
Wireless Compressive Sensing for Energy
Harvesting Sensor Nodes over Fading Channels

Gang Yang∗, Vincent Y. F. Tan†‡, Chin Keong Ho†, See Ho Ting∗ and Yong Liang Guan∗
∗School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

†Institute for Infocomm Research, A?STAR, Singapore
‡Department of Electrical and Computer Engineering, National University of Singapore

Emails: yang0305@e.ntu.edu.sg, {tanyfv,hock}@i2r.a-star.edu.sg, {shting,eylguan}@ntu.edu.sg

Abstract—We consider the scenario in which multiple
sensors send spatially correlated data to the fusion center
(FC) via independent Rayleigh-fading channels with additive
noise. Assuming that the sensor data is sparse in some basis,
we show that the recovery of the signal can be formulated as
a compressive sensing (CS) problem. To model the scenario
where sensors operate with intermittently available energy
that is harvested from the environment, we propose that
each sensor transmits independently with some probability,
and adapts the transmit power to its harvested energy. Due
to probabilistic transmissions, the elements of the equivalent
sensing matrix are not Gaussian. Since sensors have different
energy-harvesting rates and different sensor-to-FC distances,
the FC has different receive signal-to-noise ratios (SNRs)
for all sensors, referred to as the inhomogeneity of SNRs.
Thus, the elements of the sensing matrix are also not
identically distributed. We provide guarantees on the number
of measurements for reliable reconstruction, by showing
that the corresponding sensing matrix satisfies the restricted
isometry property (RIP), under some mild conditions. We
then compute an achievable spectral efficiency (SE) under
an allowable mean-square-error (MSE). Furthermore, we
analyze the impact of inhomogeneity on the RIP. Our analysis
is corroborated by numerical results.

I. INTRODUCTION

Harvesting ambient energy such as solar, wind and
thermal energy, has become an appealing solution to
prolong the lifetime of wireless sensor networks (WSNs).
Energy harvesters provide a virtually perpetual but unre-
liable energy source, and are potentially maintenance-free
[1]. Moreover, the sensors typically have different energy
harvesting rates, due to varying harvesting conditions such
as spread of sunlight and difference in wind speeds.

This paper addresses the problem of data transmission
in energy harvesting WSNs (EHWSNs). We assume that
energy harvesting sensors are deployed to monitor some
physical phenomenon in space, e.g., temperature, toxicity
of gas. Data collected from sensors are sent to the fusion
center (FC). The data are typically correlated, and well
approximated by a sparse vector in an appropriate trans-
form (e.g., the Fourier Transform). Recent developments in
compressive sensing (CS) theory provide efficient methods
to recover sparse signals from limited measurements [2].
CS theory states that if the sensing matrix satisfies the

restricted isometry property (RIP), a small number of
measurements (relative to the length of the data vector)
is sufficient to accurately recover the sparse data. This
advantage of CS potentially allows us to reduce the total
number of transmissions and hence increase the spectral
efficiency (SE).

The estimation of the sensor data accurately by the FC
has recently been addressed by using CS techniques in
the literature. In [3], Haupt et. al presented a sensing
scheme based on phase-coherent transmissions for all
sensors. However, [3] made two impractical assumptions.
First, it assumed that there was no channel fading, and
path losses for all sensors were identical; Second, the
transmissions from all sensors were synchronized such that
signals arrived in phase at the FC. In [4], Aeron et. al
derived information theoretic bounds on sensing capacity
of sensor networks under fixed signal-to-noise ratio (SNR).
In contrast, [5] proposed a sparse approximation method
in non-fading channels, which adapted a sensor’s sensing
activity according to its energy availability. In [6], Fazel
et. al proposed a random access scheme in underwater
sensor networks. Each activated sensor picked a uniformly-
distributed delay to transmit. By simply discarding the
colliding data packets from concurrent medium access, the
FC used a CS decoder to recover the sensor data based only
on the successfully received packets. Thus, the scheme did
not exploit packet collisions for data recovery.

Since sensors are placed at different locations, it is
commonly assumed that the sensors transmit data over
independent but nonidentical channels with different fading
conditions. Different energy-harvesting rates also lead to
different transmit powers and hence different (receive)
SNRs. We refer to this generally as the inhomogeneity
of EHWSNs. The application of wireless compressive
sensing to inhomogeneous EHWSNs has, to the best of
our knowledge, not been studied in literature. We aim to
reduce the number of transmissions and thus to improve
the SE. The three main contributions are summarized as
follows.

