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ABSTRACT
Strong impossibility results for noisy group testing are de-
rived. It is shown that regardless of the allowed error proba-
bility in identifying the defective set, the required of number
of measurements is almost the same as that required for the
error probability to be arbitrarily small. Our proof technique
involves the use of the blowing-up lemma.

Index Terms— Noisy group testing, Defective set, Strong
converse, Necessary conditions, Blowing-up lemma

1. INTRODUCTION

Group testing [1, 2] can be regarded as a non-linear Boolean
version of the well-known compressive sensing model wherein
a binary measurement matrix is applied to a sparse vector,
with the goal of reconstructing the support, or equivalently
identifying a set of interest in a large population of items.

Related Work: A large body of research on the topic has
focused on combinatorial pool design and matrix construc-
tions with favorable separability and covering properties to
guarantee the detection of the items of interest using a small
number of tests. The covering property ensures that a test pat-
tern obtained by taking any K columns of the measurement
matrix does not cover any other boolean sum of K or smaller
number of columns. Matrices that satisfy this property are of-
ten referred to as superimposed codes and combinatorial con-
structions were extensively developed by [3–5].

A different approach to group testing based on a proba-
bilistic method has also been advocated by several researchers
[6–9], and upper and lower bounds on the number of rows
T for a matrix to be K-disjunct (bounds on lengths of su-
perimposed codes) were developed. Random designs were
used to compute upper bounds on the lengths of superim-
posed codes by investigating when randomly generated ma-
trices have the desired covering/separability properties. Sebo
[7] investigated average error probabilities and showed that
for an arbitrarily small error probability, a randomly gener-
ated matrix will be K-disjunct if T = O(K logN) as N →
∞, where N denotes the total number of items.
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The problem of group testing was further investigated
from an information-theoretic perspective in [10–12]. In par-
ticular, in [12] the problem of group testing (with its noisy
versions) is mapped to a channel coding problem. Sufficient
conditions on the number of measurements needed to iden-
tify the defective set are derived based on the analysis of a
maximum-likelihood (ML) decoder, and were further gener-
alized to other sparse signal processing models in [13–15].

Main Contributions: Although achievability results
(sufficient conditions) are abound, systematic studies of con-
verses (necessary conditions) for group testing are largely
lacking, with the exception of combinatorial bounds in [1]
(and references therein), and information-theoretic converses
in [12, 14, 16]. Nevertheless therein, the necessary conditions
involved Fano’s inequality [17, Th. 2.10.1], and hence are
weak converses, since Fano’s inequality only establishes a
condition for the error probability to be bounded away from
zero. In this paper, we improve on the weak converse results
by Atia-Saligrama [12, Th. IV.1] and Aldridge [18, Th. 1]. We
establish new strong converse bounds based on the blowing-
up lemma [19, 20]. To the best of our knowledge, this is the
first time this approach is used to establish converse results
for noisy group testing and its generalizations.

Paper Outline: The rest of the paper is organized as fol-
lows. In Section 2, the basic group testing problem and the
blowing-up lemma are introduced. In Section 3, we present
strong converse bounds for the maximum and average error
probabilities. The proof is presented in Section 4 and we point
out generalizations in Section 5. We conclude in Section 6.

2. PROBLEM SETUP AND BLOWING-UP LEMMA

2.1. The Basic Group Testing Problem

We have N items of a population and they are indexed by the
integers as [N ] := {1, . . . , N}. There are no more than K
defective (or salient) items of interest and the set of defective
items is denoted as K ⊂ [N ]. We wish to detect the set K us-
ing a (small) number tests T ∈ N. A pooling strategy to detect
K is defined by a testing matrix X = {xnt} ∈ {0, 1}N×T ,
which is a random binary matrix, where xnt = 1 means that
item n is in the pool for test t and xnt = 0 means that it is



not. Test t produces an output Yt ∈ {0, 1}. Let kt := |{n ∈
K : xnt = 1}| denote the number of defective items in test t.
In the noiseless group testing problem, the output Yt = 1 iff
kt ≥ 1, i.e., there exist a defective item in test t. The vector
of all Yt is denoted as Y T = (Y1, . . . , YT ).

We will consider group testing with noise as in [12]. In
this case, Yt = 1 with high probability (but not necessarily
probability 1) if kt ≥ 1. Conversely, Yt = 0 with high prob-
ability if kt = 0. We will not be concerned with the exact
noise models as our results are general and can be specialized
to the various noise models considered in [12] using the same
techniques. Instead, we make strong impossibility statements.

