Theoretical Advances in Clustering with Applications to Nonnegative Matrix Factorization

Vincent Y. F. Tan (Joint work with Zhaoqiang Liu)

Department of Mathematics, NUS

November 10, 2017

D > (종) (종) (종) (종) (종)

Outline

- The Informativeness of k-Means and Dimensionality Reduction for Learning Mixture Models
 - Gaussian Mixture Models and k-Means
 - Main Contributions
 - Lemmas and Our Theorems
 - Experiments
 - Further Extensions
- 2 Rank-One NMF-Based Initialization for NMF and Relative Error Bounds under a Geometric Assumption (IEEE TSP)

イロト イヨト イヨト イヨト

臣

- NMF and Classical Algorithms
- Our Geometric Assumption for NMF
- Non-Probabilistic and Probabilistic Results
- Automatically Determine K
- Numerical Experiments

Gaussian distribution

For *F* dimensions, the Gaussian distribution of a vector $\mathbf{x} \in \mathbb{R}^{F}$ is defined by:

$$\mathcal{N}(\mathbf{x}|\mathbf{u}, \mathbf{\Sigma}) = rac{1}{(2\pi)^{F/2}\sqrt{|\mathbf{\Sigma}|}} \exp\left(-rac{1}{2}(\mathbf{x}-\mathbf{u})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\mathbf{u})
ight),$$

where \boldsymbol{u} is the mean vector, $\boldsymbol{\Sigma}$ is the covariance matrix of the Gaussian.

Example: $\mathbf{u} = [0; 0]$, $\mathbf{\Sigma} = [0.25, 0.3; 0.3, 0.1]$.

・ロト ・日下・ ・ヨト・

프 🕨 🗉 프

3/62

Gaussian mixture model (GMM)

$$\mathbb{P}(\mathbf{x}) = \sum_{k=1}^{K} w_k \mathcal{N}(\mathbf{x} | \mathbf{u}_k, \mathbf{\Sigma}_k).$$

- w_k: mixing weight
- **u**_k: component mean vector
- Σ_k: component covariance matrix; if Σ_k = σ²_kI, the GMM is said to be spherical

Data samples independently generated from a GMM \Rightarrow **Correct target clustering** of the samples according to which Gaussian distribution they come from

Definition 1 (correct target clustering)

Suppose

$$\mathbf{V} := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N]$$

are samples independently generated from a *K*-component GMM. The **correct target clustering**

$$\mathscr{I} := \{\mathscr{I}_1, \mathscr{I}_2, \dots, \mathscr{I}_K\}$$

of them satisfies $n \in \mathscr{I}_k$ iff \mathbf{v}_n comes from the k-th component.

Data samples independently generated from a GMM \Rightarrow **Correct target clustering** of the samples according to which Gaussian distribution they come from

Definition 1 (correct target clustering)

Suppose

$$\mathbf{V} := [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N]$$

are samples independently generated from a *K*-component GMM. The **correct target clustering**

$$\mathscr{I} := \{\mathscr{I}_1, \mathscr{I}_2, \dots, \mathscr{I}_K\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

of them satisfies $n \in \mathscr{I}_k$ iff \mathbf{v}_n comes from the k-th component.

Thereby inferring the important parameters of the GMM.

- i) Expectation Maximization (EM)
 - A local-search heuristic approach for maximum likelihood estimation in the presence of incomplete data;
 - Cannot guarantee the convergence to global optima.

ii) Algorithms based on spectral decomposition and method of moments;

Definition 2 (non-degeneracy condition)

The component mean vectors

 $u_1,\ldots,u_{\textit{K}}$

span a K-dimensional subspace, and the mixing weight $w_k > 0$, for $k \in \{1, 2, \dots, K\}$.

iii) Algorithms proposed by pure computer scientists; Need to assume **separability assumptions**. Vempala and Wang [2002]: for any $i, j \in [K], i \neq j$,

$$\|\mathbf{u}_i - \mathbf{u}_j\|_2 > C \max\{\sigma_i, \sigma_j\} K^{\frac{1}{4}} \log^{\frac{1}{4}}(\frac{F}{w_{\min}}).$$

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

8/62

iii) Algorithms proposed by pure computer scientists; Need to assume **separability assumptions**. Vempala and Wang [2002]: for any $i, j \in [K], i \neq j$,

$$\|\mathbf{u}_i - \mathbf{u}_j\|_2 > C \max\{\sigma_i, \sigma_j\} K^{\frac{1}{4}} \log^{\frac{1}{4}}(\frac{F}{w_{\min}}).$$

A simple spectral algorithm with running time polynomial in both F and K works well for correctly clustering samples.

