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Abstract—We study converse bounds for unequal error pro-
tection codebooks with k > 1 different classes of codewords. We
dub these unequal error protection codes “assorted codes”. We
extend a finite blocklength converse bound due to Polyanskiy-
Poor-Verdú to apply to assorted codes and use this extension to
obtain a refined asymptotic expansion for the performance of
assorted codes over a discrete memoryless channel. Our main
contribution is to demonstrate that there is indeed a loss in the
rates of an assorted code compared to equivalent homogeneous
(classical) codes. Notably, when the number of codeword classes is
polynomial in blocklength n the loss is apparent in the third order
O(log n) term of the asymptotic expansion of the logarithm of
the maximum number of codewords. This is in sharp contrast to
the previous literature which only considers this problem within
regimes where no such loss could be observed.

I. INTRODUCTION

This paper addresses the problem of message-wise un-
equal error protection (UEP) over discrete memoryless chan-
nels (DMCs) in the non-asymptotic regime. We consider a
codebook which contains k different classes of codewords.
Codewords of the first class are reserved for more important
messages and have a more stringent average error probability
requirement. Codewords of the second class are reserved for
less important messages and have a looser (larger) average
error probability requirement, and so on. For convenience, we
refer to this sort of messages-wise UEP code as an “assorted
code”.

This problem has been previously addressed within a frame-
work of error exponents by Csiszár [1], and by Borade et
al. [2]. These works show that if codewords in message class
i are generated at rate Ri, then each class of codewords has
an error exponent E(Ri), where E(R) is the optimal error
exponent for a homogeneous (classical) codebook of rate R.
Recently, Wang et al. [3] showed a similar result for the
dispersion of message-wise UEP codes. They demonstrated
that the dispersion of each class of codewords in an assorted
code matches the dispersion of each class individually, pro-
vided k is at most polynomial in blocklength n. Both of
these results are perhaps surprising and intriguing. They are
also deeply unsatisfying from the UEP coding perspective,
since they suggest that we get something for free where
assorted codebooks are involved. The tradeoffs which must
exist between different classes of codewords are not exposed

in the regimes considered in these works.
The study of assorted codes is of great interest from the

information-theoretic perspective. The main appeal of assorted
codes is that they are a natural candidate for use as building
blocks in larger systems. For example, Csiszár [1] and Wang et
al. [3] use a message-wise UEP construction to derive the joint
source-channel coding exponent and dispersion respectively.
We note that both of these works derive their results as
intermediate steps in analyzing joint source-channel coding. To
attain their desired analysis the refined results derived herein
are not necessary. Other examples include the use of red alert
codes, which form a special subset of assorted codes, one with
only two classes of codewords. One class contains one very
well protected codeword–the red alert codeword. The second
class contains exponentially many normal codewords. Red
alert codes over channels with feedback have been analyzed by
Kudryashov in [4], and by others in [5]–[7]. A number of other
related message-wise UEP studies were also done in [8]–[10].
These applications provide an incentive for a more detailed
analyses of assorted codes.

The aim of this work is to obtain sharper bounds for the non-
asymptotic behavior of assorted codebooks, i.e., when block-
length n is large but finite. To this end we prove a converse
bound based on the meta-converse by Polyanskiy-Poor-Verdú
(PPV) [11, Theorem 27]. Our extended bound quantifies a
required back off from the non-asymptotic fundamental limit
of the corresponding homogeneous codes over a large class of
DMCs. In particular, for k polynomial we show that the back
off is in the third order O(log n) term. Our bound further
applies to other regimes for the number of message classes,
k. For example, for k exponential in

√
n the back off is in

the dispersion term and for k exponential in n the back off
(not surprisingly) is in the capacity term. In addition to our
converse bound we suggest a new metric for the design and
analysis of assorted codes: the expected assorted code rate.

The rest of this paper is structured as follows. In Section I-A
we formally set up the problem. In Section I-B we state some
background results. In Section II we derive Theorem 4: a finite
blocklength converse bound for assorted codes. In Section III
we state and prove our main result: Theorem 5 which gives
the normal approximation for rates of assorted codes. Finally,
in Section IV we present a brief discussion of our results and



we end with some concluding remarks in Section V.

A. Problem Setup

We state our initial definitions with an arbitrary channel in
mind. We assume the channel has input alphabet A, output
alphabet B, and a channel law PY |X = W . We will derive
our bounds in Section II using this “one-shot” perspective.
Subsequently, in Section III, we evaluate our bounds for a
DMC Wn(yn|xn) =

∏n
i=1W (yi|xi).

