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Abstract—We derive lower bounds to the second-order coding
rates for the wiretap channel. The decoding error probability and
the information leakage measured in terms of the variational
distance secrecy metric are fixed at some constants εr and εs
respectively. We leverage on the connection between wiretap
channel coding and channel resolvability to derive tighter secrecy
bounds than those available in the literature. We then use central
limit theorem-style analysis to evaluate these bounds for the
discrete memoryless wiretap channel with cost constraints and
the Gaussian wiretap channel.

Index Terms—Second-order coding rates, Dispersion analysis,
Wiretap channel, Information-theoretic secrecy

I. INTRODUCTION

The wiretap channel, introduced by Wyner [1], is the most
fundamental model in the study of information-theoretic se-
crecy. The model is essentially a broadcast channel W (y, z|x)
with one transmitter X (known as Alice) and two receivers;
the legitimate one Y (known as Bob) and the eavesdropper Z
(known as Eve). In Wyner’s original setup, the observation
at Eve is a degraded version Bob’s observation. That is,
X−Y −Z form a Markov chain in that order. The goal was to
characterize the set of achievable (secrecy) rates of transmis-
sion of a uniformly distributed message M ∈ [1 : exp(nR)] to
Bob, while at the same time ensuring that Eve can only glean
a infinitesimal amount of information about M . A number R
is said to be (weakly)-achievable if

lim
n→∞

P(M̂ 6= M) = 0, lim
n→∞

1

n
I(M ;Zn) = 0. (1)

The random variable M̂ = M̂(Y n) is Bob’s estimate of
the transmitted message M . In addition, the second criterion
means that to every ε > 0, Eve can at most decipher ε nats
of the message M for all n sufficiently large. The secrecy
capacity of a discrete memoryless broadcast channel (without
cost constraints) was found to be

CS = max
pX∈P(X )

I(X;Y )− I(X;Z), (2)

where the maximization is over all probability mass func-
tions supported on the input alphabet X . Wyner’s model
was subsequently generalized by Csiszár and Körner [2] who
dispensed with the degradedness assumption and, in addition,
they required Eve to decode a common message.

The secrecy criterion in (1) is only one of many that
measures approximate independence [3]. Indeed, if the nor-
malized mutual information tends to zero, this is termed as

weak secrecy. If instead the unnormalized mutual information
I(M ;Zn) tends to zero, this is termed strong secrecy. In
this paper, for analytical tractability, we consider a criterion,
termed the variational distance criterion V(pM,Zn , pMpZn).
This criterion is stronger than weak secrecy but weaker than
strong secrecy [3]. It can be shown using [4, Lemma 1] that
if V(pM,Zn , pMpZn) decays as o(1/n), then I(M ;Zn) also
tends to zero.

In this paper, we are interested in the study of second-
order coding rates [5] for the discrete [1], [2] and Gaussian
wiretap channels [6]. The setup is as follows: We allow
the decoding error probability and the variational distance
V(pM,Zn , pMpZn) to be non-zero asymptotically, i.e.,

lim
n→∞

P(M̂ 6= M) ≤ εr, lim
n→∞

V(pM,Zn , pMpZn) ≤ εs, (3)

holds for some constants εr, εs > 0. We then ask what the max-
imal secrecy rate over all possible wiretap codes is. This rate R
is, in general, a function of the channel W , the constants εr and
εs and the blocklength n. We show that discrete and Gaussian
wiretap channels, the maximal rate can be approximately lower
bounded by CS + R2/

√
n. Notice that the first-order term in

the maximal rate is the secrecy capacity CS in (2). The second-
order term R2 is of central interest in this paper and is termed
the second-order coding rate. Together, CS and R2 give a
much finer characterization of the maximal secrecy rate under
the reliability and secrecy constraints in (3). Inspired by the
connection between information-theoretic secrecy and channel
resolvability [3], [7], we develop lower bounds for the second-
order coding rate R2 for the discrete memoryless and Gaussian
wiretap channels.

