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Gaussian distribution

For F dimensions, the Gaussian distribution of a vector x € RF is
defined by:
N(xlu, E) ! (~5-wE - w)
x|u, = —— —exp| —=(x—u x—u)],
n)f2E] T\ 2
where u is the mean vector, X is the covariance matrix of the

Gaussian.
Example: u = [0;0], X = [0.25,0.3;0.3,0.1].

Probability Density




Gaussian mixture model (GMM)

K
P(x) = > wiN (X|ug, ).

k=1

@ Wj: mixing weight

@ uy: component mean vector

@ X,: component covariance matrix; if £ = 021, the GMM is
said to be spherical



Learning GMM

Data samples independently generated from a GMM =
Correct target clustering of the samples according to which
Gaussian distribution they come from

Definition 1 (correct target clustering)

Suppose
V.= |:V1,V27 oooa ,VN]

are samples independently generated from a K-component GMM.
The correct target clustering

A = {fl,f2,...,fK}

of them satisfies n € .7, iff v,, comes from the k-th component.




Learning GMM

Data samples independently generated from a GMM =
Correct target clustering of the samples according to which
Gaussian distribution they come from

Definition 1 (correct target clustering)

Suppose
V.= |:V1,V27 oooa ,VN]

are samples independently generated from a K-component GMM.
The correct target clustering

A = {fl,f2,...,fK}

of them satisfies n € .7, iff v,, comes from the k-th component.

Thereby inferring the important parameters of the GMM.



Algorithms for learning GMM

i) Expectation Maximization (EM)

@ A local-search heuristic approach for maximum likelihood
estimation in the presence of incomplete data;

@ Cannot guarantee the convergence to global optima.



Algorithms for learning GMM

ii) Algorithms based on spectral decomposition and method of
moments;

Definition 2 (non-degeneracy condition)

The component mean vectors
ui,...,Uxg

span a K-dimensional subspace, and the mixing weight wy, > 0, for
ke{1,2,...,K}.

v




Algorithms for learning GMM

iii) Algorithms proposed by pure computer scientists;
Need to assume separability assumptions.
Vempala and Wang [2002]: for any i,j € [K], i # J,

F

min

luj —ujl2 > C max{a,-,aj}K% Iog%(

).



Algorithms for learning GMM

iii) Algorithms proposed by pure computer scientists;
Need to assume separability assumptions.
Vempala and Wang [2002]: for any i,j € [K], i # J,

F

Wmin

).

luj —ujl2 > C max{a,-,aj}K% Iog%(

A simple spectral algorithm with running time polynomial in both
F and K works well for correctly clustering samples.



The k-means algorithm

Large number of algorithms for finding the (approximately) correct
clustering of GMM,;



The k-means algorithm

Large number of algorithms for finding the (approximately) correct
clustering of GMM,;

Many practitioners stick with k-means algorithm because of its
simplicity and successful applications in various fields.



The objective function of k-means

Objective function: the so-called distortion.

K
DV,#) =33 va - cill3.

k=1 ne.g

where
@ .7 the index set of k-th cluster;
° ¢y = ﬁ > ne.s, Vn is the centroid of the k-th cluster.



The objective function of k-means

Objective function: the so-called distortion.

K
DV,#) =33 va - cill3.

k=1 ne.g

where
@ .7 the index set of k-th cluster;
° ¢y = ﬁ > ne.s, Vn is the centroid of the k-th cluster.

Finding an optimal clustering .#°P! that satisfies

D(V, 7P = min D(V, 7).



k-means algorithm

k-Means: By Example

o Standardize the data.
@ Choose two cluster centers.
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From Bishop's Pattern recognition and machine learning, Figure 9.1(a).



k-means algorithm

@ Assign each point to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).



k-means algorithm

o Compute new class centers.
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From Bishop's Pattern recognition and machine learning, Figure 9.1(c).



k-means algorithm

@ Assign points to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(d).



k-means algorithm

o Compute cluster centers.

-2

From Bishop's Pattern recognition and machine learning, Figure 9.1(e).




k-means algorithm

o lterate until convergence.

-2

From Bishop's Pattern recognition and machine learning, Figure 9.1(i).