Large number of algorithms for finding the (approximately) correct clustering of GMM;

Large number of algorithms for finding the (approximately) correct clustering of GMM;

Many practitioners stick with k-means algorithm because of its simplicity and successful applications in various fields.

The objective function of *k*-means

Objective function: the so-called distortion.

$$\mathcal{D}(\mathbf{V},\mathscr{I}) := \sum_{k=1}^{K} \sum_{n \in \mathscr{I}_k} \|\mathbf{v}_n - \mathbf{c}_k\|_2^2,$$

where

- \mathscr{I}_k : the index set of *k*-th cluster;
- $\mathbf{c}_k := \frac{1}{|\mathscr{I}_k|} \sum_{n \in \mathscr{I}_k} \mathbf{v}_n$ is the centroid of the *k*-th cluster.

<ロ> (四) (四) (注) (注) (三)

The objective function of *k*-means

Objective function: the so-called distortion.

$$\mathcal{D}(\mathbf{V},\mathscr{I}) := \sum_{k=1}^{K} \sum_{n \in \mathscr{I}_k} \|\mathbf{v}_n - \mathbf{c}_k\|_2^2,$$

where

• \mathscr{I}_k : the index set of *k*-th cluster;

• $\mathbf{c}_k := \frac{1}{|\mathscr{I}_k|} \sum_{n \in \mathscr{I}_k} \mathbf{v}_n$ is the centroid of the *k*-th cluster.

Finding an **optimal clustering** $\mathscr{I}^{\mathrm{opt}}$ that satisfies

$$\mathcal{D}(\mathbf{V},\mathscr{I}^{\mathrm{opt}}) = \min_{\mathscr{I}} \mathcal{D}(\mathbf{V},\mathscr{I}).$$

<ロト < 団ト < 臣ト < 臣ト 三 のへで 10/62

k-Means: By Example

- Standardize the data.
- Choose two cluster centers.

(日) (四) (注) (注) (注) (三)

11/62

From Bishop's Pattern recognition and machine learning, Figure 9.1(a).

• Assign each point to closest center.

<ロ> (四) (四) (注) (注) (三)

12/62

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).

• Compute new class centers.

13/62

From Bishop's Pattern recognition and machine learning, Figure 9.1(c).

• Assign points to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(d).

• Compute cluster centers.

15/62

From Bishop's Pattern recognition and machine learning, Figure 9.1(e).

• Iterate until convergence.

16/62

From Bishop's Pattern recognition and machine learning, Figure 9.1(i).

Can we simply use k-means to learn the correct clustering of GMM?

シマで 17/62

Yes!

Kumar and Kannan [2010]:

Data points satisfy a so-called proximity condition (which is satisfied by the data points independently generated from a GMM with a certain separability assumption)

 \Rightarrow

k-means algorithm with a proper initialization can correctly cluster nearly all data points

The key condition to be satisfied for performing k-means to learn GMM?

The key condition to be satisfied for performing k-means to learn GMM?

