expectations of ijk
and denote them as Ijk, for j = 1, 2, and k = 1, 2, 3, 4.
Correspondingly, we denote the variances of ijk as Vjk.

Definition 3. A DM-IC is said to have strictly very strong in-
terference if I(X1;Y1|X2) < I(X1;Y2) and I(X2;Y2|X1) <
I(X2;Y1) for all non-deterministic p(x1)p(x2).

Example 1. Consider a Gaussian IC where Y1 = g11X1 +
g21X2+Z1, Y2 = g12X1+g22X2+Z2, where X1 and X2 are
Gaussian inputs with zero means and unit variances, Z1 and
Z2 are independent Gaussian noises with zero means and unit
variances, and Xj is also independent of Zj for j = 1 and 2.
In this channel, treating X2 as noise, we have I(X1;Y2) =

h(Y2) − h(Y2|X1) = 0.5 log(
g2
12

g2
22+1

+ 1). I(X1;Y1|X2) =

I(X1; g11X1+Z1|X2) = I(X1; g11X1+Z1) = 0.5 log(g211+
1). Similarly, we can find I(X2;Y2|X1) and I(X2;Y1). Thus,
this Gaussian IC is in the strictly very strong interference

regime iff g211 < g212/(1 + g222) and g222 < g221/(1 + g211) and
Gaussian inputs are used. This is an extension of [9, Rmk 6.2].

Example 2. Consider a discrete IC where p(y1, y2|x1, x2) =
p(y1|x1, x2)p(y2|x1, x2) and in addition, p(y1|x1, x2) =
p(y1|x2) and p(y2|x1, x2) = p(y2|x1). Thus, Y1 is in-
dependent of X1 and Y2 is independent of X2. Clearly,
I(X1;Y1|X2) = 0 and I(X1;Y2) > 0 for every non-
deterministic p(x1). The same is true for the other inequality.

Example 3. Consider a DM-IC where each alphabet is F2,
Y1 = (G11 ·X1)⊕(G21 ·X2) and Y2 = (G12 ·X1)⊕(G22 ·X2).
Let Gij ∼ Ber(qij) for some qij ∈ (0, 1). Assume that q11 =
q22, q21 = q12 = 1 − q11 and q11 < δ for some δ > 0.
p(xi) = Ber(αi), where αi ∈ [α∗

i , 1 − α∗
i ], for α∗

i ∈ (0, 0.5)
and i = 1, 2. We can verify that for arbitrarily small (α∗

1, α
∗
2),

there is δ, sufficiently small depending on (α∗
1, α

∗
2), such that

I(X1;Y1|X2) < I(X1;Y2). Intuitively, for small qii, Yi is
almost independent of Xi, for i = 1, 2. Also see [10].

Definition 4. A DM-IC is said to have strong interference
if I(X1;Y1|X2) ≤ I(X1;Y2|X2) and I(X2;Y2|X1) ≤
I(X2;Y1|X1) for all p(x1)p(x2).

Alternatively to Definition 2, we can define information
densities differently when HK message splitting is not in-
volved. Although doing so will lead to a smaller achievable
rate region, such information densities play an important role
in the strictly very strong interference regime and the strong
interference regime.

Definition 5. In the DM-IC, fix a joint distribution

p(u)p(x1|u)p(x2|u)p(y1y2|x1x2). (10)

Define the information densities

i11s = log
p(y1|x1x2u)

p(y1|x2u)
, (11)

i12s = log
p(y1|x1x2u)

p(y1|u) (12)

i13s = log
p(y1|x1x2u)

p(y1|x1u)
. (13)

Similarly, we define i21s, i22s and i23s.

Denote the expectations and the variances of ijks as Ijks
and Vjks respectively, for j ∈ {1, 2}, and k ∈ {1, 2, 3}.

We define the following real-valued function, which will be
used often. For a given n, define the function f as

f(a, b, c) = a−
√

b

n
Q−1(c) +O

(
log n

n

)
. (14)

We are going to prove that a (n, ε1, ε2)-achievable rate
region of the DM-IC can be characterized by the first-order
and second-order statistics of either the information spectrum
quantities defined in Definition 2 or that in Definition 5.