2.2. Definitions of Error Probability

Let g be a function, called an estimator, that maps an element
in {0, 1}T to a subset of [N ] of size no more than K. This
will be our decoder that decides, based on Y T , what the set of
defectives K is. For any estimator g, the probability of error
for the set of defectives K is defined as

λK := Pr
[
g(Y T ) 6= K

∣∣K is the defective set
]
. (1)

Note that the probability is over the noisy observations Y T

that are generated based on the testing matrix X and the true
defective set K. There are several such noise models of prac-
tical interest that are discussed in [12, Sec. II-C] such as the
additive and dilution models. These noise models can be re-
garded as noisy channels from X to Y T . Additionally, since
X is also random, the probability is also over X. The maxi-
mum probability of error is defined as

λmax := max
K∈SN,K

λK, (2)

where SN,K := {K ⊂ [N ] : |K| ≤ K}. The average proba-
bility of error is defined as

λave :=
1∑K

m=0

(
N
m

) ∑
K∈SN,K

λK. (3)

Let (T,N,K, ε)max (resp. (T,N,K, ε)ave) be called an
achievable quadruple for the noisy group testing problem if
there exists an estimator g that can detect a defective set of
size no more than K among N items with T tests and max-
imum (resp. average) probability of error at most ε ∈ (0, 1).
Note that unlike most works on noisy group testing [12, 15],
we do not require ε to be arbitrarily small. Let h(α) :=
−α logα− (1− α) log(1− α) denote the binary entropy.

2.3. The Blowing-Up Lemma

We now state a simple version of the blowing-up lemma [19]
proved by Marton [20]. Let Y be a finite set YT its T -fold
Cartesian product. For two strings yT , zT ∈ Yn, we let
dH(yT , zT ) be the Hamming distance, or the number of lo-
cations at which yT and zT differ. For any set A ⊂ YT and

arbitrary number 0 ≤ l ≤ T , we denote the l-blowup of A as
Γl(A) :=

{
zT : minyT∈A dH(yT , zT ) ≤ l

}
. That is, Γl(A)

is the set of T -tuples at distance no larger than l from A.

Lemma 1 (Blowing-Up). Let X1, . . . , XT be independent
random variables with distribution PT . Let γT = o(1) be
a sequence. There exists sequences δT , ζT = o(1) such that if

PT
(
AT
)
≥ exp(−TγT ), then (4)

PT
(
ΓTδT (AT )

)
≥ 1− ζT . (5)

The intuition behind the blowing-up lemma is as follows:
Suppose AT has PT -probability that is “not too small” in the
sense of (4), then by enlargingAT slightly by including those
T -tuples at a sublinear Hamming distance from AT , the re-
sultant set ΓTδT (AT ) has PT -probability arbitrarily close to
one. This concentration of measure phenomenon has been
studied extensively in many domains. See [21].

In fact, Lemma 1 can written in a more quantitative (and
non-asymptotic) manner. In our application of the blowing-up
lemma,

γT :=
1

T
log

1

1− ε
(6)

for some 0 < ε < 1 and thus γT tends to zero. Marton’s
remark in [20] then says that δT and ζT can be chosen as

δT := T−1/4, and ζT := T−1/4
√

1

1− ε
. (7)

3. MAIN RESULTS

Theorem 2 (Strong Converse for Maximum Error Probabil-
ity). Let ε ∈ (0, 1). Let the components of X be independent
and identically distributed (i.i.d.). The following is a nec-
essary condition on all achievable quadruples for the noisy
group testing problem (T,N,K, ε)max:

T ≥ max
L⊂K

(1− ζT ) log
(
N−|L|
K−|L|

)
I(XK\L;XL, Y ) + ηT

(8)

where ηT = O(T−1/4 log T ) is a sequence defined as

ηT := T−1 + h(δT ). (9)

A strong converse statement can also be made for the
average probability of error by relating the two quandruples
(T,N,K, ε)max and (T,N,K, ε)ave. In order to make such a
statement, we require that λK′ ≤ λK for all pairs of sets sat-
isfying |K′| ≤ |K|. Intuitively, this means that larger subsets
have error probabilities no smaller than smaller subsets.

Corollary 3 (Strong Converse for Average Error Probability).
Let ε ∈ (0, 1) and let for each 1 < τ < 1

ε , let

K ′(τ) := max

{
K ′∈ [K] :

(
N

K ′

)
≤
(

1− 1

τ

)(N
K

)}
. (10)



Let the components of X be i.i.d. The following is a necessary
condition on all achievable quadruples for the noisy group
testing problem (T,N,K, ε)ave:

T ≥ sup
1<τ< 1

ε

max
L⊂K

(1− ζT ) log
(

N−|L|
K′(τ)−|L|

)
I(XK\L;XL, Y ) + ηT

. (11)

In the asymptotic setting, τ will be chosen to approach 1
(as the problem size increases) so K ′(τ) approaches K, im-
plying that (8) and (11) are almost identical.