Using k-means to learn GMM?

Can we simply use k-means to learn the correct clustering of
GMM?



Using k-means to learn GMM?

Yes!

Kumar and Kannan [2010]:

Data points satisfy a so-called proximity condition (which is
satisfied by the data points independently generated from a GMM
with a certain separability assumption)

=

k-means algorithm with a proper initialization can correctly cluster
nearly all data points



Using k-means to learn GMM?

The key condition to be satisfied for performing k-means to learn
GMM?



Using k-means to learn GMM?

The key condition to be satisfied for performing k-means to learn
GMM?

The correct clustering ~ Any optimal clustering



Main contributions

We prove if

@ data points generated from a K-component spherical GMM,;

@ non-degeneracy condition and an separability assumption;

The correct clustering ~ Any optimal clustering



Main contributions

We also prove if

@ data points generated from a K-component spherical GMM,;
@ projected onto the low-dimensional space;

@ non-degeneracy condition and an even weaker separability
assumption;

The correct clustering =~ Any optimal clustering for the
dimensionality-reduced dataset



Advantages of dimensionality reduction

@ Significantly faster running time
@ Reduced memory usage
@ Weaker separability assumption

@ Other advantages



Lower bound of distortion

Let Z be the centralized data matrix of V and denote S =2Z72Z.
According to Ding and He [2004], for any K-clustering .#,

DV, 7) > D*(V) :=tr(S) — Ak(S),
where

A(S)>X(S)>...>0

are the sorted eigenvalues of S.



Misclassification error (ME) distance

Definition 3 (ME distance)

The misclassification error distance of any two K-clusterings

gt ={g, 7} ... 7L}, and
j2 = {j127j227 90 7'ﬂ}%}

is defined as
1 K
1 z2y._ 1 2
d(75,7%) =1— N 72%),(( kEZI BAAREEPE

where m € Py represents that the distance is minimized over all
permutations of the labels {1,2,..., K}.

Meild [2005]: ME distance defined above is indeed a metric.



Important lemma

Lemma 1 (Meils, 2006)

o Given .¥ = {fl, fz, ..

» Pmin = ming %|fk| Denote

: 1
® Pmax = Maxy |- Pk

0=

., Ik}, dataset V;

D(V, .7) — D*(V)
M_1(S) — M(S)

(K —1) and 7(8) :=26(1 — 6 /(K — 1)) < Pmin-

d(#, optimal) < pmax7(9),




Define the increasing function

_ P
141 -2p/(K-1)

¢(p) :

the average variances

K
52 = g Wko',%
k=1

and the minimum eigenvalue

K
>\min = )\K,1 (Z Wk(uk — ﬁ)(uk — ﬁ)T> .

k=1



Theorem for original datasets

o V € RFXN: samples generated from a K-component spherical
GMM (N> F > K);

@ The non-degeneracy condition;

@ Wpin := MiNg Wk, Wmax := MaXy Wy and assume

 1\=2
0o == (K)\].)U < C(Wmin)-

For sufficiently large N, w.h.p.,

d(correct, optimal) < 7 (dp) Wimax-




Remark for separability assumption

The condition dg < ((Wmin) can be considered as a separability
assumption. For example,

0 K =2: Anin = wiwz||u; — uz||3 and we have

g

Hul = u2||2 > .
w1 W2l (Wmin)




Remark for non-degeneracy condition

The non-degeneracy condition is used to ensure that A\nin, > 0.

0 K = 2: Amin = wiwa|lu; — uz||3 and we only need the two
component mean vectors are distinct and we do not need that
they are linearly independent.




Theorem for dimensionality-reduced datasets

o V € RFXN: generated under the same conditions given in
Theorem 1;

@ The separability assumption being modified to

(K —1)52

o Ve RIK-DXN: the post-(K — 1)-PCA dataset of V.
For sufficiently large N, w.h.p.,

d(correct, optfmal) < 7 (01) Wimax-




PCA vs. PCA with no centering

Corollary 1

o V € RFXN: generated under the same conditions given in
Theorem 1;

o V: the post-K-SVD dataset of V;

For sufficiently large N, w.h.p.,

d(correct, optimal) < 7 (8) Wmax.




