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Graphical Models
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Graphical Models

p(x) can be defined on an undirected graph G.
G = (V,E) encodes conditional independencies.

O—&—0

(a) p(A,C|B) = p(A|B)p(C|B) (b) p(xa,xclxs) = p(xalxs)p(xclxs)

Figure: Graphical Models
T
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Tree Structured Distributions

@ A tree structured distribution p(x) has no loops.
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Tree Structured Distributions

@ A tree structured distribution p(x) has no loops.

@ Trees can be decomposed into node and pairwise terms.

p0 =T ot TT 25 (1)

sevV (s,t)EE

» Marginal properties on vertex set.

» Pairwise relationships on edge set. i
]|
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The Chow-Liu algorithm |

Problem: Fit a tree to a given distribution. [Chow-Liu 1968]
p(x) = argmin D(p(x) || p(x)) (@)

o 5
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The Chow-Liu algorithm |l

Solution: Max-Weight Spanning Tree (MWST) [Chow-Liu 1968]
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The Chow-Liu algorithm |l

Solution: Max-Weight Spanning Tree (MWST) [Chow-Liu 1968]

Edge weights = Mutual Information (MI) between variables.

I(xs; x;) = /sz(xs,xt) log [}%] dx, dx; (3)
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The Chow-Liu algorithm |l

Solution: Max-Weight Spanning Tree (MWST) [Chow-Liu 1968]

Edge weights = Mutual Information (MI) between variables.

p(xs, xr) ]
I(xg; = X5, X¢) log | ——=| dx;dx 3
()C xt) /sz( t) g [p(xs)p(Xt) t ( )
Proof.
Direct consequence of decomposition of p(x) for tree models. DJ
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The Chow-Liu algorithm |l

Solution: Max-Weight Spanning Tree (MWST) [Chow-Liu 1968]

Edge weights = Mutual Information (MI) between variables.

p(xs, xr) ]
I(xg; = X5, X¢) log | ——=| dx;dx 3
()C xt) /sz( t) g [p(xs)p(Xt) t ( )
Proof.
Direct consequence of decomposition of p(x) for tree models. DJ

Generative learning.
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Learning Reduced-Order probability models

@ Motivation:

Can sparse graphical models of increasing complexity be learned
better if intended purpose is known?
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Learning Reduced-Order probability models

@ Motivation:

Can sparse graphical models of increasing complexity be learned
better if intended purpose is known?

@ Define 7™ to be the set of trees with no more than k < n — 1

edges.

A

Figure: Tree defined on n = 11 nodes with k = 6 edges
i
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Learning Reduced-Order probability models

Problem Statement:
Given p, g, sequentially learn lower-order models p¥), gk e 7%,

These models are to be used specifically for binary hypothesis testing.
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Learning Reduced-Order probability models

Problem Statement:
Given p, g, sequentially learn lower-order models p¥), gk e 7%,

These models are to be used specifically for binary hypothesis testing.
Hypotheses H, and Hy,

Hy:x~p or H :x~gq (4)
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Learning Reduced-Order probability models

Problem Statement:
Given p, ¢, sequentially learn lower-order models p*), g¥) e 7).
These models are to be used specifically for binary hypothesis testing.
Hypotheses H, and Hy,
Hy:x~p or H :x~gq (4)

A Likelihood Ratio Test is used to classify new samples e.g. for x.

Pen) 5, ©)

g% (xrest) declare H;

i
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The Objective Function

@ We maximize the J-divergence.

J(p(x),q(x)) = D(p(x) [ 4(x)) + D(g(x) || p(x))- (6)

over all possible structures E;u and Ejq .
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The Objective Function

@ We maximize the J-divergence.

J(p(x),q(x)) = D(p(x) [l q(x)) + D(q(x) || p(x)). (6)
over all possible structures E;u and Ejq .

@ Bounds the Pr(err) [Basseville 1989].

1 VAN
Emin(Po,Pl)e*J < Pr(err) < /PP <4> , (7)
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The Objective Function

@ We maximize the J-divergence.

J(p(x),q(x)) = D(p(x) [l q(x)) + D(q(x) || p(x)). (6)
over all possible structures E;u and Ejq .

@ Bounds the Pr(err) [Basseville 1989].