The correct clustering \approx Any optimal clustering

We prove if

- data points generated from a K-component spherical GMM;
- non-degeneracy condition and an separability assumption;

The correct clustering \approx Any optimal clustering

We also prove if

- data points generated from a K-component spherical GMM;
- projected onto the low-dimensional space;
- non-degeneracy condition and an even weaker separability assumption;

The correct clustering \approx Any optimal clustering for the dimensionality-reduced dataset

Advantages of dimensionality reduction

- Significantly faster running time
- Reduced memory usage
- Weaker separability assumption
- Other advantages

Let **Z** be the centralized data matrix of **V** and denote $\mathbf{S} = \mathbf{Z}^T \mathbf{Z}$. According to Ding and He [2004], for any *K*-clustering \mathscr{I} ,

$$\mathcal{D}(\mathbf{V},\mathscr{I}) \geq \mathcal{D}^*(\mathbf{V}) := \operatorname{tr}(\mathbf{S}) - \sum_{k=1}^{K-1} \lambda_k(\mathbf{S}),$$

where

$$\lambda_1(\mathbf{S}) \geq \lambda_2(\mathbf{S}) \geq \ldots \geq 0$$

メロト メロト メヨト メヨト

æ

23/62

are the sorted eigenvalues of S.

Definition 3 (ME distance)

The misclassification error distance of any two K-clusterings

$$\begin{split} \mathcal{I}^1 &:= \{\mathcal{I}^1_1, \mathcal{I}^1_2, \dots, \mathcal{I}^1_K\}, \quad \text{and} \\ \mathcal{I}^2 &:= \{\mathcal{I}^2_1, \mathcal{I}^2_2, \dots, \mathcal{I}^2_K\} \end{split}$$

is defined as

$$d(\mathscr{I}^1, \mathscr{I}^2) := 1 - \frac{1}{N} \max_{\pi \in \mathcal{P}_K} \sum_{k=1}^K |\mathscr{I}_k^1 \bigcap \mathscr{I}_{\pi(k)}^2|,$$

where $\pi \in \mathcal{P}_{\mathcal{K}}$ represents that the distance is minimized over all permutations of the labels $\{1, 2, \ldots, \mathcal{K}\}$.

Meilă [2005]: ME distance defined above is indeed a metric.

Lemma 1 (Meilă, 2006)

- Given $\mathscr{I} := \{\mathscr{I}_1, \mathscr{I}_2, \dots, \mathscr{I}_K\}$; dataset \mathbf{V} ;
- $p_{\max} := \max_k \frac{1}{N} |\mathscr{I}_k|, \ p_{\min} := \min_k \frac{1}{N} |\mathscr{I}_k|.$ Denote

$$\delta := \frac{\mathcal{D}(\mathbf{V}, \mathscr{I}) - \mathcal{D}^*(\mathbf{V})}{\lambda_{K-1}(\mathbf{S}) - \lambda_K(\mathbf{S})}$$

•
$$\delta \leq \frac{1}{2}(K-1)$$
 and $\tau(\delta) := 2\delta(1-\delta/(K-1)) \leq p_{\min}$.
 \Rightarrow
 $d(\mathscr{I}, \mathbf{optimal}) \leq p_{\max}\tau(\delta),$

Define the increasing function

$$\zeta(p) := rac{p}{1+\sqrt{1-2p/(\mathcal{K}-1)}},$$

the average variances

$$\bar{\sigma}^2 := \sum_{k=1}^K w_k \sigma_k^2$$

and the minimum eigenvalue

$$\lambda_{\min} := \lambda_{K-1} \left(\sum_{k=1}^{K} w_k (\mathbf{u}_k - \bar{\mathbf{u}}) (\mathbf{u}_k - \bar{\mathbf{u}})^T \right).$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> ○ ○ 26/62

Theorem for original datasets

Theorem 1

- V ∈ ℝ^{F×N}: samples generated from a K-component spherical GMM (N > F > K);
- The non-degeneracy condition;
- $w_{\min} := \min_k w_k$, $w_{\max} := \max_k w_k$ and assume

$$\delta_0 := rac{(K-1)ar{\sigma}^2}{\lambda_{\min}} < \zeta(w_{\min}).$$

For sufficiently large N, w.h.p.,

 $d(correct, optimal) \leq \tau(\delta_0) w_{max}.$

Remark 1

The condition $\delta_0 < \zeta(w_{min})$ can be considered as a separability assumption. For example,

•
$$K = 2$$
: $\lambda_{\min} = w_1 w_2 || \mathbf{u}_1 - \mathbf{u}_2 ||_2^2$ and we have

$$\|\mathbf{u}_1 - \mathbf{u}_2\|_2 > \frac{\bar{\sigma}}{\sqrt{w_1 w_2 \zeta(w_{\min})}}$$

Remark 2

The non-degeneracy condition is used to ensure that $\lambda_{\min} > 0$.

