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Abstract: This paper proposes a consistent and computationally efficient FFT-based algorithm
for inferring the network topology where each node in the network is associated to a wide-sense
stationary, ergodic, Gaussian process. Each edge of the tree network is characterized by a linear,
time-invariant dynamical system and additive white Gaussian noise. The proposed algorithm
uses Bartlett’s procedure to produce periodogram estimates of cross power spectral densities
between processes. Under appropriate assumptions, we prove that the number of vector-valued
samples from a single sample path required for consistent estimation is polylogarithmic in the
number of nodes in the network. Thus, the sample complexity is low. Our proof uses properties
of spectral estimates and analysis for learning tree-structured graphical models.
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1. INTRODUCTION

Imagine that there is a large linear electrical circuit con-
sisting of impedances (such as resistors, inductors and
capacitors) but its network topology is unknown. We are,
however, given noisy measurements of voltages at the
nodes in the circuit. Each of these voltages is modelled
as a wide-sense stationary (WSS), ergodic, discrete-time
stochastic process. Given a finite number of time samples
of each node voltage realization, we would like to recon-
struct the network topology consistently. But how many
samples are required to obtain a “reliable” estimate of the
network topology?

The identification of large-scale graphs or networks of
systems is an important task in many realms of science
and engineering, including control engineering. In the lit-
erature, this problem has been studied extensively by the
graphical model learning community in which each node
is associated to a random variable and the (vector-valued)
observations are independent and identically distributed.
See Heckerman (1995) for an overview. This differs from
the circuit network topology inference problem mentioned
above since each node corresponds to a stationary stochas-
tic process and we only observe a finite number of samples
of one sample path.

In this paper, we propose an algorithm to estimate such
tree-structured networks, where each edge is characterized
by an LTI system plus additive white Gaussian noise.
There are two main contributions: Firstly, we show that
the proposed algorithm is computationally efficient; it is
(up to log factors) quadratic in the number of nodes
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and linear in the number of observations. Secondly, by
using classical results from spectral estimation (Brillinger,
2001; Nuthall and Carter, 1981), we prove that under
appropriate assumptions, the proposed algorithm has very
favorable sample complexity; if the number of samples N
exceeds O(log1+ε p), where p is the number of nodes in
the network, then the undirected network topology can
be estimated with high probability as N and p tend to
infinity.

Previously, Bach and Jordan (2004) used the Bayesian
information criterion (BIC) and spectral methods to es-
timate sparse graphs of stationary time series. In a col-
lection of related works, Bilmes (2000); Kirshner et al.
(2004); Xuan and Murphy (2007) consider learning models
whose topologies are dynamic, i.e., they change over time.
Siracusa and Fisher (2009) also proposed Bayesian tech-
niques to obtain posterior uncertainties of the underlying
topology. Most recently, Materassi and Innocenti (2010)
proposed a provably consistent algorithm for estimating
such tree-structured networks. None of the above works
include any sample complexity guarantees. In this work,
we combine the results from learning graphical models
(Tan et al., 2009, 2010) and spectral estimation (Brillinger,
2001) to obtain sample complexities for networks of dy-
namical systems.

2. PRELIMINARIES AND SYSTEM MODEL

Let T = (V, E) be an undirected tree (a connected, acyclic
graph) where V = {1, . . . , p} is the set of nodes and

E ⊂
(V
2

)
is the set of undirected edges. Let node 1 be

labeled as the root of the tree. For edge (i, j) ∈ E , if i is
closer to 1 than j, we say that node i is the parent of node
j and node j is a child of node i. Note that by the tree
assumption, each node (except the root) has exactly one
parent. The root has no parents. Define T to be the set of
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Fig. 1. The nodes are denoted by dark circles. The node set

is V = {1, 2, 3} and the edge set is E = {(1, 2), (2, 3)}.
Note the conditional independence relations among
the stochastic processes: X1 ⊥⊥ X3 |X2.

trees with p nodes. We associate to each node i ∈ V a WSS,
ergodic, discrete-time stochastic process Xi = {Xi[n]}∞n=0.
Each Xi[n] is a real-valued random variable.