III. MAIN RESULTS FOR GENERAL DM-IC AND
DISCUSSION

A. Main results

The main results of this paper are captured by the following
theorems.



Theorem 1. For any joint distribution satisfying (4), any

ε1, ε2 and a sufficiently large blocklength n, there exists

a (2n(R1c+R1p), 2n(R2c+R2p), n, ε1, ε2) code for the DM-IC

satisfying

R1p ≤ f(I11, V11, λ11ε1) (15)
R1p +R2c ≤ f(I12, V12, λ12ε1) (16)
R1p +R1c ≤ f(I13, V13, λ13ε1) (17)

R1p +R1c +R2c ≤ f(I14, V14, λ14ε1) (18)
R2p ≤ f(I21, V21, λ21ε2) (19)

R2p +R1c ≤ f(I22, V22, λ22ε2) (20)
R2p +R2c ≤ f(I23, V23, λ23ε2) (21)

R2p +R2c +R1c ≤ f(I24, V24, λ24ε2), (22)

where λjk are some positive constants satisfying the con-

straints
∑4

k=1 λjk = 1, and Vjk > 0, for j ∈ {1, 2}, and

k ∈ {1, 2, 3, 4}.

An outline of the proof for Theorem 1 is presented in
Section V.

After applying Fourier-Motzkin elimination process to The-
orem 1, we obtain the following theorem.

Theorem 2. For any joint distribution satisfying (4), the

(n, ε1, ε2)-capacity region of the DM-IC includes the set of

all non-negative pairs (R1, R2) satisfying

R1 ≤ f(I13, V13, λ13ε1) (23)
R2 ≤ f(I23, V23, λ23ε2) (24)

R1 +R2 ≤ f(I14, V14, λ14ε1) + f(I21, V21, λ21ε2) (25)
R1 +R2 ≤ f(I11, V11, λ11ε1) + f(I24, V24, λ24ε2) (26)
R1 +R2 ≤ f(I12, V12, λ12ε1) + f(I22, V22, λ22ε2) (27)

2R1 +R2 ≤ f(I14, V14, λ14ε1) + f(I11, V11, λ11ε1)

+ f(I22, V22, λ22ε2) (28)
R1 + 2R2 ≤ f(I24, V24, λ24ε2) + f(I21, V21, λ21ε2)

+ f(I12, V12, λ12ε1), (29)

where λjk are positive constants, satisfying the constraints∑4
k=1 λjk = 1, and Vjk > 0, for j ∈ {1, 2}, and k ∈

{1, 2, 3, 4}.

When HK message splitting is involved, a (n, ε1, ε2)-
achievable rate region is characterized in Theorems 1 and 2.
Alternatively, a (n, ε1, ε2)-achievable rate region is character-
ized in the following theorem.

Theorem 3. For any joint distribution as in (10), any

ε1, ε2 and a sufficiently large blocklength n, there exists a

(2nR1 , 2nR2 , n, ε1, ε2)-code for the DM-IC satifying

R1 ≤ f(I11s, V11s, λ11ε1) (30)
R1 ≤ f(I23s, V23s, λ23ε2) (31)
R2 ≤ f(I21s, V21s, λ21ε2) (32)
R2 ≤ f(I13s, V13s, λ13ε1) (33)

R1 +R2 ≤ f(I12s, V12s, λ12ε1) (34)
R1 +R2 ≤ f(I22s, V22s, λ22ε2), (35)

where λjk are some positive constants satisfying the con-

straints
∑3

j=1 λjk = 1, Vjk > 0, for j ∈ {1, 2}, and

k ∈ {1, 2, 3}.

The proof of Theorem 3 is similar to that of Theorem 1.