K = 2: λ_{min} = w₁w₂ ||u₁ - u₂||²₂ and we only need the two component mean vectors are distinct and we do not need that they are linearly independent.

Theorem 2

- V ∈ ℝ^{F×N}: generated under the same conditions given in Theorem 1;
- The separability assumption being modified to

$$\delta_1 := \frac{(K-1)\bar{\sigma}^2}{\lambda_{\min} + \bar{\sigma}^2} < \zeta(w_{\min}).$$

• $\tilde{\mathbf{V}} \in \mathbb{R}^{(K-1) \times N}$: the post-(K-1)-PCA dataset of \mathbf{V} .

For sufficiently large N, w.h.p.,

 $d(correct, optimal) \leq \tau(\delta_1) w_{max}.$

Corollary 1

- V ∈ ℝ^{F×N}: generated under the same conditions given in Theorem 1;
- $\hat{\mathbf{V}}$: the post-K-SVD dataset of \mathbf{V} ;

For sufficiently large N, w.h.p.,

 $d(correct, optimal) \leq \tau(\delta_0) w_{max}.$

Advantages of PCA over PCA with no centering

- Requires weaker separability assumption;
- Smaller upper bound for ME distance;
- *K* = 2: projecting to 1-D subspace by PCA instead of projecting to 2-D subspace by PCA with no centering.

Combining the results of Theorem 1 and Theorem 2, by the triangle inequality:

Corollary 2

- V ∈ ℝ^{F×N}: generated under the same conditions given in Theorem 1;
- $\tilde{\mathbf{V}}$: the post-(K 1)-PCA dataset of \mathbf{V} .

For sufficiently large N, w.h.p.

 $d(\text{optimal}, \text{optimal}) \leq (\tau(\delta_0) + \tau(\delta_1)) w_{\max}.$

Parameter settings

$$K = 2$$
, for all $k = 1, 2$, we set

$$\sigma_k^2 = rac{\lambda_{\min}\zeta(w_{\min}-arepsilon)}{4(K-1)}, ext{ corr. to } rac{\delta_0}{\zeta(w_{\min})} pprox rac{1}{4},$$

or

$$\sigma_k^2 = rac{\lambda_{\min}\zeta(w_{\min}-arepsilon)}{K-1}, ext{ corr. to } rac{\delta_0}{\zeta(w_{\min})} pprox 1,$$

where $\varepsilon = 10^{-6}$.

Parameter settings

$$K = 2$$
, for all $k = 1, 2$, we set

$$\sigma_k^2 = rac{\lambda_{\min}\zeta(w_{\min}-arepsilon)}{4(K-1)}, ext{ corr. to } rac{\delta_0}{\zeta(w_{\min})} pprox rac{1}{4},$$

or

$$\sigma_k^2 = \frac{\lambda_{\min}\zeta(w_{\min} - \varepsilon)}{K - 1}$$
, corr. to $\frac{\delta_0}{\zeta(w_{\min})} \approx 1$,
where $\varepsilon = 10^{-6}$.

The former corresponds to well-separated clusters; the latter corresponds to moderately well-separated clusters

æ

34/62

Visualization of post-2-SVD datasets

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 臣 の Q @ 35/62

Original datasets

$$\begin{split} \mathrm{d}_{\mathrm{org}} &:= \mathrm{d}(\mathscr{I}, \mathscr{I}^{\mathrm{opt}}), \, \bar{\mathrm{d}}_{\mathrm{org}} := \tau(\delta_0) w_{\text{max}}.\\ \delta_0^{\mathrm{emp}} &:= \frac{\mathcal{D}(\mathbf{V}, \mathscr{I}) - \mathcal{D}^*(\mathbf{V})}{\lambda_{K-1}(\mathbf{S}) - \lambda_K(\mathbf{S})} \text{ is an approximation of } \delta_0,\\ \bar{\mathrm{d}}_{\mathrm{org}}^{\mathrm{emp}} &:= \tau(\delta_0^{\mathrm{emp}}) \rho_{\text{max}} \text{ is an approximation of } \bar{\mathrm{d}}_{\mathrm{org}}. \end{split}$$

Figure: True distances and their corresponding upper bounds for original datasets.