We remark that Theorem 2 and Corollary 3 are signifi-
cantly stronger than the converse result stated in [12]. Recall
that the converse statement in [12] is as follows:

Theorem AS (Th. IV.1 in [12]). Let the components of X be
i.i.d. In order to ensure that either λmax → 0 or λave → 0,
the number of tests must satisfy the following inequality as the
parameters (N,K, T ) tend to infinity:

T ≥ max
L⊂K

log
(
N−|L|
K−|L|

)
I(XK\L;XL, Y )

(12)

Remark: Note that Theorem 2 does not require λmax to
vanish. It can be fixed at say some arbitrarily large value
ε = 1 − 10−20. Thus, no matter how large the error prob-
ability is allowed to be (as long as it is strictly smaller than
1), a converse bound arbitrarily close to the asymptotic con-
verse bound in (12) must be satisfied. This is the essence of
the strong converse theorems. In other words, if (12) is vio-
lated, λmax → 1 as the parameters of the problem size grow.
In the weak converse statement in [12], the statement is that
if (12) is violated then the only conclusion we can make is that
the error probability is asymptotically bounded away from 0.

Another salient observation is that our bounds in Theo-
rem 2 and Corollary 3 are non-asymptotic. They are in fact,
very close to the asymptotic bound in (12) because the terms
ηT and ζT in (8) and (11) vanish as T tends to infinity.

4. PROOF OF MAIN RESULT

Proof of Theorem 2. Since this is an impossibility result, it
suffices to consider those sets K ∈ SN,K whose sizes are
exactly K. Since λK ≤ ε, we have

Pr
[
g(Y T ) = K

∣∣K is the defective set
]
≥ 1− ε (13)

for all K ⊂ [N ] of size exactly K. Note that K is a random
set. Let DK := {yT : g(yT ) = K} denote the decoding
region for set K. Then (13) can be rewritten as

WT
K (DK) ≥ 1− ε (14)

for all K of size K where WT
K (yT ) is the probability of ob-

serving yT conditioned onK being the true defective set. The
blowing-up lemma (Lemma 1) applied to (14) with γT in (6)

states that there exists positive sequences δT , ζT ∈ o(1) (both
not depending on K) satisfying

WT
K
(
ΓδTT (DK)

)
≥ 1− ζT . (15)

Now suppose that a genie reveals |L| defective items L ⊂
K items to us. Then, we need to estimate the remaining(
N−|L|
K−|L|

)
equally likely subsets of defective items. Thus,

H(K|L) = log

(
N − |L|
K − |L|

)
. (16)

Now, by the chain rule for entropy,

H(K|L) = I(K;Y T |L) +H(K|Y T ,L). (17)

By using the argument in the Appendix of [18] which ap-
plies for the more general adaptive setting (cf. Section 27),
we know that I(K;Y T |L) can be single-letterized to be

I(K;Y T |L) ≤ TI(XK\L;XL, Y ) (18)

so it remains to bound the conditional entropy H(K|Y T ,L).
Define the “error” random variable

E := 1{Y T /∈ ΓδTT (DK)}. (19)

From the chain rule of entropy, we have

H(E,K|Y T ,L) = H(K|E, Y T ,L) +H(E|Y T ,L) (20)

= H(E|K, Y T ,L) +H(K|Y T ,L). (21)

Clearly, H(E|K, Y T ,L) = 0 and H(E|Y T ,L) ≤ 1. Thus,

H(K|Y T ,L) ≤ H(K|E, Y T ,L) + 1. (22)

Further expanding the conditional entropy of the RHS yields

H(K|E, Y T ,L) = Pr(E = 0)H(K|E = 0, Y T ,L)

+ Pr(E = 1)H(K|E = 1, Y T ,L). (23)

We now record the following simple facts:

Pr(E = 1) ≤ ζT , (24)

H(K|E = 1, Y T ,L) ≤ log

(
N − |L|
K − |L|

)
, (25)

where (24) follows from (15) and (25) follows from the fact
that there are

(
N−|L|
K−|L|

)
choices for K given that L is known.

