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Going to office: Bandit style

On every day
Pick a route to office
Reach office and record (suffered) delay
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Why Consider Risk?

???

) 0

E[time] = 10 mins, Pr(jam) = 0.1  E[time] = 11 mins, Pr(jam) =0
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Why Consider Risk?

E[time] = 10 mins, Pr(jam) = 0.1  E[time] = 11 mins, Pr(jam) =0

m Delays are stochastic.

m In choosing between routes, we need not necessarily minimize
expected delay.

m Two route scenario: Average delay of Route 1 slightly below that
of Route 2.

m Route 1 has a small chance of very high delay, e.g., jams.

m | might prefer Route 2.
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Preliminary Definitions |

Given i.i.d. random samples {X;}"_, from the distribution of a random
variable, the empirical distribution function is

Fo(x) = %Z 1{X; <x} forany xecR.

i=1
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Preliminary Definitions |

Given i.i.d. random samples {X;}"_, from the distribution of a random
variable, the empirical distribution function is

Fo(x) = %Z 1{X; <x} forany xecR.

i=1

Random variable X is o>-sub-Gaussian if its cumulant generating
function

’,.202

2

log E[exp(rX)] < forall r e R.

See Wainwright (2019, Theorem 2.1) for equivalent characterizations.
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Preliminary Definitions |

The Wasserstein distance between two cumulative distribution
functions (CDFs) F; and F; on R is

Wi(Fy,F;) ;== inf |x — y| dF(x,y)

FET(F|,F>) JR2

where I'(Fy, F,) is the set of couplings of F; and F;.

Vincent Tan (NUS) A Survey of Risk-Aware MABs IJCAI-ECAI 2022 5/17



Preliminary Definitions |

Definition

The Wasserstein distance between two cumulative distribution
functions (CDFs) F; and F, on R is

Wi (F,F,) = inf — y|dF(x,
1(F1,F») e ) |x — y|dF(x,y)

where I'(Fy, F,) is the set of couplings of F; and F;.

Alternative expressions:

Wi(F1, F2) = sup [E[f(X)] — E[f(Y)

_ / IF 1 (s) = Fa(s) ds = / 7 (8)—F; ' (8)|dB,

where the supremum is over all 1-Lipschitz functions f : R — R.
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Concentration of Mean-Variance

m Mean-variance (Markowitz, 1952) with risk tolerance ~:

MV:'yufaz.
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Concentration of Mean-Variance

m Mean-variance (Markowitz, 1952) with risk tolerance ~:

MV:'yufaz.

m Empirical mean-variance

MV, = i, — 62

n

where /1, and 62 are the sample mean and sample variance
respectively.

Vincent Tan (NUS) A Survey of Risk-Aware MABs IJCAI-ECAI 2022 6/17



Concentration of Mean-Variance

m Mean-variance (Markowitz, 1952) with risk tolerance ~:

MV:'nyaz.

m Empirical mean-variance

MV, = Y, — 62

n

where /1, and 62 are the sample mean and sample variance
respectively.

Lemma (Concentration bound for MV (simplified))

Forany e > 0:

— ne? n . [ e
Pr [|MV,,—MV|>6} < 2exp —W + 2exp —1g Min |57,
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Concentration of Lipschitz-continuous Risk Measures

m Cassel et al. (2018) considered general risk measures that satisfy
a Lipschitz requirement under some norm.
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Concentration of Lipschitz-continuous Risk Measures

m Cassel et al. (2018) considered general risk measures that satisfy
a Lipschitz requirement under some norm.

m Prashanth and Bhat (2020) use the Wasserstein distance as the
underlying norm.

A risk measure p(-) is L-Lipschitz if for all cumulative distribution

functions (F, G),
|p(F) — p(G)| < LW\(F,G).

Idea: Use p, = p(F,) as an estimate of p(F) = p(X) (X ~ F), where

1 n
Fa(x) = = D> 1{x;<x} forany xeR.
i=1
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Concentration of Lipschitz-continuous Risk Measures

Let X be a sub-Gaussian r.v. with parameter o>. Suppose p an
L-Lipschitz risk measure. Then, for every ¢ satisfying

25620 € 256\20 . 1

we have

Prlon—p(01>l < oxp (-~ gt (5 - 256*@")2).
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Concentration of CVaR

The Conditional Value-at-Risk (CVaR) at level « € (0,1) forar.v. X is

CVaR, (X) := inf {g + u—logE[ X-6"] } :

£eR

m Empirical CVaR given {X;}"_;:

il s B}

m But CVaR at level o is -

l—«

-Lipschitz
1
|CV3Ra(X) — CV&RQ(Y)| < mwl (Fx,Fy).