Dimensionality-reduced datasets

Figure: True distances and their corresponding upper bounds for post-PCA datasets.

Comparisons of running time

<ロト < 団 > < 臣 > < 臣 > 三 の < で 38/62

- Randomized SVD instead of exact SVD;
- Random projection;
- Non-spherical Gaussian or even more general distributions, e.g., logconcave distributions;

Outline

- The Informativeness of k-Means and Dimensionality Reduction for Learning Mixture Models
 - Gaussian Mixture Models and k-Means
 - Main Contributions
 - Lemmas and Our Theorems
 - Experiments
 - Further Extensions
- 2 Rank-One NMF-Based Initialization for NMF and Relative Error Bounds under a Geometric Assumption (IEEE TSP)

イロト イヨト イヨト イヨト

2

40/62

- NMF and Classical Algorithms
- Our Geometric Assumption for NMF
- Non-Probabilistic and Probabilistic Results
- Automatically Determine K
- Numerical Experiments

Nonnegative Matrix Factorization

NMF:

Given $\mathbf{V} \in \mathbb{R}_{+}^{F \times N}$, $K \in \mathbb{N}_{+}$, $K \leq \min\{F, N\}$, find $\mathbf{W} \in \mathbb{R}_{+}^{F \times K}$ and $\mathbf{H} \in \mathbb{R}_{+}^{K \times N}$, to minimize $\|\mathbf{V} - \mathbf{W}\mathbf{H}\|_{F}$.

• Nonnegativity of **W** ensures interpretability of dictionary;

(日) (四) (三) (三) (三)

41/62

 Nonnegativity of H tends to produce parts-based representations because subtractive combinations are forbidden;

Advantages:

- Enhancing the interpretability;
- Promoting sparsity;

49 images among 4429 from MIT's CBCL face dataset

PCA dictionary with K = 25

Figure: Red pixels indicate negative values

NMF dictionary with K = 25

Figure: From Lee and Seung's seminal 1999 paper on NMF

1) Multiplicative update algorithm (MUA):

$$\mathbf{H} \leftarrow \mathbf{H} \frac{\mathbf{W}^{\mathsf{T}} \mathbf{V}}{\mathbf{W}^{\mathsf{T}} \mathbf{W} \mathbf{H}}, \mathbf{W} \leftarrow \mathbf{W} \frac{\mathbf{V} \mathbf{H}^{\mathsf{T}}}{\mathbf{W} \mathbf{H} \mathbf{H}^{\mathsf{T}}}$$

2) Alternating nonnegative least square (ANLS)-type algorithms, e.g.,

$$\mathbf{H} \leftarrow \left[\left(\mathbf{W}^{\mathcal{T}} \mathbf{W} \right)^{-1} \mathbf{W}^{\mathcal{T}} \mathbf{V} \right]_{+}, \mathbf{W} \leftarrow \left[\mathbf{V} \mathbf{H}^{\mathcal{T}} \left(\mathbf{H} \mathbf{H}^{\mathcal{T}} \right)^{-1} \right]_{+}$$

- NP-hard;
- No guarantees beyond non-increasing of objective functions and the convergence to stationary points;
- No error bound analysis for classical algorithms;

Our Geometric Assumption

Definition 4

A circular cone $C := C(\mathbf{u}, \alpha)$ with unit vector (l_2 norm) \mathbf{u} and angle $\alpha \in [0, \frac{\pi}{2})$ is defined as

$$C = \{ \mathbf{x} \in \mathbb{R}_+^F, \mathbf{x} \neq \mathbf{0} : \frac{\mathbf{x}^T \mathbf{u}}{\|\mathbf{x}\|_2} \ge \cos \alpha \},\$$

u and α are called the **basis vector** and **size angle** of *C* respectively.