A. Summary of Main Results
There are three main contributions in this paper. Firstly, by

modifying the proof of the secrecy capacity for general wiretap
channels in [3], we improve on the achievable bounds on the
error probability and the leakage (in terms of the variational
distance) for general wiretap channels. Secondly, we use
this result to derive achievable second-order coding rates for
cost-constrained discrete memoryless channels. Finally, we
extend the second-order coding rate result to Gaussian wiretap
channels by carefully using a discretization procedure. For
both discrete and Gaussian wiretap channels, we show that

R2 ≥
√
V (X;Y )Φ−1

(εr
2

)
+
√
V (X;Z)Φ−1

(
ε2s

400

)
, (4)
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where V (X;Y ) and V (X;Z) are the dispersions [8] of Bob’s
and Eve’s channels (evaluated at the optimal pX in (2))
respectively. In addition, Φ−1 is the inverse of the Gaussian
cumulative distribution function. Intuitively, the first and sec-
ond terms result from applications of the central limit theorem
to the reliability and secrecy requirements respectively.

B. Related Work

The connection between wiretap coding, channel resolvabil-
ity and identification capacity was first made by Hayashi [7].
These ideas were then refined by Bloch and Laneman [3]
who showed, among other results, that the capacity-based
codes do not achieve strong secrecy. Indeed, resolvability-
based codes are necessary to achieve strong secrecy. Roughly
speaking, this means that for strong secrecy, the number of
random bits per codeword that needs to be generated to
confuse Eve has to be larger than Eve’s channel capacity. The
study of second-order source and channel coding rates was
initiated by Strassen [9] and re-popularized in recent years by
Kontoyannis [10], Hayashi [5], [11] and Polyanskiy et al. [8]
among others. In this work, we combine the analysis of wiretap
coding and channel resolvability to derive second-order coding
rates with the variational distance as the secrecy metric.

II. PROBLEM SETUP

In this section, we state the definitions and the problem
precisely. Before doing so, we start with the notational con-
ventions that will be used throughout the paper.

A. Notation

Random variables and the values they take on will be
denoted by upper case (e.g., X) and lower case (e.g., x)
respectively. Types (empirical distributions) will be denoted
by upper case (e.g., Q) and distributions by lower case (e.g.,
q). The set of all distributions on a finite set X is denoted as
P(X ) and the set of n-types with alphabet X is denoted
as Pn(X ). For a type Q ∈ Pn(X ), the type class is
denoted as TQ. Given a probability density function (pdf)
or probability mass function (pmf) q and a stochastic matrix
(conditional distribution) W : X → Y , we use the notation
(qW )(y) :=

∑
x q(x)W (y|x) to denote the Y-marginal of

the joint distribution q(x)W (y|x). For information-theoretic
quantities, we adopt the notation of [12]. In particular, the
mutual information of (X,Y ) ∼ pXpY |X is denoted as
I(X;Y ). All logarithms are to the base e. The Gaussian pdf
with mean µ and variance σ2 is denoted asN (x;µ, σ2) and the
cumulative distribution function as Φ(t) =

∫ t
−∞N (x; 0, 1) dx.

B. Definitions

A wiretap channel is a tuple (X ,W (y, z|x),Y,Z) where
X is the input alphabet and Y and Z are the alphabets
corresponding to the legitimate receiver (Bob) and the eaves-
dropper (Eve) respectively. In addition, W : X → Y × Z
is a stochastic matrix, i.e.,

∑
y,zW (y, z|x) = 1 for all

x ∈ X . We use the notations Wb(y|x) =
∑
zW (y, z|x)

and We(z|x) =
∑
yW (y, z|x) to denote Bob and Eve’s

marginals respectively. Even though Theorem 1 below applies
to the general wiretap channel (non-ergodic, non-stationary),
for simplicity, henceforth, we assume that the channels are
memoryless (but not necessarily discrete) in the sense that
Wn(yn, zn|xn) =

∏n
k=1W (yk, zk|xk).

Since we are only concerned with achievability results, we
assume that the wiretap channel is degraded, i.e., X − Y −Z
forms a Markov chain. Our results can be easily strengthened
by channel prefixing [2], [3]. In addition, in order to model
actual engineering devices accurately, cost constraints must be
imposed on the channel input sequence xn. To formalize this,
let c : X → [0,∞) be a cost function and with a slight abuse
of notation, we also use c to denote the average cost of a
codeword, i.e., c(xn) := 1

n

∑n
k=1 c(xk).

Definition 1. An (exp(nR), n, P )-wiretap code Cn consists of
• A private message set M := [1 : exp(nR)];
• An auxiliary message set M′ := [1 : exp(nR′)], which

is used to randomize the transmission of the private
message;

• A stochastic encoder pXn|M (xn|m) for every m ∈ M
such that the codeword satisfies the cost constraint with
probability one, i.e.,

P [c(Xn(M,M ′)) ≤ P ] = 1; (5)

• A decoder ϕn : Yn →M×M′.