Definition 1 (Assorted Code). An assorted code is a tuple
(M, f, g) consisting of
• k disjoint classes of messages {M1,M2, . . . ,Mk}

which form the assorted codebook M = ∪ki=1Mi,
• an encoding function f :M→ A,
• a decoding function g : B→M.

For an assorted code with k classes of codewords we define

εi =
1
|Mi|

∑
m∈Mi

[
1− PY |X

(
g−1(m)|f(m)

)]
(1)

to be the average probability of error for codewords in Mi.

In Definition 1, the average error probability constraints
differentiate the classes of messages from one another. From
this perspective the “goodness” of an assorted code is then
measured in terms of (a) the average probability of error vector
ε := (ε1, . . . , εk) and (b) the sizes of respective message
classes |M1|, . . . , |Mk|. This suggests that for a fixed error
vector, there might be a tradeoff in the size of different
message classes in an assorted code. This, in turn, motivates
us to consider the region of possible assorted codes for a given
error vector.

Definition 2 (Assorted Rate Region). Fix a vector of k error
probability constraints, e = (e1, . . . , ek). Then we define the
assorted rate region for an assorted code as

R(e) = {(R1, . . . , Rk) : ∃ an assorted code with

log |Mi| ≥ Ri and εi < ei, 1 ≤ i ≤ k}. (2)

Further, notice that the 1
|Mi| factor in the statement of

equation (1) implies that each messages is selected uniformly
within each codeword class. This assumption allows us to talk
about the rate of message class i, Ri = log |Mi|, in a well-
defined way. However, Definition 1 does not provide a way
to associate a single rate parameter with all of M. To do so
we need to have a notion of a priori likelihood of selecting
a message from class i. With this observation in mind we
introduce the notion of expected rate which is related to the
expected transmission volume defined and analyzed in [12].

Definition 3 (Expected Code Rate). Let γi be the probability
that a message from class i is selected for transmission, with∑k
i=1 γi = 1. Then the expected assorted code rate for a code

(M, f, g) is defined as

R(γ1, . . . , γk) =
k∑
i=1

γi log |Mi|. (3)

Once we apply our bounds to the DMC in Section III we
will take A = An and B = Bn to be n-fold cartesian products
of the input and output alphabet of the DMC. Then the assorted
rate region in Definition 2 and the expected assorted rate in
Definition 3 will be functions of blocklength n. Hence, for
this application of our bounds equations (2) and (3) need to
be suitably normalized by n. Namely,

R(e;n) = {(R1, . . . , Rk) : ∃ an assorted code with
log |Mi|

n
≥ Ri and εi < ei, 1 ≤ i ≤ k} (4)

and

R(γ1, . . . , γk;n) =
k∑
i=1

γi
log |Mi|

n
. (5)

B. Background

In this section we provide background theorems to put our
result in context. Due to space constraints, we omit definitions
of channel capacity C and channel dispersion V . For a
more detailed discussion and formal definitions see any finite
blocklength literature [3], [11], [13]. In addition we make the
following simplifying assumptions.
• We restrict our attention to channels with a unique

capacity-achieving input distribution.
• We assume that all average error probabilities of interest

are greater than 0 and less than 1.
• We restrict our attention to channels with positive capac-

ity (C > 0) and positive dispersion (V > 0).
The following theorem for general DMCs captures the best

analyses to date of assorted codes in finite block length regime.

Theorem 1. The assorted rate region for a DMC W is given
by

R(e, n) =
{

(R1, . . . , Rk) :

nRi ≤ nC −
√
nV Q−1(ei) +O(log n)

}
(6)

where e = (e1, . . . , ek) is the average error probability
requirement for the k message classes, and k is at most
polynomial in n (denoted as k = poly(n)).

For k = 1 this is the well-known normal approximation
for the rate of a homogeneous code due to Strassen [14]. For
k > 1, the achievability proof of this theorem is due to Wang
et al. [3, Corollary 2] although they use a universal code as
in Csiszár [1]. The converse follows from the k = 1 case.
Theorem 1 suggests that in an assorted code with polynomially
many classes, the number of messages of class i can equal to
that of a homogeneous code with an average probability of
error εi and no other messages present, up to the dispersion
term. In other words, by considering the capacity and disper-
sion terms only, there is no tradeoff between the sizes of each
message class. We are interested in quantifying these tradeoffs
more precisely, and so we look at finite blocklength bounds
which analyze the third-order term in more detail. It turns



out that for a large class of channels, the third-order term is
1
2 log n+O(1). Indeed, we have:

Theorem 2. Fix a DMC W . Assume that V r(P ∗,W ) :=
var(i(X;Y )|Y ) > 0 where P ∗ is the capacity-achieving input
distribution, i(x; y) = log W (y|x)