Let X = (X1, . . . , Xp) be the vector of stochastic pro-
cesses. The edge set E encodes the set of conditional
independence relations among the p processes (Lauritzen,
1996). More precisely, X is Markov on T if for all i ∈ V,
Xi is conditionally independent of all other processes given
its parent and its children.

Let the root process X1 be a Gaussian process. For exam-
ple, each X1[n] can be an independent zero-mean, unit-
variance Gaussian random variable. For an edge (i, j) ∈ E ,
with j being a child of i, we assume that

Xj [n] = (hj,i ∗Xi)[n] +Wj [n], n = 0, 1, 2, . . . (1)

where hj,i[n] is a (non-zero) causal, stable LTI filter. In
addition, for each node j, the process Wj [n] is assumed
to be additive white Gaussian noise with power σ2

W . See
Fig. 1. Eqn. (1) says that the child process Xj is a noisy,
filtered version of the parent process Xi. Because all filters
are LTI and the noise is Gaussian, all processes Xj are
jointly Gaussian.

In this paper, we are provided with the first N samples
of a sample path of the vector-valued stochastic process
{X[n]}N−1n=0 . Given this data, we would like to devise
an efficient algorithm to obtain a consistent estimate of
the tree T . We denote the estimate given N samples
{X[n]}N−1n=0 as T̂N . In addition, for δ > 0, we consider the
following quantity:

N(p, δ) := inf{N ∈ N : P(T̂N = T ) ≥ 1− δ}. (2)

The quantity N(p, δ) is the sample complexity for estimat-
ing the topology of the network. It denotes the number of
samples needed to obtain a topology that is the same as
the original one with high probability. In general, N(p, δ)
will also be a function of the unknown filters {hj,i}(i,j)∈E
and the noise power σ2

W but we suppress this dependence.
We would like to ensure that the algorithm proposed has
low sample complexity, which means that N(p, δ) increases
slowly with p = |V| as both quantities scale (i.e., tend to
infinity).

3. AN ALGORITHM TO ESTIMATE THE NETWORK
TOPOLOGY VIA SPECTRUM ESTIMATION

In this section, we present a consistent and efficient al-
gorithm to estimate the tree topology T given the data
{X[n]}N−1n=0 . This algorithm is motivated by the Chow-Liu
algorithm (Chow and Liu, 1968) to approximate arbitrary
multivariate distributions with trees. Let M(T) be the
family of probability measures associated to multivariate
processes that are Markov on a tree with p nodes. Consider
the following optimization problem:

inf
ν∈M(T)

D(µ || ν) (3)

where µ is an estimate of the probability measure of the
underlying multivariate process. In (3), D(µ || ν) is the
relative entropy rate (Cover and Thomas, 2006) between
the two probability measures µ and ν. Using the same
reasoning as in Chow and Liu (1968), it is straightforward
to show the following:

Lemma 1. (Chow-Liu for WSS Stochastic Processes). The
measure that achieves the minimum in (3) corresponds to a
vector-valued process that is Markov on the tree T ∗ given
by the maximum-weight spanning tree (MWST) problem:

T ∗ = argmax
T ∈T

∑
(i,j)∈T

Iµ(Xi;Xj), (4)

where Iµ(Xi;Xj) is the mutual information (MI) rate of
the processes Xi and Xj under µ.