Advantages of PCA over PCA with no centering

@ Requires weaker separability assumption;
@ Smaller upper bound for ME distance;

@ K = 2: projecting to 1-D subspace by PCA instead of
projecting to 2-D subspace by PCA with no centering.



Upper bound for ME distance between optimal clusterings

Combining the results of Theorem 1 and Theorem 2, by the
triangle inequality:

Corollary 2

o V € RFXN: generated under the same conditions given in
Theorem 1;

o V: the post-(K — 1)-PCA dataset of V.
For sufficiently large N, w.h.p.

d(optimal, optimal) < (7 (8) + 7 (1)) Winax-




Parameter settings

K =2, forall k =1,2, we set

)\minC(Wmin - 5) 0o 1

o MK—1) corr. to ) S @
” Amin (Winin — ) 5
minG (Wmin — € 0

or = 1 , corr. to i) ~1,

where ¢ = 107°.



Parameter settings

K =2, forall k =1,2, we set

0_2 . )\minC(Wmin - 5) corr. to o ~ 1

K= aK=1) 7 (Wmin) 4
> AminC( ) 5
minG(Wmin — € 0

ai = 1 , corr. to (o) ~ 1,

where ¢ = 107°.

The former corresponds to well-separated clusters; the latter
corresponds to moderately well-separated clusters



Visualization of post-2-SVD datasets
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Original datasets

dorg = d(F, FP"), dorg = 7(80)Wmax-

*
§SMP = D(V,7)—D7(V) is an approximation of dg,

0 T Ak—108)=2k(S)
ag;‘g = ‘r(égmp)pmax is an approximation of dorg.
original dataset original dataset
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Figure: True distances and their corresponding upper bounds for original
datasets.



Dimensionality-reduced datasets

post-PCA dataset
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Figure: True distances and their corresponding upper bounds for

post-PCA datasets.



Comparisons of running time
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Further extensions

@ Randomized SVD instead of exact SVD;
@ Random projection;

@ Non-spherical Gaussian or even more general distributions,
e.g., logconcave distributions;



e Rank-One NMF-Based Initialization for NMF and Relative Error
Bounds under a Geometric Assumption (IEEE TSP)
@ NMF and Classical Algorithms
@ Our Geometric Assumption for NMF
@ Non-Probabilistic and Probabilistic Results
@ Automatically Determine K
@ Numerical Experiments



Nonnegative Matrix Factorization

NMF:
Given V e RE*N K € Ny, K < min{F, N}, find W € R}*¥ and
H € RF*N to minimize |V — WH|[p.

@ Nonnegativity of W ensures interpretability of dictionary;

@ Nonnegativity of H tends to produce parts-based
representations because subtractive combinations are
forbidden;

Advantages:
@ Enhancing the interpretability;

@ Promoting sparsity;
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PCA dictionary with K = 25

Figure: Red pixels indicate negative values




NMF dictionary with K = 25
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Figure: From Lee and Seung's seminal 1999 paper on NMF




Classical Algorithms

1) Multiplicative update algorithm (MUA):

w’v W W VH'

HeH——,
W’ WH WHH'

2) Alternating nonnegative least square (ANLS)-type algorithms,
e.g.,

—-1 -1

H« [(WTW> WTV} W [VHT (HHT) }

+ +



NP-hard;

No guarantees beyond non-increasing of objective functions
and the convergence to stationary points;

No error bound analysis for classical algorithms;



An lllustration

Example of Two Disjoint 3D Circular Cones




Our Geometric Assumption

Definition 4

A circular cone C := C (u, ) with unit vector (L norm) u and
T . .
angle o € [0, 5) is defined as

:{XGR ,X#0: > cosal},

u and « are called the basis vector and size angle of C
respectively.

Definition 5
Geometric assumption:

min «ji > max {max{a; + 3a;,3a; + « Qujj 1= arccos (uTu)
i jelK] i ze[K]{ {ai Jis X%, it} aij j




Our Theorem for Clustering

Algorithm 1 can correctly cluster all data points generated from K
circular cones satisfying the geometric assumption.