P∗W (y) is the information density
and (X,Y ) ∼ P ∗ × W . Let M∗(n, ε) be the maximum
number of codewords achievable for n uses of W and attaining
average error probability no larger than ε. Then,

logM∗(n, ε) = nC −
√
nV Q−1(ε) +

1
2

log n+O(1). (7)

The achievability proof is provided in [15, Corollary 54].
For the class of weakly-input symmetric DMCs1 [15, Defi-
nition 9] the converse is based on the meta-converse bound
in [15, Corollary 56]. For a general DMC with V > 0,
the converse is by Tomamichel and Tan [13]. Note that the
hypothesis of the theorem, namely V r(P ∗,W ) > 0 implies
that V > 0 since V ≥ V r(P ∗,W ).

In Section III, we extend Theorem 1 for k polynomial in n
and we rely on Theorem 2 to show a loss in the third-order
term. We restrict our attention to weakly input-symmetric
DMCs. For k growing faster than polynomial in n we bound
the loss in rate of assorted codes for a general DMC.

II. FINITE BLOCKLENGTH BOUNDS

The proof of our extended bound will follow closely the
derivations of Theorems 28 and 29 in [15]. We outline this
derivation here for completeness.

Definition 4 (Hypothesis Testing). Consider a random vari-
able B defined on B which can take probability measure P
or Q. A randomized test between those two distributions is
defined by a random transformation PZ|B : B→ {0, 1} where
0 indicates that the test chooses Q. The best performance
achievable among those randomized test is given by

βα(P,Q) := min
PZ|B:

∫
B
PZ|B(1|b) dP (b)≥α

∫
B

PZ|B(1|b) dQ(b), (8)

where the minimizer P ∗Z|B is guaranteed to be attained by the
Neyman-Pearson lemma.

The following is a corollary of [15, Theorem 28].

Corollary 3. Consider two channels (A,B, PY |X) and
(A,B, QY |X). Fix an assorted code with k classes of mes-
sages, (M, f, g). Let {εi}ki=1 and {ε′i}ki=1 be its probabilities
of error under P and Q, respectively. Let P iX = QiX be the
probability distribution on A induced by the encoder given
that a codeword from Mi was sent. Then we have

β1−εi(P
i
XY , Q

i
XY ) ≤ 1− ε′i, ∀ 1 ≤ i ≤ k. (9)

The result follows by appealing to [15, Theorem 28] sepa-
rately for each class of codewords.

1A DMC W is weakly input-symmetric if there exists an x0 ∈ A and a
random transformation Tx : B → B for each x ∈ A such that Tx ◦Wx0 =
Wx and Tx ◦PY ∗ , where PY ∗ is the capacity-achieving output distribution.

We now apply Corollary 3 to show an extension of Theorem
29 in [15] to assorted codes.

Theorem 4. Let P(A) be the space of all probability distribu-
tions on A, P(B) be the space of all probability distributions
on B, and define L := {(λ1, . . . , λk) :

∑k
i=1 λi = 1, λi ≥ 0}.

We can make the following three (equivalent) statements about
assorted codes with k classes of codewords.

1) For some λ ∈ L and any QY ∈ P(B),

inf
P i

X

|Mi|β1−εi(P
i
XY , P

i
X ×QY ) ≤ λi (10)

for all 1 ≤ i ≤ k.
2) We can restate 1) as

inf
P 1

X
×...×Pk

X

sup
QY

k∑
i=1

|Mi|β1−εi(P
i
XY , P

i
X×QY )≤1 (11)

where the inf is over the k-fold Cartesian product of
P(A) and the sup is over P(B).

3) Let e = (e1, . . . , ek). Then the assorted rate region for
a code with k types of codewords must satisfy,

R(e) ⊂
⋃

P 1
X
×···×Pk

X

⋂
QY

⋃
λ∈L

{
(R1, . . . , Rk) :

Ri ≤ log λi − log β1−εi(P
i
XY , P

i
X ×QY )

}
(12)

where the union is over the k-fold Cartesian product of
P(A) and the intersection is over P(B).