See Appendix A for the proof. Lemma 1 is similar to the
main result in Materassi and Innocenti (2010) but the
derivation using (3) as an information projection is more
intuitive. In addition, we obtain the mutual information
rate Iµ(Xi;Xj) as edge weights for the MWST in (4)
whereas Materassi and Innocenti (2010) derived a closely-
related quantity using Wiener filtering. Given Lemma 1,
it remains to estimate the MI rates consistently from the
data {X[n]}N−1n=0 . To this end, we first recall from Pinsker
(1960) that for two WSS Gaussian processes Xi and Xj ,

I(Xi;Xj) := − 1

4π

∫ 2π

0

log
(
1− |γi,j(ω)|2

)
dω (5)

where the magnitude-squared coherence of the processes
Xi and Xj is defined as

|γi,j(ω)|2 :=
|ΦXi,Xj (ω)|2

ΦXi
(ω)ΦXj

(ω)
. (6)

In Eqn. (6), ΦXi(ω) and ΦXi,Xj (ω) are the power spec-
tral density (PSD) of Xi and cross PSD of Xi, Xj re-
spectively. 1 By the Cauchy-Schwarz inequality, 0 ≤
|γi,j(ω)|2 ≤ 1 so the MI rate in (5) is non-negative. We
assume that the MI rate for all edges is uniformly bounded
away from zero as p→∞.

At a high level, the algorithm proceeds as follows: Since
it is intractable to compute the MI rate directly, we use
Bartlett’s averaging method (Brillinger, 2001) to estimate
ΦXi

(ω) and ΦXi,Xj
(ω) from the data before computing

the magnitude-squared coherences |γi,j(ω)|2. We then use
a discretized version of (5) to obtain an estimate of the MI

rate. Finally we obtain T̂N by solving the MWST problem
in (4). The details of the algorithm are provided below:

(1) Divide each length-N realization {Xj [n]}N−1n=0 into
L non-overlapping segments of length M such that
LM ≤ N , i.e., we form the signal segments:

X
(l)
j [n] := Xj [lM + n], (7)

where 0 ≤ n ≤ M − 1, 0 ≤ l ≤ L− 1 and j ∈ V. The
choice of L and M is discussed in Section 4.2.

(2) Compute the length-M DFT (discrete Fourier trans-
form) for each signal segment:

1 For simplicity, we denote the DTFT as Y (ω) instead of Y (ejω).



X̃
(l)
j [k] :=

1

M

M−1∑
n=0

X
(l)
j [n]e−

√
−1 2π(k+1/2)n/M . (8)

Note that we deliberately sample the DTFT at fre-
quencies 2π(k + 1/2)/M for k = 0, . . . ,M − 1. The
reason for this will become apparent in Lemma 5.

(3) Estimate the time-averaged periodograms for the
PSD and cross PSD using Bartlett’s averaging pro-
cedure on the L signal segments, i.e.,

Φ̂Xi
[k] :=

1

L

L−1∑
l=0

∣∣∣X̃(l)
i [k]

∣∣∣2 , (9a)

Φ̂Xi,Xj
[k] :=

1

L

L−1∑
l=0

(
X̃

(l)
i [k]

)∗
X̃

(l)
j [k]. (9b)

(4) Estimate the magnitude-squared coherences:

|γ̂i,j [k]|2 :=
|Φ̂Xi,Xj [k]|2

Φ̂Xi
[k]Φ̂Xj

[k]
. (10)

(5) Estimate the MI rates by using the Riemann sum:

Î(Xi;Xj) := − 1

2M

M−1∑
k=0

log
(
1− |γ̂i,j [k]|2

)
. (11)

(6) Solve the MWST problem in (4) with {Î(Xi;Xj)}i,j∈V
as the edge weights to obtain T̂N .

It is known that unless we average over signal segments as
in (9), the periodogram will not be a consistent estimate
of the PSD (Brillinger, 2001, Theorem 5.2.4). However,
because we assumed that each process is ergodic and
we average across different signal segments, the estimates
of the PSD and cross PSD are consistent. In addition,
since it is not possible to compute the integral in (5)
exactly, we approximate it using a Riemann sum in terms
of the DFT values of γ̂i,j [k] as in (11). We note that
the algorithm presented can be generalized by considering
overlapping segments and multiplying a length-M window

v[n] to each signal segment X
(l)
j [n]. This is the well-known

Welch’s method (Brillinger, 2001). We do not consider
these generalizations here since the analysis of the sample
complexity is much more involved.