B. Discussion

To obtain an inner bound on the (n, ε1, ε2)-capacity region
in Theorems 1 and 2, we made use of HK message split-
ting [11]. As the blocklength grows unbounded, we recover
HK’s best achievable rate region [11], [12]. From Theorem 1,
we have an interesting observation that there are penalizing
deviations from both the common information rates Rjc

and the private information rates Rjp, for j ∈ {1, 2}, for
operating in the finite blocklength setting with average error
probabilities (ε1, ε2). Consequently, in Theorem 2, we observe
penalizing deviations from not just the individual rates R1 and
R2, but also from the weighted sum rates. Another interesting
observation is that the penalizing deviations from weighted
sum rates depend on both error probabilities ε1 and ε2.

The way we prove Theorem 1 is to make use a non-
asymptotic bound presented in Lemma 6. In fact, a stronger
version of Lemma 6 is the following bound

ε1 ≤ inf
β>0

{
Pr[{i(Xn

1 ;Y
n
1 |Un

1 U
n
2 U

n) ≤ n(R1p + β)}
∪ {i(Un

2 X
n
1 ;Y

n
1 |Un

1 U
n) ≤ n(R1p +R2c + β)}

∪ {i(Xn
1 ;Y

n
1 |Un

2 U
n) ≤ n(R1p +R1c + β)}

∪ {i(Un
2 X

n
1 ;Y

n
1 |Un) ≤ n(R1p +R1c +R2c + β)}]

+ 2−nβ × 4
}
, (36)

where the distribution of UnUn
1 U

n
2 X

n
1 X

n
2 Y

n
1 is n-th i.i.d. ex-

tension of that given in (4). By applying the multi-dimensional
Berry-Esséen Theorem [13] to the first term, we can alterna-
tively characterize the achievable dispersions as covariance
matrices V1 and V2 defined below. The achievable region in
terms of private and common information rates, as in Theorem
1, is alternatively given by

R1 ∈ I1 − 1√
n
Q−1(ε1;V1) +O

(
log n

n

)
14 (37)

where

R1=[R1p, R1p+R2c, R1p+R1c, R1p+R1c+R2c]
T , (38)

I1=[I11, I12, I13, I14]
T , (39)

Q−1(ε1;V1)={z ∈ R
4|Pr(N (0,V1)≤z)≥1−ε}, (40)

V1=Cov
(
[i11, i12, i13, i14]

T
)
. (41)

We can similarly define R2, I2, and V2 to obtain a vector
version of the second half in Theorem 1. It can be shown the
(n, ε1, ε2)-achievable region using the covariance matrices V1

and V2, as in (37) will be larger than that in Theorem 1.
In order to obtain the analogue of Theorem 2 and to express

the rate region in terms of (R1, R2), we have to perform the
analogue of Fourier-Motzkin elimination. However, this is not
as simple as that in Theorem 2 because the achievable rates
as prescribed by (37) are not defined in terms of a polytope.
Hence, a linear projection operation of the region given by
(37) is required. We omit the details here.
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Encoder 1

p(y1|x1x2)
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Decoder 1

Xn
2 Xn

2

Fig. 1. Channel with Xn
2 given to decoder 1.

In point-to-point communication, the second-order statis-
tic defined by only one information density is enough to
characterize the dispersion. In the multiple-access channel,
the second-order statistics of three information densities are
needed to do so. In the DM-IC, we need the second-order
statistics of either eight information densities, in the case
where HK message splitting is involved, or six such quantities
otherwise. This is intuitively acceptable as there are more
terminals communicating with one another.

In fact, by not requiring that each receiver correctly decodes
the message for the other receiver, (31) and (33) are redundant.
The achievable rate region formed by remaining equations in
Theorem 3 is reduced to that of the interference channel in
the strong interference regime as in [14], when n → ∞.

Using a similar argument as in [15], a two-user interference
channel (IC) may be converted into a multiple-access channel
(MAC) by joining its two outputs into a single product output
Y = Y1×Y2. Since this MAC has less restriction in decoding
as in the IC, where Xj is decoded with only knowledge of
Yj ; thus an outer bound to the new MAC is an outer bound
to the IC. Therefore, the outer bounds in [7] are applicable to
our problem as well. In fact we present a tighter outer bound
that captures the independence of the inputs in Theorem 5.