Proof: We proceed by fixing P̄ iX = QiX and QiY |X = QY
for an arbitrary QY (same for all i). Suppose that under this
distribution QY , the probability of decoding to a message of
type i is λi. In this case ε′i = 1− λi

|Mi| . Then we have

β1−εi(P̄
i
XY , P̄

i
X ×QY ) ≤ λi

|Mi|
, (13)

where P̄ iXY := P̄ iX × PY |X . Multiplying through by |Mi|
yields equation (10). Now, adding all the bounds together
yields

k∑
i=1

|Mi|β1−εi(P̄
i
XY , P̄

i
X ×QY ) ≤

k∑
i=1

λi = 1. (14)

Since the above holds for all QY we have the bound

sup
QY ∈P(B)

k∑
i=1

|Mi|β1−εi(P̄
i
XY , P̄

i
X ×QY ) ≤ 1. (15)

And, since we have the freedom to choose any input distribu-
tion for each code word type

inf
P 1

X
×···×Pk

X

sup
QY ∈P(B)

k∑
i=1

|Mi|β1−εi(P
i
XY , P

i
X×QY )≤1. (16)

This gives equation (11). To show (12) define R̄(e) to be the
assorted rate region restricted to only the codes whose input



distribution for class i is P̄ iX , for some fixed element in P(A)k.
Equation (14) suggests that

R̄(e) ⊂
⋃

λ∈L

{
(R1, . . . , Rk) :

Ri ≤ log λi − log β1−εi(P̄
i
XY , P̄

i
X ×QY )

}
(17)

for fixed P̄ iX and any QY . Since this must hold for every QY ,
the region must be in the intersection over QY ∈ P(B),

R̄(e) ⊂
⋂

QY ∈P(B)

⋃
λ∈L

{
(R1, . . . , Rk) :

Ri ≤ log λi − log β1−εi(P̄
i
XY , P̄

i
X ×QY )

}
. (18)

And, since R(e) =
⋃
R̄(e) (where the union extends over all

k input distributions),

R(e) ⊂
⋃

P 1
X
×···×Pk

X

⋂
QY

⋃
λ∈L

{
(R1, . . . , Rk) :

Ri ≤ log λi − log β1−εi(P
i
XY , P

i
X ×QY )

}
. (19)

III. THEOREMS FOR THE DMC

We now state our main result, a refinement of Theorem 1.

Theorem 5. Let L be as in Theorem 4. Fix blocklength n,
and average error probability vector e = {e1, . . . , ek}.

(i) The assorted rate region over DMC W must satisfy

R(e, n) ⊂
⋃

λ∈L

{
(R1, . . . , Rk) : (20)

nRi ≤ nC −
√
nV Q−1(ei) +O(log n) + log λi

}
where k can be an arbitrary function of n.

(ii) The assorted rate region over a weakly-input symmetric
DMC W (per [15, Definition 9]) must satisfy

R(e, n) ⊂
⋃

λ∈L

{
(R1, . . . , Rk) : (21)

nRi ≤ nC −
√
nV Q−1(ei) +

1
2

log n+ log λi+O(1)
}

where again, k can be an arbitrary function of n.

Proof: Let Pn be the set of all n-types on the input
alphabet A. For part (i), we repeat the argument of [11,
Theorem 48] with the caveat that we need to take care when
deriving the bound on the multiple message classes. Consider
an arbitrary assorted code M with a maximum probability
of error vector e. Consider only the codewords in M which
belong only to some type P0 ∈ Pn (across all message
classes). Denote the resulting subcode by (MP0 , f, g) and its
k message classes by MP0,i, 1 ≤ i ≤ k. Then by (10)

log |MP0,i| ≤ − log β1−ei(x
n, PY n) + log λi,P0 (22)

where xn is any element in the type class TnP0
and PY n is the

output distribution induced by P0. Note that we index λP0 =

(λ1,P0 , . . . , λk,P0) by P0 to emphasize that the element of L
need not be the same in the bound for each type class TnP0

.
Repeating the argument in [11, Theorem 48] we get

log |MP0,i|≤nC−
√
nV Q−1(ei)+

1
2

log n+log λi,P0 +O(1).

(23)

By the type-counting lemma, |Pn| ≤ (n+ 1)|A|−1. Hence,

log |Mi| ≤ nC −
√
nV Q−1(ei) +

(
|A| − 1

2

)
log n

+ log λi +O(1). (24)

where λi = 1
|Pn|

∑
P0∈Pn

λP0,i. The result for average prob-
ability of error follows by a standard asymptotic expurgation
argument (cf. [15, Eq. (3.260)]). The proof is then completed
by taking the union over all of λ ∈ L.

Next we give proof outline for assertion (ii). Let λ ∈ L be
as in equation (10) . Bound the − log β1−ei(P̄

i
XY , P̄

i
X ×QY )

term using the argument in [15, Theorem 55], with QY being
the unique capacity-achieving output distribution for all i.

Remark 1. The converse statement in Theorem 5 (i) is
tight. The achievability part could be shown by extending
the Dependence Testing bound [11, Theorems 17 and 21] to
assorted codes.