We allow R and R′ to vary with n in general and we use the
notation |M(Cn)| to denote the number of private messages
(those containing information that Alice wants to transmit)
of the wiretap code Cn. This is simply the quantity |M| =
exp(nR) in Definition 1. Following [3], the random variable
representing a chosen codeword when using the code Cn is
denoted as X̄n while the channel outputs induced by the input
codeword X̄n are Ȳ n and Z̄n. The probability of error with
respect to a given code Cn is defined as

P(Cn) := P
[
(M̂, M̂ ′) 6= (M,M ′) | Cn

]
. (6)

where M and M ′ are independent random variables uniformly
distributed in M and M′ respectively and (M̂, M̂ ′) =
ϕn(Ȳ n) are the estimated messages. Note that we impose that
the legitimate receiver also decodes the auxiliary messageM′.
This is a more stringent requirement that is usually not present
in usual wiretap coding [1].

Definition 2. Let P and Q be two measures on a measurable
space (X ,F). The variational distance between P and Q is

V(P,Q) := sup
A∈F
|P(A)−Q(A)|. (7)

In the case where X is countable and p, q ∈P(X ) are the
pmfs corresponding to measures P,Q respectively, then

V(p, q) := V(P,Q) =
1

2

∑
x∈X
|p(x)− q(x)|. (8)

We consider the leakage measured in terms of the variational
distance secrecy metric defined for a code Cn as

S(Cn) := V(pM,Z̄n , pMpZ̄n). (9)



Note that S(Cn) is equal to zero if and only if M and Z̄n

are statistically independent. In general, we want S(Cn) to be
small so that the amount of information that Eve can glean is
small. The following is the central definition in this paper.

Definition 3. Fix constants R1, εr, εs > 0. The second-order
coding rate centered at first-order coding rate R1 of a wiretap
channel (X ,W (y, z|x),Y,Z) is defined as

R2(R1,εr, εs|W ) := sup
{Cn}n≥1

{
lim
n→∞

1√
n

(log |M(Cn)|−nR1) :

lim
n→∞

P(Cn) ≤ εr, lim
n→∞

S(Cn) ≤ εs
}

(10)

where the supremum is over all rates R > 0 and all sequences
of (exp(nR), n, P )-wiretap codes {Cn}n≥1.

As with the secrecy capacity, we seek to maximize R2.

C. Secrecy Capacity Results

In Section III, we lower bound R2(R1, εr, εs|W ) when
R1 is the secrecy capacity, given for a channel without
cost constraints in (2). Note that for memoryless channels,
the secrecy capacity is invariant to the choice of secrecy
metric, i.e., asymptotic independence can be measured using
I(M ;Zn),V(pM,Z̄n , pMpZ̄n) or 1

nI(M ;Zn) [3]. It can be
shown that when there is a cost constraint on the codewords,
the secrecy capacity in (2) can be slightly generalized to

CS = max
pX∈P(X ):EpX

[c(X)]≤P
I(X;Y )− I(X;Z). (11)

Recall that we assume that the memoryless channel is de-
graded in favor of Bob. In the Gaussian case, the outputs of
the wiretap channel (Y,Z) are related to the input X as

Y = X +Nb, Z = X +Ne, (12)

where the noises Nb ∼ N (0, σ2
b) and Ne ∼ N (0, σ2

e ).
The average transmitted power is constrained to be no larger
than some P > 0. Hence, c(x) = x2 and the codewords
must satisfy

∑n
k=1X

2
k(M,M ′) ≤ nP with probability one.

Degradedness in the Gaussian case means that σb < σe. In
this case, it is known that [6] the wiretap channel capacity is

CS =
1

2
log

(
1 +

P

σ2
b

)
− 1

2
log

(
1 +

P

σ2
e

)
. (13)

That is, the optimal pX in (11) is a zero-mean Gaussian with
variance P . If the degraded condition is not satisfied, the
secrecy capacity is zero. Note that the first and second terms
in (13) are Bob’s and Eve’s channel capacities respectively. We
will also use the notations snrb := P/σ2

b and snre := P/σ2
e to

denote Bob and Eve’s signal-to-noise ratio (SNR) respectively.

III. MAIN RESULTS

In this section, we state the three main results in this paper.
The proof sketches are deferred to Section IV. We start with a
general achievability theorem strengthening Theorem 3 in [3].