First, we present an efficient probabilistic transmission
scheme that essentially performs CS over the air. Every



sensor transmits with some probability, and adjusts the
transmit power according to its energy availability. The
FC thus receives a linear combination of the transmitted
signals with some additive noise.

Second, we prove that the FC can recover the data
accurately, if the total number of transmissions (or mea-
surements) m exceeds

O

(
k
ρmax(k)

ρmin(k)
log

n

k

)
,

where n is the number of sensors, k is the sparsity of
the sensor data, and ρmax(k) and ρmin(k) are respectively
the maximum and minimum k-restricted eigenvalues of a
Gram matrix which depends on the inhomogeneity of the
SNRs.

Third, we analyze the impact of inhomogeneity on the
required number of measurements, in terms of ρmax(k) and
ρmin(k). We model that the signal powers of the sensors
follow independent truncated Gaussian distributions. By
using the theory of large deviations, we show that both
ρmax(k) and ρmin(k) concentrate around one (for all k) in
large n region, and the rate of convergence to one depends
on the inhomogeneity.

II. SYSTEM MODEL

In the WSN under consideration, n energy harvesting
sensors transmit to the FC via a shared multiple-access
channel (MAC). We consider slotted transmissions, and m
successive time slots constitute a frame. We consider a
snapshot of the spatial-temporal field, and transmissions
within one frame. Assuming the sensor data s is com-
pressible, we can model it as being sparse w.r.t. to a fixed
orthonormal basis {ψj ∈ Cn : j = 1, . . . , n}, i.e.,

s = Ψx =

n∑
j=1

ψjxj , (1)

where x ∈ Cn has at most k < bn/2c nonzero compo-
nents, where b·c is the floor operation.

We assume a flat-fading channel with complex-valued
channel coefficients hij , where 1 ≤ i ≤ m denotes the
slot index and 1 ≤ j ≤ n denotes the sensor index. The
channel remains constant in each slot. We further assume a
Rayleigh fading channel, hence the channel coefficients for
different slots are independent and identically distributed
(i.i.d.) according to the complex Gaussian distribution.

We propose simultaneous transmissions to the FC such
that data from all sensors are linearly combined. Sensor
j multiplies its observation sj by some random amplitude
φij (to be defined in (3)), then transmits in the i-th time
slot. The FC thus receives

yi =

n∑
j=1

hijφijsj + ei,

where ei is a noise term (not necessarily Gaussian). After
m time slots, the FC receives the measurement vector

y = (H�Φ)s + e = Zs + e = ZΨx + e, (2)

where the matrix Z = H � Φ, and the operation � is
the element-wise product of two matrices. We assume all
noise components are independent, with zero mean and
variance σ2. With the knowledge of the sensing matrix Z
and the sparsity-inducing basis Ψ, the FC can implement
CS decoding to recover sparse coefficients x̂ and obtain
the estimated data vector ŝ = Ψx̂.

We want to estimate x or equivalently s, from y,
such that the mean square error (MSE) ε , E‖x̂ − x‖22
does not exceed some threshold. Given a fixed number
of sensors n and the MSE threshold, our objective is to
design a transmission scheme that minimizes the number
of transmissions m, and thus achieves high SE.

A. Energy-Aware Wireless Compressive Sensing

We consider only the energy consumption for wireless
transmissions. The energy harvesting rate varies over sen-
sors. For simplicity, we assume that each sensor allocates
the same power for all slots of one frame. Define the energy
level as the amount of available energy of a sensor in one
slot. The energy level of sensor j is denoted as bj , the unit
of which is joule per slot. We use a fraction p ∈ (0, 1] of
energy level to transmit in one frame, and the saved energy
can be used in future frames.

We perform energy-aware wireless transmissions taking
into account the different harvested energy rates. Based
on the aforementioned energy allocation, we design Φ in
(2) as a select-and-weight (SW) matrix, whose elements
are independently generated according to the following
probability mass function

φij =


+
√
bj w.p. p/2

0 w.p. 1− p, ∀i = 1, . . . ,m

−
√
bj w.p. p/2

(3)

That is, the j-th sensor transmits with probability p with
an amplitude of

√
bj , and the actual value is positive or

negative with equal probability.