Because the DFT operations in Step 2 can be implemented
efficiently using the fast Fourier transform (FFT), the
proposed algorithm is also computationally efficient.

Proposition 2. (Computational Complexity). The compu-
tational complexity of the algorithm proposed to estimate
the tree network topology T is bounded above by

O(p2(N logM + log p)). (12)

Proof. Step 2 requires O(pLM logM) operations using
FFTs. It is easy to see that Steps 1 and 3 - 5 require
at most O(p2N) operations. Finally, the MWST can be
implemented using Kruskal’s algorithm (Cormen et al.,
2003) in O(p2 log p) operations.

Despite the appealing computational complexity, it is not
clear how to choose L and M optimally given each length-
N signal {Xj [n]}N−1n=0 . This is an important consideration
since there is a fundamental tradeoff between spectral
resolution (which improves by increasing DFT length M)
and reduction of the variance of the spectrum estimate

(which improves by increasing the number of segments
L). In Section 4, we provide intuition on how to choose
L and M such that the sample complexity N(p, δ) is low.
In the following, it will be useful to regard M , N and p as
functions of L.

4. SAMPLE COMPLEXITY AND PROOF OUTLINE

In this section, we state our sample complexity result and
provide an outline of its proof. Before doing so, we state an
overriding assumption: We assume that the arctanh of the
estimate of the magnitude-squared coherence 2 satisfies
the normality assumption, i.e.,

arctanh(|γ̂(ω)|) ∼ N (mL, λL). (13)

See Nuthall and Carter (1981) and Bortel and Sovka
(2007) for the details of this normalizing Fisher z-
transform. The mean in (13) is given as

mL := arctanh

(√
|γ(ω)|2 +

1− |γ(ω)|2
2(L− 1)

)
, (14)

and the variance λL = 1/(2(L − 1)). Note that this
means (by the continuity of arctanh) that the estimate
at every ω is asymptotically unbiased and consistent since
mL → arctanh|γ(ω)| and λL → 0.

4.1 Polylogarithmic Sample Complexity

Theorem 3. (Sample Complexity). Assume (13) holds. For
appropriately chosen L and M , the sample complexity
of the algorithm proposed to estimate the tree network
topology T is

N(p, δ) = O

(
log1+ε

(
p3

δ

))
(15)

for any ε > 0.

The interpretation of this asymptotic result if N and p
obey the prescribed scaling law, then the probability of
successful estimation P(T̂N = T ) can be made arbitrarily
close to 1. Note that p is allowed to grow much faster than
N , which means that even in the sample-limited regime,
we are guaranteed to successfully recover the unknown tree
topology T with relatively few samples.

4.2 Proof Outline

The proof of Theorem 3 is a consequence of four lemmata
whose proofs are in the appendices. It is worth noting
that standard concentration results from large-deviations
theory such as Sanov’s Theorem or the Gärtner-Ellis
Theorem (Dembo and Zeitouni, 1998) do not readily apply
for deriving concentration results for this problem. Instead,
we use the normality assumption (Nuthall and Carter,
1981; Bortel and Sovka, 2007) to obtain concentration
results.

Lemma 4. (Concentration of Coherence). Fix η > 0. De-
fine the function g : [0, 1)→ R+ as

g(γ) := − 1

4π
log(1− |γ|2). (16)

Then we have the following upper bound:

P (|g(γ̂(ω))− g(γ(ω))| > η) ≤ e−(L−1)ϕ(γ(ω);η), (17)

2 We suppress the dependence of γ and γ̂ on edge (i, j) for brevity.



where the exponent above ϕ : [0, 1] × (0,∞) → R+ is a
continuous function. In addition, ϕ(γ; η) is monotonically
decreasing in γ and monotonically increasing in η.

