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Going to office: Bandit style

On every day
1 Pick a route to office
2 Reach office and record (suffered) delay
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Why Consider Risk?

E[time] = 10 mins,Pr(jam) = 0.1 E[time] = 11 mins,Pr(jam) = 0

Delays are stochastic.

In choosing between routes, we need not necessarily minimize
expected delay.

Two route scenario: Average delay of Route 1 slightly below that
of Route 2.

Route 1 has a small chance of very high delay, e.g., jams.

I might prefer Route 2.
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Preliminary Definitions I

Definition

Given i.i.d. random samples {Xi}n
i=1 from the distribution of a random

variable, the empirical distribution function is

Fn(x) =
1
n

n∑
i=1

1{Xi ≤ x} for any x ∈ R.

Definition

Random variable X is σ2-sub-Gaussian if its cumulant generating
function

logE[exp(rX)] ≤ r2σ2

2
for all r ∈ R.

See Wainwright (2019, Theorem 2.1) for equivalent characterizations.
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Preliminary Definitions I

Definition

The Wasserstein distance between two cumulative distribution
functions (CDFs) F1 and F2 on R is

W1(F1,F2) := inf
F∈Γ(F1,F2)

∫
R2
|x− y| dF(x, y)

where Γ(F1,F2) is the set of couplings of F1 and F2.

Alternative expressions:

W1(F1,F2) = sup |E[f (X)]− E[f (Y)]|

=

∫ ∞
−∞
|F1(s)−F2(s)|ds=

∫ 1

0
|F−1

1 (β)−F−1
2 (β)|dβ,

where the supremum is over all 1-Lipschitz functions f : R→ R.
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Concentration of Mean-Variance

Mean-variance (Markowitz, 1952) with risk tolerance γ:

MV = γµ− σ2.

Empirical mean-variance

M̂Vn := γµ̂n − σ̂2
n

where µ̂n and σ̂2
n are the sample mean and sample variance

respectively.

Lemma (Concentration bound for MV (simplified))

For any ε > 0:

Pr
[
|M̂Vn −MV| > ε

]
≤ 2 exp

[
− nε2

8γ2σ2

]
+ 2 exp

(
− n

16
min

[
ε2

2σ4 ,
ε

σ2

])
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Concentration of Lipschitz-continuous Risk Measures

Cassel et al. (2018) considered general risk measures that satisfy
a Lipschitz requirement under some norm.

Prashanth and Bhat (2020) use the Wasserstein distance as the
underlying norm.

Definition

A risk measure ρ(·) is L-Lipschitz if for all cumulative distribution
functions (F,G),

|ρ(F)− ρ(G)| ≤ L W1(F,G).

Idea: Use ρn = ρ(Fn) as an estimate of ρ(F) = ρ(X) (X ∼ F), where

Fn(x) =
1
n

n∑
i=1

1{Xi ≤ x} for any x ∈ R.
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Concentration of Lipschitz-continuous Risk Measures

Theorem

Let X be a sub-Gaussian r.v. with parameter σ2. Suppose ρ an
L-Lipschitz risk measure. Then, for every ε satisfying

256
√

2σ√
n

<
ε

L
<

256
√

2σ√
n

+ 16σ
√

2e, i.e., ε = Ω
( 1√

n

)
we have

Pr [|ρn−ρ(X)|>ε] ≤ exp

(
− n

256σ2e

( ε
L
− 256

√
2σ√

n

)2
)
.

Vincent Tan (NUS) A Survey of Risk-Aware MABs IJCAI-ECAI 2022 8 / 17



Concentration of CVaR

Definition

The Conditional Value-at-Risk (CVaR) at level α ∈ (0, 1) for a r.v. X is

CVaRα(X) := inf
ξ∈R

{
ξ +

1
(1− α)

E
[

(X − ξ)+ ]} .
Empirical CVaR given {Xi}n

i=1:

cn,α = inf
ξ∈R

{
ξ +

1
n(1− α)

n∑
i=1

(Xi − ξ)+

}
.

But CVaR at level α is 1
1−α -Lipschitz

|CVaRα(X)− CVaRα(Y)| ≤ 1
1− α

W1(FX,FY).

so we can use the preceding concentration bound.
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Concentration of Spectral Risk Measures

Definition

Given a risk spectrum φ : [0, 1]→ [0,∞), the Spectral Risk Measure
(SRM) Mφ associated with φ is defined by Acerbi (2002) as

Mφ(X) =

∫ 1

0
φ(β)F−1

X (β) dβ.

Suppose φ(u) ≤ K for all u ∈ [0, 1], then

|Mφ(X)−Mφ(Y)| ≤ K W1(FX,FY).