Definition 5

Geometric assumption:

$$\min_{i,j\in[K]}\alpha_{ij} > \max_{i,j\in[K]} \{\max\{\alpha_i + 3\alpha_j, 3\alpha_i + \alpha_j\}\}, \alpha_{ij} := \arccos\left(\mathbf{u}_i^T \mathbf{u}_j\right)$$

Theorem 3

Algorithm 1 can correctly cluster all data points generated from K circular cones satisfying the geometric assumption.

Algorithm 1 Greedy clustering method with geometric assumption in (2)

Input: Data matrix $\mathbf{V} \in \mathbb{R}^{F \times N}_+$, $K \in \mathbb{N}$ **Output**: A set of non-empty, pairwise disjoint index sets $\mathscr{I}_1, \mathscr{I}_2, \ldots, \mathscr{I}_K \subseteq [N]$ such that their union is [N]1) Normalize \mathbf{V} to obtain \mathbf{V}' , such that all the columns of \mathbf{V}' have unit l_2 norm.

2) Arbitrarily pick a point $\mathbf{z}_1 \in \mathbf{V}'$ (i.e., \mathbf{z}_1 is a column in \mathbf{V}') as the first centroid.

3) for k = 1 to K - 1 do

$$\mathbf{z}_{k+1} := \underset{\mathbf{z} \in \mathbf{V}'}{\arg\min} \{ \max\{\mathbf{z}_i^T \mathbf{z}, i \in [k] \} \}$$
(3)

49/62

and set \mathbf{z}_{k+1} be the (k+1)-st centroid. 4) $\mathscr{I}_k := \{n \in [N] : k = \underset{j \in [K]}{\arg \max} \mathbf{z}_j^T \mathbf{V}'(:, n)\}$ for all $k \in [K]$.

Theorem 4

Suppose each column of \mathbf{V} is picked from $C_k := \mathcal{C}(\mathbf{u}_k, \alpha_k), k \in [K]$ which satisfy the geometric assumption. Algorithm 2 chooses $\mathbf{W}^* \in \mathbb{R}_+^{F \times K}$, $\mathbf{H}^* \in \mathbb{R}_+^{K \times N}$, s.t.

$$\frac{\|\mathbf{V} - \mathbf{W}^* \mathbf{H}^*\|_{\mathrm{F}}}{\|\mathbf{V}\|_{\mathrm{F}}} \le \max_{k \in [\mathcal{K}]} \{\sin \alpha_k\},\$$

Algorithm 2 Approximate NMF under the geometric assumption

Input: Data matrix $\mathbf{V} \in \mathbb{R}_{+}^{F \times N}$, $K \in \mathbb{N}$ **Output**: Factor matrices $\mathbf{W}^{*} \in \mathbb{R}_{+}^{F \times K}$, $\mathbf{H}^{*} \in \mathbb{R}_{+}^{K \times N}$ 1) Use Algorithm 1 to find a set of non-empty, pairwise disjoint index sets $\mathscr{I}_{1}, \mathscr{I}_{2}, \ldots, \mathscr{I}_{K} \subseteq [N]$. 2) **for** k = 1 to K **do**

$$\mathbf{V}_{k} := \mathbf{V} (:, \mathscr{I}_{k}),$$

$$[\mathbf{U}_{k}, \mathbf{\Sigma}_{k}, \mathbf{X}_{k}] := \operatorname{svd} (\mathbf{V}_{k}),$$

$$\mathbf{w}_{k}^{*} := \mathbf{\Sigma}_{k} (1, 1) |\mathbf{U}_{k} (:, 1)|, \quad \mathbf{h}_{k} := |\mathbf{X}_{k} (:, 1)|,$$

$$\mathbf{h}_{k}^{*} := \operatorname{zeros} (N, 1), \mathbf{h}_{k}^{*} (\mathscr{I}_{k}) = \mathbf{h}_{k}.$$

3)
$$\mathbf{W}^* := [\mathbf{w}_1^*, \mathbf{w}_2^*, \dots, \mathbf{w}_K^*], \mathbf{H}^* := [\mathbf{h}_1^*; \mathbf{h}_2^*; \dots; \mathbf{h}_K^*].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 51/62