Lemma 4 quantifies the deviation of |γ̂(ω)| from |γ(ω)|.
Observe that if the tolerance η is large, the exponent ϕ is
also large. Besides, larger coherences values are “harder”
to estimate. Recall from Step 2 that we only evaluate
the magnitude-squared coherence estimate atM uniformly
spaced frequencies 2π(k+1/2)/M for k = 0, . . . ,M−1. We
now quantify the deviation of estimated MI rate obtained
using a Riemann sum from the true MI rate. This is the
most technically challenging step in the proof.

Lemma 5. (Concentration of MI Rate). If the number of
DFT points ML satisfies

lim
L→∞

ML =∞, lim
L→∞

L−1 logML = 0, (18)

then for any η > 0, we have

lim sup
L→∞

1

L
logP

(
|Î − I| > η

)
≤− min

ω∈[0,2π)
ϕ(γ(ω); η). (19)

Now we use the proof technique in Tan et al. (2009, 2010)
to quantify the error probability of estimating an incorrect
topology. For a non-edge (k, l), let Path(k, l) be the set of
edges along the unique path joining nodes k and l. By the
data-processing lemma (Cover and Thomas, 2006) and the
fact that the LTI filters are non-zero,

ξ := min
(k,l)/∈E

min
(i,j)∈Path(k,l)

I(Xk;Xl)− I(Xi;Xj), (20)

is uniformly bounded away from zero for all tree-structured
networks. The quantity ξ in (20) is the minimum difference
between the MI rate of an edge and the MI rate of any edge
along its path.

Lemma 6. (Crossover Probability for MI Rates). Let (k, l)
be a non-edge and (i, j) ∈ Path(k, l). Then assuming
that ML satisfies (18), we have the large deviations upper
bound

lim sup
L→∞

1

L
logP

(
Î(Xk;Xl) ≥ Î(Xi;Xj)

)
(21)

≤ − min
ω∈[0,2π)

min {ϕ(γi,j(ω); ξ/2), ϕ(γk,l(ω); ξ/2)} .

This lemma implies that the error in mistaking a non-
edge for a true edge decays exponentially fast in L, since
the right hand side of (21) is negative. The next lemma
utilizes the fact that the number of potential error events
as in (21) is O(p3).

Lemma 7. (Error in Topology Estimation). If ML satis-
fies (18), then there exists a constant K > 0 such that

lim sup
L→∞

1

L
logP

(
T̂N 6= T

)
≤ −K + lim sup

L→∞

3 log p

L
. (22)

This result shows that if p = O(1), the last term in (22) is
zero and the error in network topology estimation decays
exponentially fast in the number of signal segments L.
SinceM = dLεe satisfies (18) (for any ε > 0),N is required
to be at least dL1+εe and hence the error probability in
topology estimation can be upper bounded as

P(T̂N 6= T ) = O
(
p3 exp(−CN1/(1+ε))

)
∀ ε > 0. (23)

The proof of Theorem 3 is completed by inverting the
relationship P(T̂N 6= T ) ≤ δ.

5. CONCLUSION

We proposed a consistent and efficient algorithm to es-
timate networks whose edges are characterized by LTI
filters and noise. Our main contribution is the asymptotic
sample complexity analysis that shows that for very large
networks, a relatively small number of samples is required
to estimate the network topology reliably. We intend to
extend our results in three main directions: Firstly, in place
of Bartlett’s non-overlapping method for periodogram es-
timation, we would like to analyze the more accurate
Welch’s overlapping method (Brillinger, 2001). Secondly,
we intend to find sufficient conditions that allow for infer-
ring the directed tree. Thirdly, we will perform numerical
simulations to verify the sample complexity result.

Acknowledgements: The authors would like to thank A.
Anandkumar and D. Materassi for many discussions.