1 VAN
Emin(Po,Pl)e*J < Pr(err) < /PP <4> , (7)

@ Discriminative learning.
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The J-divergence

Lemma
The J-divergence of p andq is
J(:ﬁ,?]\;p,q) = Zj(prS) + Z Wet (8)
sev (s,1)EE;UE;

where wy, are multi-valued weights.
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The J-divergence

Lemma
The J-divergence of p andq is
J(ﬁyﬁQP?Q) = Zj(prS) + Z Wet (8)
sEV (s,) EEUEy
where wy, are multi-valued weights.
Proof.
Direct consequence of decomposition of p(x) for tree models. O
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Multi-valued weights

wy; are multi-valued weights.

The expression for wy, differs for the three cases

(S, t) € Ea \ Ef)
(s,t) € E,?,ﬂ E;

(s.1) € B3\ E;
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A modified MWST algorithm |

Lemma

p®(x),q% (x) are optimally chosen via a modified version of the
k-edge’ MWST (Kruskal'’s) algorithm with edge weights given by wy;.
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A modified MWST algorithm |

Lemma

p®(x),q% (x) are optimally chosen via a modified version of the
k-edge’ MWST (Kruskal'’s) algorithm with edge weights given by wy;.

Kruskal’s algorithm is of particular interest because:

@ Greedy.
@ Yields a sequence of optimal k-edge optimal forests.
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A modified MWST algorithm |l

Consider the maximum of the three possible values for wy,.
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A modified MWST algorithm |l

Consider the maximum of the three possible values for wy,.

If w, is maximized:

Q (s,1) € B\ Ey,
= Place an edge between s, ¢ for p and not g.
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A modified MWST algorithm |l

Consider the maximum of the three possible values for wy,.

If w, is maximized:

Q (s,1) € B\ Ey,
= Place an edge between s, ¢ for p and not g.

Q (s.1) € B\ E;,
= Place an edge between s, ¢ for g and not p.

Q (s,1) € Ef,ﬂEA,

= Place an edge between s, ¢ for both p and g.
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A modified MWST algorithm |l

Consider the maximum of the three possible values for wy,.

If w, is maximized:

Q (s,1) € B\ Ey,
= Place an edge between s, ¢ for p and not g.

Q (s.1) € B\ E;,
= Place an edge between s, ¢ for g and not p.

Q (s,1) € Ef,ﬂEA,

= Place an edge between s, ¢ for both p and g.
Possibility of early termination.
i

13/19 Vincent Tan (MIT) Learning Max-Weight Discriminative Forests ICASSP 13/19



Example I: Probability Models
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Example I: Probability Models

N

(a) Original Grid p (b) Gen. Grid p"— (c) Discri. Grid p"—"

(d) Original Cyclep  (e) Gen. Cycle p®~"  (f) Discri. Cycle p"~" i
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J-divergence and Probability of Error
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Example II: Class Conditional Covariance Matrices

Covariance Matrix Zp Covariance Matrix Zq

1

0.9
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03
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0.1
0

Figure: p, q are zero-mean Gaussian with covariance matrices ¥,, %,.

Discriminative information comes from the lower-right block. i
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J-divergence and Probability of Error

J divergences Probability of Error
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Figure: J(p®) (x),q® (x))/J(p, ¢) and the Pr(err) as functions of k.
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Graph Structures

How do the structures of ) (x) compare under generative and
discriminative learning?
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Graph Structures

How do the structures of p*) (x) compare under generative and
discriminative learning?

Generative forest with 35 edges Discriminative forest with 35 edges

Figure: Structures of p*) ¢ T®) represented by Adjacency Matrices
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Conclusions and Perspectives
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@ Many machine learning (classification) problems are more
effective if discriminative features are identified.
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Conclusions and Perspectives
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@ Graphical models can be learned better if their intended purpose
is known.
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p® . g®) sequentially for hypothesis testing.
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Conclusions and Perspectives

@ Many machine learning (classification) problems are more
effective if discriminative features are identified.

@ Graphical models can be learned better if their intended purpose
is known.

@ We have learned increasingly complex (and nested) models
p® . g®) sequentially for hypothesis testing.

@ Discriminative learning reduces Pr(err).
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