IV. THE STRICTLY VERY STRONG INTERFERENCE REGIME

In the strictly very strong interference regime, (31), (33),
(34) and (35) can be shown to be redundant when n is suffi-
ciently large. We obtain the following corollary (to Theorem
3) which yields an inner bound to the DM-IC.

Corollary 4. The (n, ε1, ε2)-achievable rate region of the DM-

IC in the strictly very strong interference regime includes the

set of non-negative pairs (R1, R2) satisfying

R1 ≤ f(I11s, V11s, ε1) (42)
R2 ≤ f(I21s, V21s, ε2). (43)

for some joint distribution as in (10).

As n → ∞, this region reduces to the asymptotic achievable
region of the very strong interference regime as in [16]. In
fact, (42) and (43) are algebraically similar to an outer bound,
derived in the following theorem, to the (n, ε1, ε2)-capacity
region of any DM-IC.

Theorem 5. The (n, ε1, ε2)-capacity region of any DM-IC is

included in the set of non-negative pairs (R1, R2) satisfying

R1 ≤ max
p(x1),p(x2)

f(Ĩ11s, Ṽ11s, ε1) (44)

R2 ≤ max
p(x1),p(x2)

f(Ĩ21s, Ṽ21s, ε2), (45)

where Ĩ11s, Ĩ21s, Ṽ11s, Ṽ21s are the mutual information and

dispersions with respect to the information densities defined

in Definition 5 with the time-sharing variable U = ∅. More

precisely,

Ṽ11s = E [V (WX2)] + Var [C(WX2)] (46)

where C(W ) and V (W ) are the capacity and the dispersion

of channel W and Wx2(y1|x1) := pY1|X1X2
(y1|x1x2).

Remark: A few comments are in order with regard to
Corollary 4 and Theorem 5. Note that the mutual informa-
tion and dispersions for the inner bound in (42) and (43)
are computed with respect to a common input distributions
p(u)p(x1|u)p(x2|u). However, for the outer bound in (44)
and (45), the mutual information and dispersions are, in
general, computed with respect to different input distributions
p(x1), p(x2). This is the reason why the outer bound includes
the inner bound. Note that unlike in [7] for the multiple-
access channel, the maximizations in (44) and (45) are over
product distributions, capturing the intrinsic nature of the DM-
IC where the channel inputs Xn

1 and Xn
2 must be independent.

Even though the inner and outer bounds prescribed by the
previous two results are not matching, the algebraic forms of
the bounds are very similar.

Proof: Any decoder at receiver 1 cannot do better than a
genie-aided system where Xn

2 (in addition to Y n
1 ) is given to

receiver 1. See Fig. 1. Thus, any outer bound on R1 applicable
to the system in Fig. 1 is also applicable to the standard
DM-IC. This system can be interpreted as a DM channel
with state, with input Xn

1 , output (Y n
1 , Xn

2 ), where Xn
2 is

interpreted as the random channel state. The dispersion of
this channel model was derived by Ingber-Feder [8] and is
given by (46). Note that as in the channel with state problem
where the state is only known to the receiver [9, Eq. (7.2)],
the state is independent of the codeword. This corresponds to
the situation here. The other bound is proved similarly.

V. OUTLINE OF PROOF FOR THEOREM 1
Before proving Theorem 1, we generalize Feinstein’s

lemma [17, Lemma 3.4.1] for the point-to-point channel to
be applicable to the DM-IC.

Lemma 6. Consider the DM-IC defined in Theorem 1.

Fix a joint distribution satisfying (4). For any n ∈
N and an arbitrary positive constant β, there exists a

(2n(R1c+R1p), 2n(R2c+R2p), n, ε1, ε2)-code such that

ε1 ≤ Pr

[
1

n
i(Xn

1 ;Y
n
1 |Un

1 U
n
2 U

n) ≤ R1p + β

]

+ Pr

[
1

n
i(Un

2 X
n
1 ;Y

n
1 |Un

1 U
n) ≤ R1p +R2c + β

]

+ Pr

[
1

n
i(Xn

1 ;Y
n
1 |Un

2 U
n) ≤ R1p +R1c + β

]

+ Pr

[
1

n
i(Un

2 X
n
1 ;Y

n
1 |Un) ≤ R1p +R1c +R2c + β

]

+ 2−nβ × 4, (47)

and the average probability of error ε2 at receiver 2 is

similarly upper-bounded.



