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Gaussian distribution

For F dimensions, the Gaussian distribution of a vector x ∈ RF is
defined by:

N (x|u,Σ) =
1

(2π)F/2
√
|Σ|

exp

(
−1

2
(x− u)TΣ−1(x− u)

)
,

where u is the mean vector, Σ is the covariance matrix of the
Gaussian.
Example: u = [0; 0], Σ = [0.25, 0.3; 0.3, 0.1].
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Gaussian mixture model (GMM)

P(x) =
K∑

k=1

wkN (x|uk ,Σk).

wk : mixing weight

uk : component mean vector

Σk : component covariance matrix; if Σk = σ2k I, the GMM is
said to be spherical
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Learning GMM

Data samples independently generated from a GMM ⇒
Correct target clustering of the samples according to which
Gaussian distribution they come from

Definition 1 (correct target clustering)

Suppose
V := [v1, v2, . . . , vN ]

are samples independently generated from a K -component GMM.
The correct target clustering

I := {I1,I2, . . . ,IK}

of them satisfies n ∈ Ik iff vn comes from the k-th component.

Thereby inferring the important parameters of the GMM.
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Algorithms for learning GMM

i) Expectation Maximization (EM)

A local-search heuristic approach for maximum likelihood
estimation in the presence of incomplete data;

Cannot guarantee the convergence to global optima.
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Algorithms for learning GMM

ii) Algorithms based on spectral decomposition and method of
moments;

Definition 2 (non-degeneracy condition)

The component mean vectors

u1, . . . ,uK

span a K -dimensional subspace, and the mixing weight wk > 0, for
k ∈ {1, 2, . . . ,K}.
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Algorithms for learning GMM

iii) Algorithms proposed by pure computer scientists;
Need to assume separability assumptions.
Vempala and Wang [2002]: for any i , j ∈ [K ], i 6= j ,

‖ui − uj‖2 > C max{σi , σj}K
1
4 log

1
4 (

F

wmin
).

A simple spectral algorithm with running time polynomial in both
F and K works well for correctly clustering samples.
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The k-means algorithm

Large number of algorithms for finding the (approximately) correct
clustering of GMM;

Many practitioners stick with k-means algorithm because of its
simplicity and successful applications in various fields.
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The objective function of k-means

Objective function: the so-called distortion.

D(V,I ) :=
K∑

k=1

∑
n∈Ik

‖vn − ck‖22,

where

Ik : the index set of k-th cluster;

ck := 1
|Ik |

∑
n∈Ik

vn is the centroid of the k-th cluster.

Finding an optimal clustering I opt that satisfies

D(V,I opt) = min
I
D(V,I ).
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k-means algorithm
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Using k-means to learn GMM?

Can we simply use k-means to learn the correct clustering of
GMM?
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Using k-means to learn GMM?

Yes!

Kumar and Kannan [2010]:
Data points satisfy a so-called proximity condition (which is
satisfied by the data points independently generated from a GMM
with a certain separability assumption)
⇒
k-means algorithm with a proper initialization can correctly cluster
nearly all data points
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Using k-means to learn GMM?

The key condition to be satisfied for performing k-means to learn
GMM?

The correct clustering ≈ Any optimal clustering
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Main contributions

We prove if

data points generated from a K -component spherical GMM;

non-degeneracy condition and an separability assumption;

The correct clustering ≈ Any optimal clustering
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Main contributions

We also prove if

data points generated from a K -component spherical GMM;

projected onto the low-dimensional space;

non-degeneracy condition and an even weaker separability
assumption;

The correct clustering ≈ Any optimal clustering for the
dimensionality-reduced dataset
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Advantages of dimensionality reduction

Significantly faster running time

Reduced memory usage

Weaker separability assumption

Other advantages
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Lower bound of distortion

Let Z be the centralized data matrix of V and denote S = ZTZ.
According to Ding and He [2004], for any K -clustering I ,

D(V,I ) ≥ D∗(V) := tr(S)−
K−1∑
k=1

λk(S),

where
λ1(S) ≥ λ2(S) ≥ . . . ≥ 0

are the sorted eigenvalues of S.
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Misclassification error (ME) distance

Definition 3 (ME distance)

The misclassification error distance of any two K -clusterings

I 1 := {I 1
1 ,I

1
2 , . . . ,I

1
K}, and

I 2 := {I 2
1 ,I

2
2 , . . . ,I

2
K}

is defined as

d(I 1,I 2) := 1− 1

N
max
π∈PK

K∑
k=1

|I 1
k

⋂
I 2
π(k)|,

where π ∈ PK represents that the distance is minimized over all
permutations of the labels {1, 2, . . . ,K}.