Appendix A. PROOF OF LEMMA 1

Proof. This proof extends Chow and Liu’s result (Chow
and Liu, 1968) to stationary stochastic processes. The fact
that ν ∈M(T) implies that we have the factorization:

ν =
∏
i∈V

νi
∏

(i,j)∈E

νi,j
νi × νj

, (A.1)

where νi and νi,j are measures corresponding to the the
marginal and pairwise processes respectively. Recall that
the relative entropy rate is defined as

D(µ || ν) =


∫

log
dµ

dν
dµ µ� ν

+∞ o.w.

where dµ
dν is the Radon-Nikodým derivative of µ wrt ν. By

stationarity, the relative entropy in (3) can be written as
a limit

D(µ || ν) = lim
N→∞

1

N
D(µ[0 : N − 1] || ν[0 : N − 1]),

where µ[0 : N−1] is the probability measure corresponding
to the first N time points of the µ process. Hence,

D(µ||ν)= lim
N→∞

1

N

∫
log

dµ[0 :N − 1]

dν[0 :N − 1]
dµ[0 :N − 1] (A.2)

Now, substitute (A.1) into (A.2) and note that we are opti-
mizing over the measure ν only. Hence, the relative entropy
rate is (up to a constant) the limit of the expression

1

N

∫ ∑
(i,j)∈E

log
dνi,j [0 : N − 1]

d(νi[0 : N − 1]×νj [0 : N − 1])
dµ[0 : N − 1]

as N → ∞. Each term is minimized by setting νi = µi
and νi,j = µi,j (by non-negativity of relative entropy). By
exchanging the sum and integral in the above, we see that
each of the terms is the mutual information Iµ(Xi[0 : N −
1];Xj [0 : N − 1]) = D(µi,j [0 : N − 1] ||µi[0 : N − 1] ×
µj [0 : N − 1]). Now by stationarity, the following limit
exists and equals the mutual information rate:

lim
N→∞

1

N
Iµ(Xi[0 : N − 1];Xj [0 : N − 1]) = Iµ(Xi;Xj).

Combining this with the above sum, we see that the min-
imization problem is (3) is given by the MWST problem
in (4) where the edge weights are the mutual information
rates in (5).



Appendix B. PROOF OF LEMMA 4

Proof. For simplicity in notation, we drop the depen-
dence of γ on the frequency ω, i.e., denote γ̂ = γ̂(ω) and
γ = γ(ω). Also, recall the definition of g in (16). Then,
for η > 0, we have that P(|g(γ̂)− g(γ)| ≥ η) can be upper
bounded as

P
(∣∣∣∣log

1− |γ̂|2

1− |γ|2

∣∣∣∣ > 4πη

)
≤ P

(
log

1− |γ̂|2

1− |γ|2
>4πη

)
+P

(
log

1− |γ̂|2

1− |γ|2
<−4πη

)
= P (|γ̂| < a(γ, η)) + P (|γ̂| > a(γ,−η)) , (B.1)

where we applied the union bound and the function
a(γ(ω), η) in (B.1) is defined as

a(γ, η) :=
√
|γ|2 − (e4πη − 1)(1− |γ|2).

Because the arctanh function is continuous, we have

P(|g(γ̂)− g(γ)| ≥ η) ≤ P (arctanh(|γ̂|) < arctanh(a(γ, η)))

+ P (arctanh(|γ̂|) > arctanh(a(γ,−η)))

By using the normality assumption as stated in (13) we
have that

P(|g(γ̂)− g(γ)| ≥ η)≤Q(
√

2(L− 1)(−b1(γ, η)+O(L−1)))

+Q(
√

2(L− 1)(b2(γ, η) +O(L−1))) (B.2)

where Q(z) =
∫∞
z
N (u; 0, 1) du and the functions b1(γ, η)

and b2(γ, η) are defined as

b1(γ, η) := arctanh(a(γ, η)− arctanh(|γ|) < 0

b2(γ, η) := arctanh(a(γ,−η) + arctanh(|γ|) > 0.

We now use the fact that Q(z) ≤ 1
2e
−z2/2 to conclude that

(B.2) can be upper bounded as

P(|g(γ̂)− g(γ)| ≥ η) ≤ 1

2

(
exp

(
−2(L− 1)b1(γ, η)2

)
+ exp

(
−2(L− 1)b2(γ, η)2

) )
.

The proof is completed by the identification

ϕ(γ(ω); η) := 2 min
i=1,2

{
bi(γ(ω), η)2

}
.

