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Graphical Models

p(x) can be defined on an undirected graph G.

G = (V, E) encodes conditional independencies.

(a) p(A, C|B) = p(A|B)p(C|B) (b) p(xA, xC|xB) = p(xA|xB)p(xC|xB)

Figure: Graphical Models
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Tree Structured Distributions

A tree structured distribution p(x) has no loops.

Trees can be decomposed into node and pairwise terms.

p(x) =
∏
s∈V

p(xs)
∏

(s,t)∈E

p(xs, xt)
p(xs)p(xt)

(1)

I Marginal properties on vertex set.
I Pairwise relationships on edge set.
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The Chow-Liu algorithm I

Problem: Fit a tree to a given distribution. [Chow-Liu 1968]

p̂(x) = argmin
p̂∈T

D(p(x) ‖ p̂(x)) (2)
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The Chow-Liu algorithm II

Solution: Max-Weight Spanning Tree (MWST) [Chow-Liu 1968]

Edge weights = Mutual Information (MI) between variables.

I(xs ; xt) =
∫
X 2

p(xs, xt) log
[

p(xs, xt)
p(xs)p(xt)

]
dxs dxt (3)

Proof.
Direct consequence of decomposition of p(x) for tree models.

Generative learning.
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Learning Reduced-Order probability models

Motivation:

Can sparse graphical models of increasing complexity be learned
better if intended purpose is known?

Define T (k) to be the set of trees with no more than k ≤ n− 1
edges.

Figure: Tree defined on n = 11 nodes with k = 6 edges
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Learning Reduced-Order probability models

Problem Statement:

Given p, q, sequentially learn lower-order models p̂(k), q̂(k) ∈ T (k).

These models are to be used specifically for binary hypothesis testing.

Hypotheses H0 and H1,

H0 : x ∼ p or H1 : x ∼ q (4)

A Likelihood Ratio Test is used to classify new samples e.g. for xtest

p̂(k)(xtest)
q̂(k)(xtest)

declare H0
≷

declare H1

1. (5)
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The Objective Function

We maximize the J-divergence.

J(p(x), q(x)) = D(p(x) ‖ q(x)) + D(q(x) ‖ p(x)). (6)

over all possible structures Ep̂(k) and Eq̂(k) .

Bounds the Pr(err) [Basseville 1989].

1
2

min(P0, P1)e−J ≤ Pr(err) ≤
√

P0P1

(
J
4

)−1/4

, (7)

Discriminative learning.
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The J-divergence

Lemma
The J-divergence of p̂ and q̂ is

J(p̂, q̂; p, q) =
∑
s∈V

J(ps, qs) +
∑

(s,t)∈Ep̂∪Eq̂

wst (8)

where wst are multi-valued weights.

Proof.
Direct consequence of decomposition of p(x) for tree models.
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Multi-valued weights

wst are multi-valued weights.

The expression for wst differs for the three cases
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A modified MWST algorithm I

Lemma
p̂(k)(x), q̂(k)(x) are optimally chosen via a modified version of the
‘k-edge’ MWST (Kruskal’s) algorithm with edge weights given by wst.

Kruskal’s algorithm is of particular interest because:

1 Greedy.
2 Yields a sequence of optimal k-edge optimal forests.
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A modified MWST algorithm II

Consider the maximum of the three possible values for wst.

If wst is maximized:

1 (s, t) ∈ Ep̂ \ Eq̂,
⇒ Place an edge between s, t for p̂ and not q̂.

2 (s, t) ∈ Eq̂ \ Ep̂,
⇒ Place an edge between s, t for q̂ and not p̂.

3 (s, t) ∈ Ep̂
⋂

Eq̂,
⇒ Place an edge between s, t for both p̂ and q̂.

Possibility of early termination.
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Example I: Probability Models

(a) Original Grid p (b) Gen. Grid p̂(n−1) (c) Discri. Grid p̂(n−1)

(d) Original Cycle p (e) Gen. Cycle p̂(n−1) (f) Discri. Cycle p̂(n−1)

Figure: The grid and cycle models
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J-divergence and Probability of Error
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J-divergence and Probability of Error
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Example II: Class Conditional Covariance Matrices

Figure: p, q are zero-mean Gaussian with covariance matrices Σp, Σq.

Discriminative information comes from the lower-right block.
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J-divergence and Probability of Error

Figure: J(p̂(k)(x), q̂(k)(x))/J(p, q) and the Pr(err) as functions of k.
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Graph Structures

How do the structures of p̂(k)(x) compare under generative and
discriminative learning?

Figure: Structures of p̂(k) ∈ T (k) represented by Adjacency Matrices
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Conclusions and Perspectives

Many machine learning (classification) problems are more
effective if discriminative features are identified.

Graphical models can be learned better if their intended purpose
is known.

We have learned increasingly complex (and nested) models
p̂(k), q̂(k) sequentially for hypothesis testing.

Discriminative learning reduces Pr(err).
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