Notice that λ is a k-dimensional vector whose entries add
up to 1 and so the value of most of its elements must depend
on k. The contribution of Theorem 5 is thus two-fold.
• Statement (i) shows that for a general DMC and k

growing faster than poly(n), there is a tradeoff in the
sizes of different message classes of an assorted code.
Two particularly interesting regimes are k growing ex-
ponentially in

√
n and k growing exponentially in n. In

these two regimes the tradeoffs are in the dispersion and
capacity terms (respectively).

• Statement (ii) shows that for a weakly-input symmetric
DMC and k growing as a function of n there is a tradeoff
in the sizes of different message classes of an assorted
code. A particular regime of interest is k = poly(n)
where the tradeoffs become apparent in the third-order
O(log n) term.

For k constant no meaningful results can be proved since the
current normal approximations for homogeneous codes do not
quantify the constant term.

Finally, we propose the following conjecture.

Conjecture 1. Assertion (ii) of Theorem 5 holds for DMCs
with unique capacity-achieving input distributions with V > 0.

This conjecture was proved for homogeneous codes (or
equivalently, the k = 1 case) in a paper by Tomamichel and
Tan [13]. We conjecture that a similar extension for assorted
codes could be proved using the techniques of [13].

IV. DISCUSSION

A. Geometry of The Assorted Rate Region
In Figure 1, a cartoon drawing of the assorted rate region

is provided. To contrast Theorem 1 to Theorem 5 we look at



R1

R2

R∗(n, e1)

R∗(n, e2)

√
2 log 2

n

Fig. 1. A cartoon of the k-dimensional assorted rate region for k = 2.
An outer bound due to Theorem 1 is shaded in light grey. An outer bound
due to Theorem 5 is shaded with dark hash lines. We define R∗(n, ei) =
1
n

logM∗(n, ei). The difference in bounds provided by the two theorems is
easiest to see at the “equal back off” point where λi = 1

k
, ∀i and the back

off per dimension is log k.

the ‘equal back off’ point on the frontier of the rate region.
This is the point where each message class loses the same (in
terms of rate). That is, we consider the point λi = 1

k ,∀i and
compute the Euclidean distance between the equal back off
point predicted by Theorem 1 and in Theorem 5 to be(

k∑
i=1

(
log λi
n

)2
) 1

2

=

√
k

n
log k. (25)

B. The Expected Rate

We can further relate the assorted rate region to the expected
rate. Recall from Section I-A that one measure of “goodness”
proposed for assorted codes is the expected rate (see Defini-
tion 3). Let us fix the prior probabilities on k message classes
(γ1, . . . , γk). Then we can look for a point on R(e) which
maximizes the expected rate. Ignoring the O(1) term in (7),

max
λ∈L

R(γ1, . . . , γk;n) = max
λ∈L

k∑
i=1

γi
log |Mi|

n
(26)

≤ max
λ∈L

k∑
i=1

γi

(
C−

√
V

n
Q−1(ei)+

log n
2n

+
log λi
n

)
. (27)

Now, the first three terms in (27) are constant since they do
not involve λ. Denote them collectively by A. Then, we have

max
λ∈L

R(γ1, . . . , γk;n) ≤ A+
1
n

max
λ∈L

k∑
i=1

γi log λi (28)

= A+
1
n

k∑
i=1

γi log γi. (29)

Equation (29) follows from the fact that the point which
maximizes the expected rate over L is given by proportional
betting with λi = γi for all 1 ≤ i ≤ k [16, Theorem 6.1.2]. In
other words, our converse bound suggests that there is a one to
one correspondence between the frontier of the assorted rate
region and the set of prior probabilities on different message
classes, (γ1, . . . , γk).

V. CONCLUDING REMARKS

The assorted coding framework presented in this paper
captures the non-homogeneous flavor of real world informa-
tion such as unequal error protection, and unequal message

probability. Specifically, we make the following contributions
to the study of assorted codes.
• In Theorem 4 we prove a finite block length converse

bound for the assorted rate region.
• In Theorem 5 we derive a normal approximation of the

assorted rate region for the DMC and conclude that the
assorted rate region has an interesting shape for some
regimes of the number of classes of messages.

• Most notably, we demonstrate that in the non-asymptotic
regime there are clear tradeoffs between sizes of code-
word classes in assorted codes.

From a technical standpoint, future work in this area should
include the proof of Conjecture 1, a corresponding achiev-
ability bound, and an extension to DMCs with cost, as well
as the AWGN channel. From a conceptual viewpoint, further
understanding of how assorted codes may impact the design
of communication systems may be of great interest.
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