This function is positive because b21 and b22 are positive. It
can also continuous because bi(γ(ω), η), i = 1, 2 are contin-
uous. The monotonicity properties also forward straight-
forwardly from the definitions of a and bi.

Appendix C. PROOF OF LEMMA 5

Proof. Recall from Riemann integration theory that for a
smooth function φ, the error in approximating a Riemann
integral using its (middle) Riemann sum approximation as
in (11) is upper bounded as∣∣∣∣∣
∫ 2π

0

φ(τ) dτ − 1

M

M−1∑
k=0

φ

(
2π(k + 1/2)

M

)∣∣∣∣∣ ≤ B

M2
L

(C.1)

where B := (2π)3 max[0,2π) |φ′′(τ)|/24. By using the defi-
nition of g in Lemma 5, we have

P
(
|Î − I| > η

)
= P

(∣∣∣∣∫ 2π

0

g(γ̂(ω))− g(γ(ω)) dω

∣∣∣∣ > η

)
,

where the function g was defined in Lemma 4. Next,
by the elementary inequality from integration theory
|
∫
ψ(τ) dτ | ≤

∫
|ψ(τ)| dτ , we have

P
(
|Î − I| > η

)
≤ P

(∫ 2π

0

|g(γ̂(ω))− g(γ(ω))| dω > η

)
,

Because γ, g ∈ C2, so is the function φ := g ◦ γ̂−g ◦γ ∈ C2.
Hence the constant B in (C.1) is finite. By using (C.1), we
have the inclusion of the events{∫ 2π

0

|g(γ̂(ω))− g(γ(ω))| dω > η

}
⊂{

1

ML

ML−1∑
k=0

|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

}
Now assuming that ML >

√
B/η, and using monotonicity

of measure, we have the upper bound,

P
(
|Î − I| > η

)
≤

P

(
1

ML

ML−1∑
k=0

|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

)
. (C.2)

Note that {ωk = 2π(k + 1/2)/M : k = 0, 1, . . . ,M − 1} is
the set of frequencies that we sample the DTFT in Step
2. Note that we have replaced the integral over the set
[0, 2π) with a sum over a discrete set of frequencies. The
deviation of the sum is much easier to bound. Now, using
the fact that the mean of finitely many positive numbers is
no greater than the maximum, we can upper bound (C.2)

and hence P(|Î − I| > η) as follows:

P
(

max
0≤k≤ML−1

|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

)
= P

(
ML−1⋃
k=0

{
|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

})

≤
ML−1∑
k=0

P
(
|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

)
(C.3)

≤ML max
0≤k≤ML−1

P
(
|g(γ̂(ωk))− g(γ(ωk))| > η − B

M2
L

)
≤ML max

0≤k≤ML−1
exp

(
−(L−1)ϕ

(
γ(ωk); η− B

M2
L

))
(C.4)

= ML exp

(
−(L− 1) min

0≤k≤ML−1
ϕ

(
γ(ωk); η − B

M2
L

))
≤MLexp

(
−(L− 1) min

ω∈[0,2π]
ϕ

(
γ(ω); η− B

M2
L

))
, (C.5)

where (C.3) is from the union bound and (C.4) follows
from Lemma 4. Taking the normalized logarithm of (C.5),
we have

1

L
logP

(
|Î − I| > η

)
≤

1

L
logML −

L− 1

L
min

ω∈[0,2π]
ϕ

(
γ(ω); η − B

M2
L

)
. (C.6)

Now, by the continuity of ϕ in (γ, η) and the fact
that [0, 2π] ⊂ R is compact, 3 the assignment η 7→
minω∈[0,2π] ϕ(γ(ω); η) is continuous. Hence,

lim
L→∞

min
ω∈[0,2π]

ϕ

(
γ(ω); η − B

M2
L

)
= min
ω∈[0,2π]

ϕ (γ(ω); η) ,

because ML → ∞. As a result, taking the upper limit of
(C.6) and using the fact that L−1 logML → 0 yields the
statement of the lemma.