Theorem 1. Assume that there are no constraints on the
codewords, i.e., P = ∞. For every n ≥ 1, every input

distribution pXn ∈ P(Xn) and every γ, ρ > 0, there exists
a wiretap code C∗n whose probability of error and leakage
simultaneously satisfy

P(C∗n)≤2

[
P
(
Wn

b (Y n|Xn)

pY n(Y n)
≤|M||M′|enγ

)
+e−nγ

]
, (14)

S(C∗n)≤4

[
2ρ+

(
1 +

1

ρ

)
P
(
Wn

e (Zn|Xn)

pZn(Zn)
≥ |M′|ρ

)
+

1

ρ
e−nγ +

1

ρ
P
(
Wn

e (Zn|Xn)

pZn(Zn)
≥ |M′|ρe−nγ

)]
. (15)

In (14) and (15), pY n = (pXnWn
b ) and pZn = (pXnWn

e ) are
the output distributions corresponding to pXn .

Note that the above result is applicable to general sequences
of wiretap channels {Wn : Xn → Yn×Zn}n≥1, i.e., they are
not necessarily discrete, Gaussian, ergodic or stationary. With
a slight modification, Theorem 1 also applies to channels with
cost constraints. The proof of this result follows along the lines
of Theorem 3 in [3] where the connection between the vari-
ational distance criterion in (9) and channel resolvability [12,
Chapter 6] was established. However, we note that the constant
ρ in (15) has been distributed among the terms in a different
way and this leads to better second-order coding rates with
judicious choices of the free parameters ρ and γ.

We now specialize Theorem 1 to a discrete memoryless
wiretap channel W : X → Y × Z with cost constraints. We
provide a lower bound to R2(CS, εr, εs|W ). For a given pX ∈
P(X ) satisfying EpX [c(X)] ≤ P , define

V (X;Y ) :=
∑
x

pX(x)
∑
y

Wb(y|x)

×
[

log
Wb(y|x)

(pXWb)(y)
−D(Wb( · |x)||(pXWb)( · ))

]2

(16)

to be the dispersion [8] of the channel Wb(y|x) and similarly
V (X;Z) denotes the dispersion of We(z|x) given pX .

Theorem 2. For a discrete memoryless wiretap channel, the
second-order coding rate centered at CS, defined in (11),
satisfies

R2(CS, εr, εs|W )

≥
√
V (X;Y )Φ−1

(εr
2

)
+
√
V (X;Z)Φ−1

(
ε2s

400

)
, (17)

where X ∼ pX and pX is an optimizing distribution in (11)
that maximizes the right-hand-side (RHS) of (17).

A couple of comments are in order: The first term on the
RHS of (17) represents a Gaussian approximation to the error
probability bound in (14). We generate a random (constant
composition) code with the appropriate number of private and
auxiliary messages such that the bound in (14) is roughly εr/2.
The second term represents the Gaussian approximation for the
leakage measured in terms of the variational distance criterion.
It roughly represents the second-order coding rate for the
eavesdropper’s channel. We can verify that, with the optimum
choice of ρ, this ensures that the leakage bound in (15) is



roughly εs/2. If we had simply used the bound in [3, Theorem
3] or [12, Theorem 6.3.1] without any modifications, the
argument of Φ−1 in the second term would be Θ(ε3s ), which
is strictly worse than what we have presented in Theorem 2.
Since averaged over the random code the probability of error
and leakage are no larger than εr/2 and εs/2 respectively, we
can conclude via the union bound and Markov’s inequality
that the constraints in (10) are satisfied.

Define the Gaussian dispersion at SNR snr to be

V (snr) :=
snr(snr + 2)

2(1 + snr)2
. (18)

The analogue of Theorem 2 for the Gaussian wiretap channel
is the following:

Theorem 3. For a Gaussian wiretap channel, the second-
order coding rate centered at CS, defined in (13), satisfies

R2(CS, εr, εs|W )

≥
√
V (snrb)Φ−1

(εr
2

)
+
√
V (snre)Φ−1

(
ε2s

400

)
. (19)

We can prove this result in (at least) two different ways:
First, we can adopt Shannon’s approach [13] and generate
codewords uniformly at random from the n-sphere with radius√
nP . Then, use a minimum-distance decoding approach or

the κβ-bound approach [8] to decode the messages (m,m′) ∈
M ×M′. The second approach is to apply a discretization
procedure to Theorem 2. This was used in proof of Theorem 5
in [5] and this can be seen to be equivalent to [13] in the limit
of large blocklengths since we generate codewords uniformly
at random from a single type class to prove Theorem 2.
However, some continuity and rate of convergence arguments
in [5] need to be made more precise. We do so by using a
result by Wu and Verdú [14] which states that the gap between
1
2 log(1 + snr) and the maximal mutual information achieved
by inputs of variance at most P taking l ∈ N values decays at
least exponentially fast in l. Both proof techniques lead to the
first term in (19). The second term follows mutatis mutandis
from the proof of Theorem 2. We outline the latter approach
(discretization procedure) in Section IV-C.