Algorithm 1 Greedy clustering method with geometric as-
sumption in (2)

Input: Data matrix V € RN K eWN

Output: A set of non-empty, pairwise disjoint index sets
I, o, ..., T € [N] such that their union is [N]

1) Normalize V to obtain V', such that all the columns of
V' have unit /2 norm.

2) Arbitrarily pick a point z; € V' (i.e., z; is a column in
V') as the first centroid.

3yfork=1to K —1do

Zi+1 = arg min{max{z! z,i € [£]}} (3)
zEV!

and set z,+1 be the (k+ 1)-st centroid.

4 F ={n € [N] : k = al'gril_{-]tle?f-vr(:,?l}} for all
JE[K

ke K.




A Non-Probabilistic Theorem

Theorem 4

Suppose each column of V is picked from

Cx := C (ug, k) , k € [K] which satisfy the geometric assumption.
Algorithm 2 chooses W* € RiXK, H* R_’fx’v, s.t.

|V — W*H"||p :
———— < max{sinay,
Ve = etsin ot




Algorithm 2

Algorithm 2 Approximate NMF under the geometric assumption
Input: Data matrix V € R‘T’{N, Kel
Output: Factor matrices W* € R‘T"H. H" R"l"x”
1) Use Algorithm | to find a set of non-empty, pairwise disjoint
index sets .9, %, . .., fx C [N].
2)fork=1to K do

Vi =V (%),

[Uk. B, Xi] :=svd (Vi) ,
wi =% (1,1)|Us (1, 1), hg = |Xe (5, 1),
h; := zeros (N, 1), h; (7)) = hy.




The Generating Process for Each Column

Let A :=(A1; A25.. .5 Ak) € Rﬁr, sample each column v of V:
@ sample k € [K] with equal probability 1/K;
@ sample the squared length / from Exp(\x);!
© uniformly sample a unit vector z € C;?

Q if z ¢ RE, project and rescale it;
Q letv=+/Iz:

'Exp(]) is the function x — Xexp(—Ax)1{x > 0}.
2This means we first uniformly sample an angle 8 € [0, ax] and subsequently
uniformly sample a vector z from the set {x € R : ||x||> = 1,x" ui = cos 3}



A Probabilistic Theorem

Theorem 5

Let
f(a) :=0.5— (sin2a) / (4a) ,
then for small € > 0, w.p. at least

1—8exp (—fNez) ,

we have

IV - WHlp _ 30 f () [
IV - SR L1/ Ak




The Upper Bound is Tight

Theorem 6

If we do not project the vectors to nonnegative orthant, we have

[V -WHp p [ f () /M
[Vl Ske1 1/ M




Automatically Determining K

Assume
@ size angle = «;
@ angles between distinct basis vectors of the circular cones = f3;
@ parameters for the exponential distributions = \;
@ circular cones are in R ;
o K € {Kunin,---, Kmax} with Kpnin > 1, Kpax < rank(V).
Then, for any t > 1, and small ¢, if N is sufficiently large, w.h.p.,

ok(V) _ a;(V)

ok+1(V)  je{KminrrKmax} 0j+1(V)




Automatically Determining K

F = 1600, true K =40, a = 0.3, 0 = 0.1 F = 1600, true K =40, a =0.3,§ =0.5
100 200
—K —K
80 ——true K ——tr ¢
true K 150 true K ||
60
B 100

10° 10
N N

4 4

10

Figure: Estimated number of circular cones K with different noise levels.
The error bars denote one standard deviation away from the mean.



Synthetic Dataset Test
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Figure: Errors and performances of various algorithms.



Real Dataset Test

Table: Information for real datasets used

Dataset Name F N K Description
CK 49x64 | 8795 | 97 | face dataset
faces94 200x180 | 3040 | 152 | face dataset
Georgia Tech | 480x640 | 750 | 50 | face dataset
PaviaU 207400 103 9 | hyperspectral




Initialization Performances |
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Figure: CK dataset.




Initialization Performances I
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Figure: faces94 dataset.




Initialization Performances IlI
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Figure: Georgia Tech dataset.



Initialization Performances IV

Relative Error
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Figure: PaviaU dataset.
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