B. Probability Distribution and Signal Model

Consider the signal model in (2). Denote each element
in Z as Zij = hijφij = ZR

ij + jZI
ij , where ZRij , hR

ijφij ,

and ZI
ij , hI

ijφij . Since all elements of matrix H are
assumed to be independent, all elements of matrix Z are
independent, and with independent real and imaginary
components. Thus, it suffices to analyze the probability
density function (pdf) of the real component.

Definition 1. A random variable X follows the mixed
Gaussian distributions, denoted as X ∼ Ñ (µ, ν2, p), if



it has the following pdf

fX(x) = p
1√
2πν2

exp

(
− (x− µ)2

2ν2

)
+(1−p)δ(x), (4)

where the parameter p ∈ (0, 1]. The complex mixed Gaus-
sian distribution, denoted as Ñc(µ, ν2, p), has independent
real and imaginary components that are distributed as
Ñ (µ, ν2/2, p).

All elements in the channel matrix H are independent
zero mean, Gaussian random variables. Note that H has
column-dependent variances ν2

j , due to different fading
channels for the sensors. Clearly, ZR

ij ∼ Ñ
(
0, ν2

j bj/2, p
)
.

Let H = H̃ΓH and Φ = Φ̃ΓΦ, where ΓH =
diag{ν1, ν2, . . . , νn} and ΓΦ = diag{

√
pb1,
√
pb2,

. . . ,
√
pbn}. Then we decompose the matrix Z̃ as follows

Z =
√
mZ̃Γ, (5)

where we denote Z̃ = H̃ � Φ̃ and Γ = ΓHΓΦ. Let
Γ = diag{√γ1,

√
γ2, . . . ,

√
γn}, where the receive signal

power of sensor j is γj = pbjν
2
j . The γj’s are generally

all different, and this is referred to as an inhomogeneous
signal-power pattern. We note that all elements of the
matrix Z̃ are i.i.d. mixed Gaussian random variables, i.e.,
Z̃ ∼ Ñc (0, 1/(pm), p) and Z̃R ∼ Ñ (0, 1/(2pm), p).

Using (5), we rewrite the signal model in (2) as

y =
√
mZ̃ΓΨx + e. (6)

We rescale the matrix ΓΨ such that each column has unit
Euclidean norm. Let Σ = ΓΨ/

√
Pave, where Pave =∑n

j=1 pbjν
2
j /n denotes the average (receive) signal power

in one time slot. By dividing both sides of (6) by
√
mPave,

we thus obtain the signal model

ỹ = Z̃Σx + ẽ = Ax + ẽ, (7)

where all noise components are independent, with zero
mean and normalized variance σ̃2 = σ2/(mPave). The
average (receive) SNR is defined as SNRave , Pave

σ2 .

III. MAIN ANALYTICAL RESULTS

We recall the definition of RIP [7] and state our main
result, that is Theorem 1, in subsection III-A. The engi-
neering implication of Theorem 1, and in particular the
tradeoff between the allowable MSE and the achievable
SE, will be discussed in III-B. Finally we analyze the effect
of inhomogeneity of SNRs in subsection III-C.

A. Restricted Isometry Property

It is well-established in CS theory that a sufficient
condition for accurate and efficient reconstruction (via
convex optimization) is that the sensing matrix satisfies
the RIP. A matrix A is said to satisfy RIP of order k, if
there exists a δk ∈ (0, 1) such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk) ‖x‖22 (8)

holds for all k-sparse vectors. The smallest constant sat-
isfying (8) is the restricted isometry constant (RIC) [7].
Hence, we establish conditions to show when the sensing
matrix A obeys the RIP.

We define the k-restricted extreme eigenvalues of the
Gram matrix Σ∗Σ as

ρmax(k) = max
v:‖v‖0≤k,‖v‖2=1

‖Σv‖22,

ρmin(k) = min
v:‖v‖0≤k,‖v‖2=1

‖Σv‖22, (9)

where v ∈ Cn, and the “l0-norm” ‖v‖0 refers to the
number of non-zero elements of v. Clearly, ρmax(1) =
ρmin(1) = 1. The extreme eigenvalues will be used to
understand how the inhomogeneous SNRs affects the RIP.
It can be easily checked that the following bounds hold
[8]:

1 ≤ ρmax(k) ≤ k, 0 ≤ ρmin(k) ≤ 1. (10)

We note that k typically satisfies k � n in large-scale
WSNs. We further assume ρmax(k) ∈ [1, 2] to simplify
some of the mathematical arguments. We show that this
assumption holds with high probability in Section III-C.
To state our main result clearly, we define two quantities
that depend on Σ and k as follows

ξk(Σ) , max {1− ρmin(k), ρmax(k)− 1} ,

ζk(Σ) , max

{
0,

2− ρmax(k)− ρmin(k)

ρmax(k)− ρmin(k)

}
.