IV. PROOF SKETCHES

In this section, we provide proof sketches of Theorems 1–3.

A. Proof of Theorem 1

For every (m,m′) ∈M×M′, randomly and independently
generate xn(m,m′) from pXn . To transmit m ∈ M, we
randomly and uniformly select an index m ∈ M′ and the
sequence xn(m,m′) is sent as the input to the wiretap channel
Wn. We bound the probability of decoding error and the
leakage averaged over this random code construction. We will
focus mainly on the secrecy bound in (15) as the reliability
bound in (14) follows in a straightforward fashion from
Feinstein’s lemma [12, Lemma 3.4.1]. This lemma says that
averaged over the random code and with Xn ∼ pXn ,

P(Cn) ≤ P
(
Wn

b (Y n|Xn)

pY n(Y n)
≤ |M||M′|enγ

)
+ e−nγ . (20)

Now we overbound S(Cn) averaged over the random code.
By using Bloch and Laneman’s [3] technique and exploiting
symmetry, we get

S(Cn) ≤ 2ECn
[
V(pZ̄n|M=1, pZn)

]
. (21)

Note that we assumed M = 1 was chosen. We now overbound
the variational distance using [12, Lemma 6.3.1] yielding

S(Cn) ≤ 2τ + 2An, (22)

where τ > 0 is an arbitrary constant and

An := ECn
[
PZ̄n|M=1

(
log

pZ̄n|M=1(Z̄n)

pZn(Z̄n)
> τ

)]
. (23)

Define ρ := 1
2 (eτ − 1). We will choose ρ, τ ∈ Θ(εs) in the

sequel. By going through the same steps as in [3], we can
overbound An as

An ≤ P
[
Wn

e (Zn|Xn)

pZn(Zn)
> |M′|ρ

]
+ P

[
1

|M′|
∑

m′∈M′\{1}

Wn
e (Zn|Xn(1,m′))

pZn(Zn)
> 1 + ρ

]
(24)

where Xn(1,m′) is the codeword with index M = 1 and
M ′ = m′ ∈ M′. Let us denote the first and second terms
in (24) as Kn and Ln respectively. Note that Kn is one of the
terms in (15). Furthermore, Ln can be bounded above as

Ln≤E
{
P
[

1

|M′|
∑

m′∈M′

Wn
e (Zn|Xn(1,m′))

pZn(Zn)
>1+ρ

]}
. (25)

The outer expectation is over Zn and the inner probability
is over the codewords bin 1 for a given zn sequence, i.e.,
{Xn(1,m′)}m′∈M′ given Zn = zn. We bound each term in
the expectation, written as Ln(zn), separately. At this point
that we depart from using the exact proof ideas in [3]. Define
the following random variables for each m′ ∈M′:

Dm′(z
n) :=

Wn
e (zn|Xn(1,m′))

pzn(zn)
, (26)

Em′(z
n) := Dn

m′(z
n)1 {Dn

m′(z
n) ≤ |M′|ρ} , (27)

F (zn) :=
1

|M′|
∑

m′∈M′
Dn
m′(z

n) (28)

G(zn) :=
1

|M′|
∑

m′∈M′
Enm′(z

n) (29)

Notice the difference in the definition of Em′(zn) in (27)
relative to that in [3]. There is an additional ρ in the indicator
function. This results in the argument of the second Φ−1 term
in (17) being Θ(ε2s ) instead of Θ(ε3s ) (with the choice of
ρ = Θ(εs) in (15)), improving the second-order coding rate.
Now, using the law of total probability

Ln(zn) ≤ P [G(zn) > 1 + ρ] + P [F (zn) 6= G(zn)] . (30)

Let the first and second terms in (30) be Bn(zn) and Cn(zn)
respectively. We first bound Cn(zn) as follows:

Cn(zn) ≤ |M′|P [Dn
1 (zn) > |M′|ρ] , (31)



where (31) follows from the definition of D1 and E1 and the
indicator function. We evaluate the expectation (over Zn) of
the probability in (31). We have

E(P [Dn
1 (Zn)> |M′|ρ])≤ 1

|M′|ρ
P
[
Wn

e (Zn|Xn)

pZn(Zn)
> |M′|ρ

]
.