The Generating Process for Each Column

Let $\lambda := (\lambda_1; \lambda_2; \dots; \lambda_K) \in \mathbb{R}_{++}^K$, sample each column **v** of **V**:

- sample $k \in [K]$ with equal probability 1/K;
- 2 sample the squared length / from $Exp(\lambda_k)$;¹
- (a) uniformly sample a unit vector $\mathbf{z} \in C_k$;²
- if $\mathbf{z} \notin \mathbb{R}_+^F$, project and rescale it;
- let $\mathbf{v} = \sqrt{l}\mathbf{z}$;

¹Exp(λ) is the function $x \mapsto \lambda \exp(-\lambda x) \mathbb{1}\{x \ge 0\}$.

²This means we first uniformly sample an angle $\beta \in [0, \alpha_k]$ and subsequently uniformly sample a vector \mathbf{z} from the set $\{\mathbf{x} \in \mathbb{R}^E : \|\mathbf{x}\|_2 = 1, \mathbf{x}^T \mathbf{u}_k^{\mathbb{Z}} = c\bar{os}\beta\}^{\circ, \circ}$ 52/62

Theorem 5

Let

$$f(\alpha) := 0.5 - (\sin 2\alpha) / (4\alpha),$$

then for small $\epsilon > 0$, w.p. at least

$$1-8\exp\left(-\xi N\epsilon^2
ight),$$

we have

$$\frac{\|\mathbf{V} - \mathbf{W}^* \mathbf{H}^*\|_{\mathrm{F}}}{\|\mathbf{V}\|_{\mathrm{F}}} \le \sqrt{\frac{\sum_{k=1}^{K} f(\alpha_k) / \lambda_k}{\sum_{k=1}^{K} 1 / \lambda_k}} + \epsilon.$$

<□▶ <□▶ < 臣▶ < 臣▶ < 臣▶ 臣 のへで 53/62

Theorem 6

If we do not project the vectors to nonnegative orthant, we have

$$\frac{\|\mathbf{V} - \mathbf{W}^* \mathbf{H}^*\|_{\mathrm{F}}}{\|\mathbf{V}\|_{\mathrm{F}}} \xrightarrow{p} \sqrt{\frac{\sum_{k=1}^{K} f(\alpha_k) / \lambda_k}{\sum_{k=1}^{K} 1 / \lambda_k}}$$

<ロ> (四) (四) (三) (三) (三) (三)

54/62

Automatically Determining K

Theorem 7

Assume

- size angle = α ;
- angles between distinct basis vectors of the circular cones $= \beta$;
- parameters for the exponential distributions = λ ;
- circular cones are in \mathbb{R}_+^F ;
- $K \in \{K_{\min}, \ldots, K_{\max}\}$ with $K_{\min} > 1$, $K_{\max} < \operatorname{rank}(\mathbf{V})$.

Then, for any $t \ge 1$, and small ϵ , if N is sufficiently large, w.h.p.,

$$\frac{\sigma_{\mathcal{K}}(\mathbf{V})}{\sigma_{\mathcal{K}+1}(\mathbf{V})} = \max_{j \in \{\mathcal{K}_{\min}, \dots, \mathcal{K}_{\max}\}} \frac{\sigma_j(\mathbf{V})}{\sigma_{j+1}(\mathbf{V})}.$$

Automatically Determining K

Figure: Estimated number of circular cones K with different noise levels. The error bars denote one standard deviation away from the mean.

Synthetic Dataset Test

Figure: Errors and performances of various algorithms.

Table: Information for real datasets used

Dataset Name	F	N	K	Description
CK	49×64	8795	97	face dataset
faces94	200×180	3040	152	face dataset
Georgia Tech	480×640	750	50	face dataset
PaviaU	207400	103	9	hyperspectral

Initialization Performances I

Figure: CK dataset.

Initialization Performances II

Figure: faces94 dataset.

Initialization Performances III

Figure: Georgia Tech dataset.

61/62

Initialization Performances IV

Figure: PaviaU dataset.

<ロ> (四) (四) (注) (注) (三)

62/62