(11)

Since ρmax(k) ∈ [1, 2], we have1 ξk, ζk ∈ [0, 1]. Let ϑk =
(1+ ζk)ρmax(k)− 1. Given δk ∈ (ξk, 1), for convenience,
we map δk to a “modified RIC” via a piecewise linear
mapping as follows

βk(δk,Σ) ,

{
1− (1− δk)/ρmin(k), δk ∈

(
ξk, ϑk

)
(1 + δk)/ρmax(k)− 1, δk ∈

(
ϑk, 1

)
.
(12)

Let ςk = 2/ρmax(k) − 1. The inverse of βk(δk,Σ) is
denoted as

δk(βk,Σ) ,

{
1− (1− βk)ρmin(k), βk ∈

(
0, ζk

)
(1 + βk)ρmax(k)− 1, βk ∈

(
ζk, ςk

)
.
(13)

Recall that the sensing matrix A = Z̃Σ, where all
elements of the m× n matrix Z̃ are i.i.d. mixed Gaussian
random variables, where n is the number of sensors. We
state the main result as follows.

Theorem 1. Let c1, c2 > 0 be some universal constants.
Given a sparsity level k < bn/2c, a transmit probability
p ∈ (0, 1] and a number δk ∈ (ξk, 1), if the number of
measurements satisfies

m >
c1kρmax(k)

p2β2
kρmin(k)

log
5en

k
, (14)

1Note that the arguments of some quantities are sometimes omitted.



where βk = βk(δk,Σ) is defined in (12), then for any
vector x with support of cardinality of at most k, we have
that the RIP in (8) holds with probability at least 1 −
exp

(
−c2mp2β2

k/4
)
.

Proof: (Sketch) We show that the rows of the random
matrix Z̃ are isotropic sub-Gaussian [9], and A is an
approximate isometry when restricted to the set of sparse
vectors. See details in [8].

Remark 1 (Specialization to the homogeneous case). Clear-
ly, the lower bound on the required number of measure-
ments is O( kρmax(k)

β2
kρmin(k)

log n
k ). For the homogeneous signal-

power pattern (i.e., the matrix Γ is a multiple of the
identity matrix), we have ρmax(k) = ρmin(k) = 1 and
βk = δk. Thus the lower bound reduces to O( k

δ2k
log n

k ),
which coincides with the known results for i.i.d. random
sensing matrices. See Theorem 5.2 in [10] and Section
1.4.4 in [9].

Remark 2 (Contribution of the RIP analysis). Due to the
inhomogeneous signal-power pattern Γ, the rows ai of
the sub-Gaussian sensing matrix A are non-isotropic. To
the best of our knowledge, little is known about the RIP
of non-isotropic sub-Gaussian random matrices. The only
relevant result is in Remark 5.40 in [9] which gives a
concentration inequality of non-isotropic random sensing
matrices in terms of the upper bound on the spectral
norm. However, the authors did not demonstrate how
the inhomogeneity affects the RIP, nor they investigate
the number of measurements required to satisfy the RIP.
Theorem 1 fills this gap.

B. Achievable Spectral Efficiency

The SE is defined as the ratio2 η , n/m. It is interpreted
as the dimension of spatial-field signal vector that is
reliably recovered at the FC in one time slot via wireless
transmissions. Given the number of sensors n and an
allowable MSE level ε > 0, an achievable (highest) SE
is defined as

η(ε) , max
m

n

m
subject to E‖x̂− x‖22 ≤ ε. (15)

Corollary 1. Let p,m, n, k,Σ, ξk, ϑk be as in Theorem
1. Let εth = 1/(0.0942 × SNRave). Given an allowable
MSE level ε > εth, with overwhelming probability, the
achievable SE is

η(ε) =
np2(β̃k)

2ρmin(k)

c1kρmax(k) log
5en
k

, (16)

2The usage of the term SE in (15) deviates from the usual conventions
in digital communications. However, our motivation is as follows: Each
sensor encodes its observation into D-bit data, and then transmits to the
FC in a time slot of T0 seconds. After transmissions using bandwidth
B = D/T0 in m slots, the FC reliably recovers nD bits data in mT0
seconds. Thus the SE is derived as η = nD/(mT0B) = n/m.

where

β̃k(Σ, ε) =


1− 0.693 + 1/

√
εSNRave

ρmin(k)
, δk ∈

(
ξk, ϑk

)
,

1.307− 1/
√
εSNRave

ρmax(k)
− 1, δk ∈

(
ϑk, 1

)
.