The proof of Lemma 6 is similar to the proof of
Lemma 7.10.1 in Han’s book [17].

Remark: Lemma 6 holds for any blocklength n, even
when n = 1. There is no restriction on the structures of
(UnUn

1 U
n
2 X

n
1 X

n
2 ) and the channel pY n

1 Y n
2 |Xn

1 Xn
2

. Thus, if the
structures are chosen carefully (e.g., stationary, memoryless),
we can potentially obtain useful results.

With Lemma 6, we are ready to prove Theorem 1. First
we choose distributions for various RVs in Lemma 6. For
j ∈ {1, 2}, define the product distributions

p(un) =
n∏

k=1

p(uk), (48)

p(un
j |un) =

n∏
k=1

p(ujk|uk), (49)

p(xn
j |un

j , u
n) =

n∏
k=1

p(xjk|ujk, uk). (50)

Due to DM property of the channel and the construc-
tion of the codebooks in (48)–(50), each of the infor-
mation densities i(Xn

1 ;Y
n
1 |Un

1 U
n
2 U

n), i(Un
2 X

n
1 ;Y

n
1 |Un

1 U
n),

i(Xn
1 ;Y

n
1 |Un

2 U
n) and i(Un

2 X
n
1 ;Y

n
1 |Un) are sums of n i.i.d.

RVs. Applying Berry-Esséen Theorem [18, Theorem 2, Chap-
ter XVI] to the first term in (47), we have

Pr

[
1

n
i(Xn

1 ;Y
n
1 |Un

1 U
n
2 U

n) ≤ R1p + β

]

≤ Q

(
nI(X1;Y1|U1U2U)− nR1p − nβ√

nV11

)
+

B11a√
n

, (51)

where B11a = 6T11

V
3/2
11

with T11 is the third moment of

i(X1;Y1|U1U2U).
Applying similar bounding techniques to other terms in

(47), we obtain

ε1 ≤ 4× 2−nβ +Q

(
nI11 − nR1p − nβ√

nV11

)
+

B11a√
n

+Q

(
nI12 − n(R1p +R2c)− nβ√

nV12

)
+

B12a√
n

+Q

(
nI13 − n(R1p +R1c)− nβ√

nV13

)
+

B13a√
n

+Q

(
nI14 − n(R1p +R1c +R2c)− nβ√

nV14

)
+

B14a√
n

,

(52)

where B1ka := 6T1k/V
3/2
1k with T1k is the third absolute

moment of i1k, for k = 1, 2, 3 and 4. Note that the third
moments are finite and the variances are positive because all
alphabets are discrete.

By splitting the error ε1 and choose β = logn
n , we obtain

the first part of Theorem 1. The second half of the theorem
is proved similarly to the above.

Remark: The generation of the time-sharing variable un as
in (48) is worse than fixing un to be a non-random sequence
whose type is O( 1n )-close to p(u); cf. [7]. In [7], an achievable
dispersion for the MAC is obtained and it was shown that
the strategy contained therein is better than the generation

of un in (48) because the conditional variance is no larger
than the unconditional variance. However, we here generate
un according to (48) for simplicity.

VI. CONCLUSION

In this work, we characterized achievable dispersions for
the 2-user DM-IC. To do so, we first generalized Feinstein’s
lemma to be applicable to the interference channel. Next,
using the generalized Feinstein’s lemma, we showed that the
dispersions are given by information variances of a set of
information densities. The first- and second-order statistics
of the information densities are shown to characterize an
inner bound on the (n, ε1, ε2)-capacity region of the DM-
IC, where n is a given finite (but large) blocklength, and
ε1 and ε2 are desired (or tolerable) average probabilities of
error at receiver 1 and 2 respectively. We also derived a
general converse bound, applicable for any DM-IC, which has
a similar algebraic form to our inner bound in the strictly very
strong interference regime.
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