S0 we can use the preceding concentration bound.
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Concentration of Spectral Risk Measures

Given a risk spectrum ¢ : [0, 1] — [0, o), the Spectral Risk Measure
(SRM) M4 associated with ¢ is defined by Acerbi (2002) as

1
My(X) = /0 $(8)F5 " (8) dB.

m Suppose ¢(u) < K for all u € [0, 1], then
[My(X) — My(Y)| < K Wi(Fx, Fy).

m Use the general concentration result for Lipschitz risk functionals
and the estimator

1
o —1
My = /O o(8)F; " (B) db.
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Application to UCB-type Bandit Algorithms

m K-armed bandit with unknown distributions v = (v, 15, ..., k).
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Application to UCB-type Bandit Algorithms

m K-armed bandit with unknown distributions v = (v, 15, ..., k).

m At each time ¢, agent pulls an arm A, € [K]; this choice depends on
the history H,—1 = (A1, X14,,-- -, A1, X1 4,_,)-
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Application to UCB-type Bandit Algorithms

m K-armed bandit with unknown distributions v = (v, 15, ..., k).

m At each time ¢, agent pulls an arm A, € [K]; this choice depends on
the history H,—1 = (A1, X14,,-- -, A1, X1 4,_,)-

m Seek to minimize the cumulative regret:

R 7) = E o g p() = 30|,

1<i<K
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Application to UCB-type Bandit Algorithms

m K-armed bandit with unknown distributions v = (v, 15, ..., k).

m At each time ¢, agent pulls an arm A, € [K]; this choice depends on
the history H,—1 = (A1, X14,,-- -, A1, X1 4,_,)-

m Seek to minimize the cumulative regret:

Ry(v) = | guss pl) = 30|,

1<i<K

m Play all arms once, then

A; = argmin LCB,(i) where
1<i<K

LCB,(i) = piz,(—1) — WiT,(1—1)

and p; r,;—1) is the estimate of p(v;) with 7;(t — 1) samples.
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Application to UCB-type Bandit Algorithms

Using the previous bounds for Lipschitz risk measures, we can obtain.

The expected regret R, of Risk-LCB satisfies the following bound:

41252[32/eTog n+2561/2?
A;

Rf <
i:A;>0

+ SKAI

where

Ai = p(vir) — p(wi).
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Application to UCB-type Bandit Algorithms

Using the previous bounds for Lipschitz risk measures, we can obtain.

The expected regret R, of Risk-LCB satisfies the following bound:

41252[32/eTog n+2561/2?
A;

Rf <
i:A;>0

+ SKAI

where

Ai = p(vir) — p(wi).

Bound mimics that of risk-neutral UCB except that A;’s depend on p.
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Thompson Sampling-type Bandit Algorithms

For Gaussian bandits, Zhu and Tan (2020) considered MVTS with the
following sampling and update strategy:

Sample precision 7;, from Gamma(c;—1, Bir—1);
Sample 0;, from N (fii;—1,1/Tis—1);

Play A, = arg max;c(x 70, — 1/7;, and observe X, 4,;
Update(fia, r—1, T4, 1—1, @A, +—1, Ba, .—1) USINg Bayes rule.
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Thompson Sampling-type Bandit Algorithms

For Gaussian bandits, Zhu and Tan (2020) considered MVTS with the
following sampling and update strategy:

Sample precision 7;, from Gamma(c;—1, Bir—1);
Sample 0;, from N (fii;—1,1/Tis—1);

Play A, = arg maX;c (k] ~v8i; — 1/7;; and observe X; 4,;
B Update(fia, ;—1, Ta,1—1, @, —1, Ba, —1) Using Bayes rule.

Theorem (Zhu and Tan (2020))
The expected regret of MVTS is

. R, < 2 1 -
lim sup - < Zmax ?771(0’-27/0’12) (Ai—|-2I’l-),
l:2 ) !

n—00 10g

=
where F]J == Fi ‘= MaXje[k) (,ui — ,u,-)z, Ai = MV — MV, and

h(x) := %(x—l—logx). Bound is asymptotically optimal as v — {0, oo}.
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Conclusion and Future Work

m Follow up work by Baudry et al. (2021) and Chang and Tan (2022)
on Thompson sampling for CVaR and continuous risk measures

0 K P

Ry .
limsup —— < ——* _ where K? (v,r)= inf KL(u,v).
n—oo logn Py Kﬁqf(’/kﬂ’f) nil27) pip(p)=r (b )
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Conclusion and Future Work

m Follow up work by Baudry et al. (2021) and Chang and Tan (2022)
on Thompson sampling for CVaR and continuous risk measures

K p

hmsup Z where K .(v,r) = inf KL(g,v).