(17)

Proof: (Sketch) The proof is based on Theorem 3.2
of [11], which states that if A satisfies RIP of order k with
RIC δk < 0.307, the MSE

E‖x̂− x‖22 ≤
1

SNRave(0.307− δk)2
. (18)

A desired MSE level requires a sufficient small RIC. Then
applying our Theorem 1 establishes the result. See further
details in [8].

Remark 3. Note that Corollary 1 applies only to the case
where the MSE is greater than the MSE threshold εth.
If ε ≤ εth, then from (18), simple algebra reveals that
δk = 0, which implies that the sensing matrix A is a
perfect isometry. Since A is random, and the entries are
governed by a distribution that is absolutely continuous
w.r.t. the Lebesgue measure, this occurs with probability
zero, implying that the constraint in (15) is never satisfied.
Thus, we define the SE in this case to be zero.

Remark 4. We note that β̃k is an increasing function of ε
and SNRave, and so is the SE η(ε). Another important
insight we can draw from Corollary 1 is that the key
measure for the inhomogeneity of SNRs is the ratio
r , ρmax(k)/ρmin(k). The SE decreases as r increase
from one. We hence analyze the impact of inhomogeneity
of SNRs on the deviation of ρmax(k) and ρmin(k) from
unity in subsection III-C. In addition, note that the SE
in (16) decrease quadratically as the transmit probability
p decreases. Thus, it is always advantageous to transmit
with high probability subject to energy constraint.

Example 1. Let number of sensors n = 500, sparsity level
k = 5 and transmit probability p = 0.8. These parameters
imply ρmax(k) = 1.09, ρmin(k) = 0.88 (See Section IV).
We plot the achievable SE against an allowable MSE,
under different average SNR settings in Fig. 1. We observe
that beyond the MSE threshold that depends on the average
SNR, the achievable SE increases as either the allowable
MSE or the average SNR increases, which is is expected.

C. Impact of Inhomogeneity

This subsection investigates the impact of inhomogene-
ity of receive signal powers, or equivalently the inhomo-
geneity of SNRs (assuming all sensors have the same
noise power), on the RIP. We focus on the asymptotic
scenario where the number of sensors n tends to infinity.
To make the dependence on n clear, we denote ρmax(k)
as ρmax(k, n), and ρmin(k) as ρmin(k, n). Recall their
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Fig. 1. Spectral efficiency vs. allowable MSE.

definitions in (9) and the signal model in (7). Let w = Σv,
where the unit-norm, k-sparse vector v is supported on
the set T , {s1, . . . , sk}. Without loss of generality,
let s1 < · · · < sk. To obtain further insights, we take
matrix Ψ as the n-point discrete Fourier matrix (We
note that Theorem 2 also applies for a larger class of
sparsity-inducing bases. See Remark 6 for a more in-depth
discussion on this point.). Hence, we get

‖w‖22 = 1 +

n∑
i=1

γi
nPave

(
1 +

k∑
q=1

k∑
t=1,t<q

2Re

{
vsqv

∗
st exp

(
−j2π(i− 1)(sq − st)

n

)})
.

(19)

We are interested to know how ρmax(k, n) and
ρmin(k, n) vary with different receive signal powers. Thus,
we consider a model in which the signal powers γi’s are
i.i.d. random variables following approximately a Gaussian
distribution. By varying the variance of the Gaussian
distribution, we are in fact varying the inhomogeneity of
the receive signal powers. Specifically, to deal with the
fact that the signal powers can not be negative, we use
the following truncated Gaussian distribution to model the
receive signal powers.

Definition 2. A random variable X is truncated Gaussian,
denoted as Ntr(µ, ω

2), if its pdf is

gX(x;µ, ω) =
1√

2πω(1−Q(µ/ω))
exp

(
− (x− µ)2

2ω2

)
,

(20)
for x ≥ 0 and 0 else, where Q(x) = 1√

2π

∫∞
x
e−t

2/2 dt is
the Q-function of a standard Gaussian function.