3 Since γ(0) = γ(2π) (by periodicity of the DTFT), we can either
minimize over [0, 2π) or [0, 2π] in (C.5).



Appendix D. PROOF OF LEMMA 6

Proof. Noting the definition of ξ in (20), we have

I(Xk;Xl) ≤ I(Xi;Xj)− ξ. (D.1)

for every edge (i, j) ∈ Path(k, l) and every non-edge
(k, l) /∈ E . Eqn. (D.1) is also due to the data-processing
lemma (Cover and Thomas, 2006, Ch. 1). Define the event

Ai,j(η) :=
{
|Î(Xi;Xj)− I(Xi;Xj)| > η

}
.

Clearly, if the event {Î(Xk;Xl) ≥ Î(Xi;Xj)} occurs, then
either Ai,j(ξ/2) or Ak,l(ξ/2) occurs, i.e.,

{Î(Xk;Xl) ≥ Î(Xi;Xj)} ⊂ Ai,j(ξ/2)
⋃
Ak,l(ξ/2). (D.2)

This is because of (D.1). Following this, we have the upper
bound

P
(
Î(Xk;Xl) ≥ Î(Xi;Xj)

)
≤ P

(
Ai,j(ξ/2)

⋃
Ak,l(ξ/2)

)
≤ P (Ai,j(ξ/2)) + P (Ak,l(ξ/2)) , (D.3)

where (D.3) is because of the inclusion in (D.2) and
monotonicity of probability measure. This completes the
proof since Ai,j(η) is precisely the error event in Lemma 5.

Appendix E. PROOF OF LEMMA 7

Proof. We use the proof technique in Tan et al. (2009,
2010). In particular,{
T̂N 6= T

}
=

⋃
(k,l)/∈E

⋃
(i,j)∈Path(k,l)

{
Î(Xk;Xl) ≥ Î(Xi;Xj)

}
.

That is, the error event in network topology estimation
is equal to the existence of a non-edge (k, l) and an edge

(i, j) such that the event {Î(Xk;Xl) ≥ Î(Xi;Xj)} occurs.
Using a union bound again, we have that the probability
of {T̂N 6= T } is upper bounded as∑

(k,l)/∈E

∑
(i,j)∈Path(k,l)

P
(
Î(Xk;Xl) ≥ Î(Xi;Xj)

)
≤p3 max

(k,l)/∈E
max

(i,j)∈Path(k,l)
P
(
Î(Xk;Xl)≥ Î(Xi;Xj)

)
. (E.1)

Define the positive number

Ji,j,k,l := min
ω∈[0,2π)

min {ϕ(γi,j(ω); ξ/2), ϕ(γk,l(ω); ξ/2)} .

Now take the normalized logarithm and the upper limit
in (E.1) to get

lim sup
L→∞

1

L
logP

(
T̂N 6= T

)
≤

− min
(k,l)/∈E

min
(i,j)∈Path(k,l)

Ji,j,k,l + lim sup
L→∞

3 log p

L
.

This yields (22), where the positive constant K is defined
as K := min(k,l)/∈E min(i,j)∈Path(k,l) Ji,j,k,l. This completes
the proof.

Appendix F. PROOF OF THEOREM 3

Proof. Fix ε > 0. Choose ML = dLεe satisfying (18).
Then N = dL1+εe. We drop the d·e notation from now on
for simplicity. Hence L = Nα for α = 1

1+ε ∈ (0, 1). From

(22), we have

lim sup
N→∞

1

Nα
logP

(
T̂N 6= T

)
≤ −K + lim sup

N→∞

3 log p

Nα
.

which means that for any C < K and N sufficiently large,
we have

P
(
T̂N 6= T

)
≤ p3 exp(−CNα).

Hence, for the error probability to be less than δ > 0, it
suffices to have the number of sample satisfy:

Nα = N
1

1+ε ≥ O
(

log
p3

δ

)
.
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