Meilă [2005]: ME distance defined above is indeed a metric.
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Important lemma

Lemma 1 (Meilă, 2006)

Given I := {I1,I2, . . . ,IK}; dataset V;

pmax := maxk
1
N |Ik |, pmin := mink

1
N |Ik |. Denote

δ :=
D(V,I )−D∗(V)

λK−1(S)− λK (S)
.

δ ≤ 1
2(K − 1) and τ(δ) := 2δ(1− δ/(K − 1)) ≤ pmin.

⇒
d(I , optimal) ≤ pmaxτ(δ),
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Definitions

Define the increasing function

ζ(p) :=
p

1 +
√

1− 2p/(K − 1)
,

the average variances

σ̄2 :=
K∑

k=1

wkσ
2
k

and the minimum eigenvalue

λmin := λK−1

(
K∑

k=1

wk(uk − ū)(uk − ū)T

)
.
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Theorem for original datasets

Theorem 1

V ∈ RF×N : samples generated from a K-component spherical
GMM (N > F > K);

The non-degeneracy condition;

wmin := mink wk , wmax := maxk wk and assume

δ0 :=
(K − 1)σ̄2

λmin
< ζ(wmin).

For sufficiently large N, w.h.p.,

d(correct, optimal) ≤ τ (δ0)wmax.
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Remark for separability assumption

Remark 1

The condition δ0 < ζ(wmin) can be considered as a separability
assumption. For example,

K = 2: λmin = w1w2‖u1 − u2‖22 and we have

‖u1 − u2‖2 >
σ̄√

w1w2ζ(wmin)
.
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Remark for non-degeneracy condition

Remark 2

The non-degeneracy condition is used to ensure that λmin > 0.

K = 2: λmin = w1w2‖u1 − u2‖22 and we only need the two
component mean vectors are distinct and we do not need that
they are linearly independent.
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Theorem for dimensionality-reduced datasets

Theorem 2

V ∈ RF×N : generated under the same conditions given in
Theorem 1;

The separability assumption being modified to

δ1 :=
(K − 1)σ̄2

λmin + σ̄2
< ζ(wmin).

Ṽ ∈ R(K−1)×N : the post-(K − 1)-PCA dataset of V.

For sufficiently large N, w.h.p.,

d(correct, ˜optimal) ≤ τ (δ1)wmax.
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PCA vs. PCA with no centering

Corollary 1

V ∈ RF×N : generated under the same conditions given in
Theorem 1;

V̂: the post-K-SVD dataset of V;

For sufficiently large N, w.h.p.,

d(correct, ˆoptimal) ≤ τ (δ0)wmax.
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Advantages of PCA over PCA with no centering

Requires weaker separability assumption;

Smaller upper bound for ME distance;

K = 2: projecting to 1-D subspace by PCA instead of
projecting to 2-D subspace by PCA with no centering.
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Upper bound for ME distance between optimal clusterings

Combining the results of Theorem 1 and Theorem 2, by the
triangle inequality:

Corollary 2

V ∈ RF×N : generated under the same conditions given in
Theorem 1;

Ṽ: the post-(K − 1)-PCA dataset of V.

For sufficiently large N, w.h.p.

d(optimal, ˜optimal) ≤ (τ (δ0) + τ (δ1))wmax.
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Parameter settings

K = 2, for all k = 1, 2, we set

σ2k =
λminζ(wmin − ε)

4(K − 1)
, corr. to

δ0
ζ(wmin)

≈ 1

4
,

or

σ2k =
λminζ(wmin − ε)

K − 1
, corr. to

δ0
ζ(wmin)

≈ 1,

where ε = 10−6.

The former corresponds to well-separated clusters; the latter
corresponds to moderately well-separated clusters
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Visualization of post-2-SVD datasets
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Original datasets
dorg := d(I ,I opt), d̄org := τ(δ0)wmax.

δ
emp
0 :=

D(V,I )−D∗(V)
λK−1(S)−λK (S)

is an approximation of δ0,

d̄emp
org := τ(δ

emp
0 )pmax is an approximation of d̄org .

2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N

M
E

 d
is

ta
n
c
e

original dataset

 

 

d̄emp
org

d̄org

dorg

2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

N

original dataset

 

 

d̄emp
org

d̄org

dorg

Figure: True distances and their corresponding upper bounds for original
datasets.
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Dimensionality-reduced datasets
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post-PCA datasets.
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Comparisons of running time
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Further extensions

Randomized SVD instead of exact SVD;

Random projection;

Non-spherical Gaussian or even more general distributions,
e.g., logconcave distributions;
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Nonnegative Matrix Factorization

NMF:
Given V ∈ RF×N

+ , K ∈ N+, K ≤ min{F ,N}, find W ∈ RF×K
+ and

H ∈ RK×N
+ , to minimize ‖V−WH‖F.