Use the general concentration result for Lipschitz risk functionals
and the estimator

mn,φ =

∫ 1

0
φ(β)F−1

n (β) dβ.
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Application to UCB-type Bandit Algorithms

K-armed bandit with unknown distributions ν = (ν1, ν2, . . . , νK).

At each time t, agent pulls an arm At ∈ [K]; this choice depends on
the history Ht−1 = (A1,X1,A1 , . . . ,At−1,X1,At−1).

Seek to minimize the cumulative regret:

Rρn(ν, π) := E
[

n max
1≤i≤K

ρ(νi)−
n∑

t=1

ρ(νAt)

]
,

Play all arms once, then

At = arg min
1≤i≤K

LCBt(i) where

LCBt(i) = ρi,Ti(t−1) − wi,Ti(t−1)

and ρi,Ti(t−1) is the estimate of ρ(νi) with Ti(t − 1) samples.
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Application to UCB-type Bandit Algorithms

Using the previous bounds for Lipschitz risk measures, we can obtain.

Theorem

The expected regret Rρn of Risk-LCB satisfies the following bound:

Rρn ≤
∑

i:∆i>0

4L2σ2[32
√

e log n+256
√

2]2

∆i
+ 5K∆i

where

∆i = ρ(νi∗)− ρ(νi).

Bound mimics that of risk-neutral UCB except that ∆i’s depend on ρ.
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Thompson Sampling-type Bandit Algorithms

For Gaussian bandits, Zhu and Tan (2020) considered MVTS with the
following sampling and update strategy:

1 Sample precision τi,t from Gamma(αi,t−1, βi,t−1);
2 Sample θi,t from N (µ̂i,t−1, 1/Ti,t−1);
3 Play At = arg maxi∈[K] γθi,t − 1/τi,t and observe Xt,At ;
4 Update(µ̂At,t−1,TAt,t−1, αAt,t−1, βAt,t−1) using Bayes rule.

Theorem (Zhu and Tan (2020))

The expected regret of MVTS is

lim sup
n→∞

Rρn
log n

≤
K∑

i=2

max

{
2

Γ2
1,i
,

1
h(σ2

i /σ
2
1)

}(
∆i + 2Γ

2
i
)
,

where Γ1,j := µ1 − µj , Γ
2
i := maxj∈[K](µi − µi)

2, ∆i := MVi∗ −MVi, and
h(x) := 1

2(x−1−log x). Bound is asymptotically optimal as γ → {0,∞}.

Vincent Tan (NUS) A Survey of Risk-Aware MABs IJCAI-ECAI 2022 13 / 17



Thompson Sampling-type Bandit Algorithms

For Gaussian bandits, Zhu and Tan (2020) considered MVTS with the
following sampling and update strategy:

1 Sample precision τi,t from Gamma(αi,t−1, βi,t−1);
2 Sample θi,t from N (µ̂i,t−1, 1/Ti,t−1);
3 Play At = arg maxi∈[K] γθi,t − 1/τi,t and observe Xt,At ;
4 Update(µ̂At,t−1,TAt,t−1, αAt,t−1, βAt,t−1) using Bayes rule.

Theorem (Zhu and Tan (2020))

The expected regret of MVTS is

lim sup
n→∞

Rρn
log n

≤
K∑

i=2

max

{
2

Γ2
1,i
,

1
h(σ2

i /σ
2
1)

}(
∆i + 2Γ

2
i
)
,

where Γ1,j := µ1 − µj , Γ
2
i := maxj∈[K](µi − µi)

2, ∆i := MVi∗ −MVi, and
h(x) := 1

2(x−1−log x). Bound is asymptotically optimal as γ → {0,∞}.

Vincent Tan (NUS) A Survey of Risk-Aware MABs IJCAI-ECAI 2022 13 / 17



Conclusion and Future Work

Follow up work by Baudry et al. (2021) and Chang and Tan (2022)
on Thompson sampling for CVaR and continuous risk measures

lim sup
n→∞

Rρn
log n

≤
K∑

i=2

∆ρ
k

Kρ
inf(νk, r

ρ
1)

where Kρ
inf(ν, r) = inf

µ:ρ(µ)≥r
KL(µ, ν).

Many more Lipschitz risk measures, e.g., cumulative prospect
theory (Jie et al., 2018; Prashanth et al., 2016) and utility-based
shortfall risk (Artzner et al., 1999; Föllmer and Schied, 2002)

Best arm identification (pure exploration) problems under risk
constraints

Fixed budget (Kagrecha et al., 2019; Prashanth et al., 2020; Zhang
and Ong, 2021)

Fixed confidence (David and Shimkin, 2016; David et al., 2018; Hou
et al., 2022; Szorenyi et al., 2015)
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