We assume that γi ∼ Ntr(µ, ω
2) for all i = 1, . . . , n.

Given µ, the “variance” ω2 is a measure of the degree of
inhomogeneity of the signal powers γi. We use the notation
an

.
≤ exp(−nE) to mean that lim supn→∞

1
n log an ≤

−E. Under the above assumptions on the statistics of the
signal power, we have the following large deviations upper
bound on ρmax(k, n) and ρmin(k, n):

Theorem 2. For any t > 0, and 1 ≤ k < bn/2c,

P (ρmax(k, n) > 1 + t)
.
≤ exp

[
−nd2E(k, t)2

]
,

P (ρmin(k, n) < 1− t)
.
≤ exp

[
−nd2E(k, t)2

]
,

(21)

where E(k, t) , t/(k − 1 +
√
2t), and d , µ/ω.

Proof: (Sketch) We bound the inner sum in (19) using
the theory of large deviations [12]. See [8] for details.

Remark 5. We note that E(k, t) is an increasing func-
tion of t and a decreasing function of the sparsity k
which is expected. Also, the exponent d2E(k, t)2 increases
with d, which means that the convergence of ρmax(k, n)
and ρmin(k, n) to unity is faster when d is large, or
equivalently, when the receive signal powers are more
homogeneous. It is observed that ρmax(k, n) approximates
one in large n region. This validates the assumption that
ρmax(k, n) ∈ [1, 2] in section III-A.

Remark 6. The only property of the discrete Fourier
transform that we exploit in the proof of Theorem 2 is
its circular symmetry, i.e., each basis vector (containing
elements that are powers of the n-th root of unity) is
uniformly distributed over the circle in the complex plane.
Hence, certain Cesaro sums converge to zero and the proof
goes through. Thus, Theorem 2 also applies for other
sparsity-inducing bases whose basis vectors are circularly
symmetric. See details in [8].

IV. SIMULATION RESULTS

We now illustrate our results via numerical examples.
We set the number of sensors n = 500 and transmit prob-
ability p = 0.8. We use the truncated Gaussian distribution
with µ = 0.2 and d = 2, implying ω = µ/d = 0.1, to
model the receive signal powers, and use the basis pursuit
de-noising (BPDN) algorithm [13] as the CS decoder.

Fig. 2 plots the MSE vs. the number of measurements
(or transmissions) m for different sparsity k and different
average SNRs. As expected, the MSE decreases as k
decreases, and the average SNR increases. We note that
when the average SNR is 25 dB, for an MSE level 2×10−3,
the scheme achieves a higher SE of η = 7 for k = 5
compared to η = 4.5 for k = 10.

Fig. 3 shows the cumulative distribution function (CDF)
of ρmax(k, 500) and ρmin(k, 500) for µ = 0.2 and d = 1, 2.
Both ρmax(k, 500) and ρmin(k, 500) converge to one faster
for large d, or equivalently, for more homogeneous signal
powers.
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Finally, we numerically validate the asymptotic behavior
of ρmax(k, n) as n grows. Set k = 5, d = 1, 2, 3. Fig. 4
shows the probability that ρmax(k, n) > 1.04 for different
n. It is observed that the logarithm of the probability
decreases linearly as n grows (when n/k is large) and
furthermore, the slope varies quadratically w.r.t. d. Thus,
our numerical results corroborate the theoretical result in
Theorem 2.

V. CONCLUSION

In this paper, to achieve high spectral efficiency in
EHWSNs, we propose that each sensor independently
decides to transmit or not with some probability, and the
transmission power depends on its available energy level.
Hence, only a subset of sensors transmit simultaneously
to the FC, and the concurrent transmission exploits the
spatial combination inherent in a multiple-access channel.
We use techniques from CS theory to prove a lower
bound on the required number of measurements to satisfy
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Fig. 4. The prob. of ρmax(k, n) > 1.04 v.s. number of sensors n

the RIP and hence to ensure that the reconstruction is
both computationally efficient (and amenable to convex
optimization techniques) and accurate. We also derive an
achievable spectral efficiency given an allowable MSE.
Finally, we analyze the impact of inhomogeneity on the k-
restricted extreme eigenvalues. These eigenvalues govern
the number of measurements required for the RIP to hold.
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