Nonnegativity of W ensures interpretability of dictionary;

Nonnegativity of H tends to produce parts-based
representations because subtractive combinations are
forbidden;

Advantages:

Enhancing the interpretability;

Promoting sparsity;
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49 images among 4429 from MIT’s CBCL face dataset
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PCA dictionary with K = 25

Figure: Red pixels indicate negative values
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NMF dictionary with K = 25

Figure: From Lee and Seung’s seminal 1999 paper on NMF
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Classical Algorithms

1) Multiplicative update algorithm (MUA):

H← H
WTV

WTWH
,W←W

VHT

WHHT

2) Alternating nonnegative least square (ANLS)-type algorithms,
e.g.,

H←
[(

WTW
)−1

WTV

]
+

,W←
[

VHT
(

HHT
)−1]

+
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Problems

NP-hard;

No guarantees beyond non-increasing of objective functions
and the convergence to stationary points;

No error bound analysis for classical algorithms;
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An Illustration
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Our Geometric Assumption

Definition 4

A circular cone C := C (u, α) with unit vector (l2 norm) u and

angle α ∈ [0,
π

2
) is defined as

C = {x ∈ RF
+, x 6= 0 :

xTu

‖x‖2
≥ cosα},

u and α are called the basis vector and size angle of C
respectively.

Definition 5

Geometric assumption:

min
i ,j∈[K ]

αij > max
i ,j∈[K ]

{max{αi + 3αj , 3αi + αj}}, αij := arccos
(

uT
i uj

)
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Our Theorem for Clustering

Theorem 3

Algorithm 1 can correctly cluster all data points generated from K
circular cones satisfying the geometric assumption.
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A Non-Probabilistic Theorem

Theorem 4

Suppose each column of V is picked from
Ck := C (uk , αk) , k ∈ [K ] which satisfy the geometric assumption.
Algorithm 2 chooses W∗ ∈ RF×K

+ , H∗ ∈ RK×N
+ , s.t.

‖V−W∗H∗‖F
‖V‖F

≤ max
k∈[K ]

{sinαk},
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Algorithm 2
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The Generating Process for Each Column

Let λ := (λ1;λ2; . . . ;λK ) ∈ RK
++, sample each column v of V:

1 sample k ∈ [K ] with equal probability 1/K ;

2 sample the squared length l from Exp(λk);1

3 uniformly sample a unit vector z ∈ Ck ;2

4 if z /∈ RF
+, project and rescale it;

5 let v =
√
lz;

1Exp(λ) is the function x 7→ λ exp(−λx)1{x ≥ 0}.
2This means we first uniformly sample an angle β ∈ [0, αk ] and subsequently

uniformly sample a vector z from the set {x ∈ RF : ‖x‖2 = 1, xTuk = cosβ}
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A Probabilistic Theorem

Theorem 5

Let
f (α) := 0.5− (sin 2α) / (4α) ,

then for small ε > 0, w.p. at least

1− 8 exp
(
−ξNε2

)
,

we have

‖V−W∗H∗‖F
‖V‖F

≤

√∑K
k=1 f (αk) /λk∑K

k=1 1/λk
+ ε.



54/62

The Upper Bound is Tight

Theorem 6

If we do not project the vectors to nonnegative orthant, we have

‖V−W∗H∗‖F
‖V‖F

p−→

√∑K
k=1 f (αk) /λk∑K

k=1 1/λk
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Automatically Determining K

Theorem 7

Assume

size angle = α;

angles between distinct basis vectors of the circular cones = β;

parameters for the exponential distributions = λ;

circular cones are in RF
+;

K ∈ {Kmin, . . . ,Kmax} with Kmin > 1, Kmax < rank(V).

Then, for any t ≥ 1, and small ε, if N is sufficiently large, w.h.p.,

σK (V)

σK+1(V)
= max

j∈{Kmin,...,Kmax}

σj(V)

σj+1(V)
.
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Automatically Determining K
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Figure: Estimated number of circular cones K with different noise levels.
The error bars denote one standard deviation away from the mean.
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Synthetic Dataset Test
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Figure: Errors and performances of various algorithms.
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Real Dataset Test

Table: Information for real datasets used

Dataset Name F N K Description

CK 49×64 8795 97 face dataset

faces94 200×180 3040 152 face dataset

Georgia Tech 480×640 750 50 face dataset

PaviaU 207400 103 9 hyperspectral
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Initialization Performances I
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Figure: CK dataset.
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Initialization Performances II
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Figure: faces94 dataset.
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Initialization Performances III
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Figure: Georgia Tech dataset.
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Initialization Performances IV
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Figure: PaviaU dataset.