n—00 - Ky Vk> ) pep(p)=r

m Many more Lipschitz risk measures, e.g., cumulative prospect
theory (Jie et al., 2018; Prashanth et al., 2016) and utility-based
shortfall risk (Artzner et al., 1999; Féllmer and Schied, 2002)
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Conclusion and Future Work

m Follow up work by Baudry et al. (2021) and Chang and Tan (2022)
on Thompson sampling for CVaR and continuous risk measures

K p
lim sup -~ where K/ (v,r) = inf KL(p,v).
n—00 z; mf I/k, rl 1nf ’ wp(p)>r ’

m Many more Lipschitz risk measures, e.g., cumulative prospect
theory (Jie et al., 2018; Prashanth et al., 2016) and utility-based
shortfall risk (Artzner et al., 1999; Féllmer and Schied, 2002)

m Best arm identification (pure exploration) problems under risk
constraints

m Fixed budget (Kagrecha et al., 2019; Prashanth et al., 2020; Zhang
and Ong, 2021)

m Fixed confidence (David and Shimkin, 2016; David et al., 2018; Hou
et al., 2022; Szorenyi et al., 2015)

Vincent Tan (NUS) A Survey of Risk-Aware MABs IJCAI-ECAI 2022 14/17



References |

C. Acerbi. Spectral measures of risk: A coherent representation of subjective risk aversion.
Journal of Banking & Finance, 26(7):1505-1518, 2002.

P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Mathematical
Finance, 9(3):203-228, 1999.

D. Baudry, R. Gautron, E. Kaufmann, and O. Maillard. Optimal thompson sampling strategies for
support-aware cvar bandits. In Proceedings of the 38th International Conference on Machine
Learning, volume 139, pages 716-726. PMLR, Jul 2021.

A. Cassel, S. Mannor, and A. Zeevi. A general approach to multi-armed bandits under risk
criteria. In Proceedings of the 31st Conference On Learning Theory, pages 1295-1306,
2018.

J. Q. L. Chang and V. Y. F. Tan. A Unifying Theory of Thompson Sampling for Continuous
Risk-Averse Bandits. In Proc. of the 36th AAAI Conference on Artificial Intelligence. AAAI
Press, Feb 2022.

Y. David and N. Shimkin. Pure exploration for max-quantile bandits. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 556-571.
Springer, 2016.

Y. David, B. Szérényi, M. Ghavamzadeh, S. Mannor, and N. Shimkin. PAC bandits with risk
constraints. In ISAIM, 2018.

H. Félimer and A. Schied. Convex measures of risk and trading constraints. Finance and
Stochastics, 6(4):429-447, 2002.



References Il

Y. Hou, V. Y. F. Tan, and Z. Zhong. Almost optimal variance-constrained best arm identification,
2022. arXiv 2201.10142.

C. Jie, L. A. Prashanth, M. C. Fu, S. |. Marcus, and C. Szepesvari. Stochastic optimization in a
cumulative prospect theory framework. IEEE Transactions on Automatic Control, 63(9):
2867-2882, 2018.

A. Kagrecha, J. Nair, and K. Jagannathan. Distribution oblivious, risk-aware algorithms for
multi-armed bandits with unbounded rewards. In Advances in Neural Information Processing
Systems, pages 11269-11278, 2019.

H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77-91, 1952.

L. A. Prashanth and S. P. Bhat. A Wasserstein distance approach for concentration of empirical
risk estimates, 2020. arXiv 1902.10709v3.

L. A. Prashanth, J. Cheng, M. C. Fu, S. |. Marcus, and C. Szepesvari. Cumulative prospect
theory meets reinforcement learning: prediction and control. In International Conference on
Machine Learning, pages 1406-1415. PMLR, 2016.

L. A. Prashanth, K. Jagannathan, and R. K. Kolla. Concentration bounds for CVaR estimation:
The cases of light-tailed and heavy-tailed distributions. In International Conference on
Machine Learning, volume 119, pages 5577-5586. PMLR, 2020.

B. Szorenyi, R. Busa-Fekete, P. Weng, and E. Hillermeier. Qualitative multi-armed bandits: A
quantile-based approach. In International Conference on Machine Learning, pages
1660-1668. PMLR, 2015.



References llI

M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint, volume 48.
Cambridge University Press, 2019.

M. Zhang and C. S. Ong. Quantile bandits for best arms identification. In International
Conference on Machine Learning, pages 12513—-12523. PMLR, 2021.

Q. Zhu and V. Y. F. Tan. Thompson sampling algorithms for mean-variance bandits. In
International Conference on Machine Learning, pages 2645-2654. PMLR, 2020.



	Appendix