(32)

Uniting (31) and (32) yields

EZn(Cn(Zn)) ≤ 1

ρ
P
[
Wn

e (Zn|Xn)

pZn(Zn)
> |M′|ρ

]
. (33)

We omit the details of the bound on Bn(zn) which can be done
via an application of Chebyshev’s inequality and a judicious
split of the resulting terms. We obtain

EZn [Bn(Zn)]≤ 1

ρ

(
e−nγ+P

[
Wn

e (Zn|Xn)

pZn(Zn)
> |M′|ρe−nγ

])
.

(34)
Combining (22), (24), (33) and (34) gives the bound on the
leakage in (15). The extra factor of 2 in P(C∗n) and S(C∗n)
comes from Markov’s inequality and the union bound.

B. Proof of Theorem 2

Choose the cardinalities ofM andM′ such that they satisfy

R+R′ = I(X;Y ) +

√
V (X;Y )

n
Φ
(εr

2

)
− νn, (35)

R′ = I(X;Z)−
√
V (X;Z)

n
Φ

(
ε2r

400

)
+ νn, (36)

where νn ∈ O( logn
n ). The rate of the code 1

n log |M(Cn)|
is thus R = CS + R̃2(CS, εr, εs|W )/

√
n − 2νn, where

R̃2(CS, εr, εs|W ) is the lower bound in (17).
Fix a type Q ∈ Pn(X ) for which EQ[c(X)] ≤ Γ and

|Q(x) − pX(x)| ≤ 1/n for all x ∈ X . Then, for every
m ∈ M and every m′ ∈ M′, independently and uniformly
sample a vector xn(m,m′) ∈ TQ (a constant composition
code). Clearly, the cost constraint (5) is satisfied. Using basic
properties of types as in [15], the choice of the sum rate in (35)
and the Berry-Essèen theorem, it is easy to show that

lim
n→∞

P(Cn) ≤ εr
2
. (37)

We now proceed to the secrecy analysis. We will upper the
second probability in (15) which we denote as ψn:

ψn := P
(

1

n
log

Wn
e (Zn|Xn)

pZn(Zn)
≥ R′ + 1

n
log ρ− γ

)
. (38)

Note here that Xn is drawn uniformly at random from the type
class TQ and pZn is the output distribution corresponding to
this input distribution. Consider the upper bound

ψn ≤ P
(

1

n
log

Wn
e (Zn|Xn)

(QWe)n(Zn)
≥ R′ + 1

n
log ρ− γ − ξ

)
+ P

(
1

n
log

(QWe)n(Zn)

pZn(Zn)
≥ ξ
)
, (39)

which comes from the elementary fact that P(A+ B ≥ c) ≤
P(A ≥ c−ξ)+P(B ≥ ξ) for any ξ ≥ 0. The second term is no

larger than e−nξ [12, Lemma 3.2.1]. Choose γ, ξ ∈ Θ( logn
n )

and ρ := εs/20. This choice of ρ minimizes the RHS of (15).
Then use the analysis in the reliability part to bound the first
term in (39). After accounting for the choice of 1

n log |M′|
in (36) and applying the Berry-Essèen theorem, we may assert
that ψn ≤ ε2s/400+O( logn√

n
). Substituting this bound into (15)

and using the fact that ρ = εs/20 yields

lim
n→∞

S(Cn) ≤ εs
2
. (40)

This completes the proof (cf. the discussion after (34)).

C. Proof of Theorem 3
At blocklength n, construct a discrete random variable

XQ
l supported on l := bn1/4c points based on the Gauss

quadrature, i.e., the locations of the atoms are the roots
of Hermite polynomials. This results in the gap between
capacity 1

2 log(1 + snr) and I(XQ
l ;Y ) being upper bounded

by 4(1 + snr)( snr
1+snr )

2l [14, Theorem 8], which is negligible
in the proof of Theorem 2. We also need to prove that
XQ
l converges to X ∼ N (0, P ) weakly and this can be

done via an application of the Stone-Weierstrass theorem [16,
Theorem 7.26] for approximating continuous functions with
polynomials on compact intervals. Thus, the corresponding
output densities converge pointwise on R. This proves that
V (XQ

l ;Y )→ V (snr) where V (snr) is given by (18).
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