The quantity H(K|E = 0, Y T ,L) is the most interesting. To
bound this, we define the set

NK(yT ) :=
{
K ⊂ [N ] : |K| = K, yT ∈ ΓδTT (DK)

}
. (26)

Now we have the following important estimate for |NK(yT )|:

|NK(yT )|
(a)

≤ |ΓδTT (yT )| (b)=

bδTTc∑
k=0

(
T

k

)
(|Y| − 1)k

(c)
=

bδTTc∑
k=0

(
T

k

)
(d)

≤ 2Th(δT ). (27)



In inequality (a), we note that |NK(yT )| =
∑
K 1{yT ∈

ΓδTT (DK)}where the sum is over those subsets of [N ] of size
K. To each K for which the indicator returns 1, there exists
at least one vector ỹTK ∈ DK for which dH(ỹTK, y

T ) ≤ δTT .
Because the decoding sets are disjoint (i.e., DK ∩ DK′ = ∅
for K 6= K′), the vectors {ỹTK}K are also distinct. Thus, we
can conservatively upper bound |NK(yT )| by the size of the
entire (δTT )-blowup of {yT }, i.e., |ΓδTT (yT )|. For equality
(b), ỹT ∈ ΓδTT (DK) if and only if there exists a yT ∈ DK
differing from ỹT in no more than δTT locations. Thus, we
run over all possible such locations from k = 0 to k = bδTT c
and count the number of of sequences differing from ỹT in
exactly k locations. Equality (c) follows because |Y| = 2
and inequality (d) from an elementary result [22, Ex. 2.8(a)]
involving sum of the first bδTT c binomial coefficients. Here
we assumed that T is so large that δT < 1

2 . Note that the
bounds in (27) do not depend on K or yT . Thus, we have

H(K|E = 0, Y T ,L) ≤ Th(δT ), (28)

which is sublinear. Combining (22), (24), (25) and (28) yields

H(K|Y T ,L) ≤ 1 + Th(δT ) + ζT log

(
N − |L|
K − |L|

)
. (29)

Uniting this with (16), (17) and (18), we obtain

log

(
N − |L|
K − |L|

)
≤ 1 + Th(δT ) + ζT log

(
N − |L|
K − |L|

)
+ TI(XK\L;XL, Y ). (30)

Hence, by rearranging (30) and maximizing over all L ⊂ K,
the proof of (8) is complete.

Proof of Corollary 3. Fix 1 < τ < 1
ε . For every achievable

quadruple (T,N,K ′(τ), τε)max, there exists a (T,N,K, ε)ave
achievable quadruple where K ′(τ) satisfies (10). This is true
because we can simply disregard those large subsets (i.e.,
subsets whose sizes are larger than K ′(τ)) which have error
probability larger than some τε. This is where the monotonic-
ity of λK comes into play. In this way, since total number of
subsets is

(
N

K′(τ)

)
and every error probability is no larger than

τε, the average error probability is no larger than ε.

5. GENERALIZATIONS

In this section, we discuss generalizations of our results. For
brevity, the results are stated here without proof.

5.1. Adaptive Group Testing

Aldridge [18] considered a variant of the noisy group testing
problem where the makeup of a testing pool can depend on
the outcomes of earlier tests, i.e. xit = xit(Y1, . . . , Yt−1) for
each t ∈ [T ]. The author showed using weak converse tech-
niques such as Fano’s inequality that in the adaptive scenario,

the required number of tests is no more than the non-adaptive
case. Since the only part of our proof that involves adaptiv-
ity is the single-letterization step in (18) which holds for both
the adaptive and non-adaptive setting, our strong impossibil-
ity results also hold for the adaptive setting.

5.2. Sparse Signal Processing Models

5.2.1. Models with Latent Variables

In many sparse signal processing problems [15] such as 1-
bit quantized compressive sensing, the model contains latent
variables. The observations may be related to the data as

Y T = q(XTβ +WT ), (31)

where q(·) is a quantizer, XT are the covariates, β is the vec-
tor of latent variables andWT is a noise vector. By sparse, we
mean that there are no more than K � N salient features or,
more precisely, Pr(Y = y|X = x) = Pr(Y = y|XK = xK).
That is, the observations Y depend only on a subset of covari-
ates indexed by K ∈ SN,K and latent variables βK. By mod-
ifying the single-letterization step in (18), we can show that
the strong converse bound in (8) holds with the mutual infor-
mation in the denominator replaced by I(XK\L;XL, Y |βK).
The same technique goes through if the testing matrix X is
observed partially, e.g., entries of X are deleted at random.

5.2.2. Models with Exchangeable Covariates

An exchangeable sequence of random variables (covariates)
has the property that the joint distribution is invariant to any
permutation of the covariates, i.e., for any permutation π

PX1,...,XN (x1, . . . , xN ) = PXπ(1),...,Xπ(N)
(x1, . . . , xN ).

(32)
Now, as in [15, 16] and Section 5.2.1, assume that the (dis-
crete) output Y of a model is independent of all covariates
conditioned on a salient set of covariates XK. The goal is to
identify the set K from T independent realizations of covari-
ates/output pairs (XT , Y T ). It can be easily shown that the
same strong converse result derived herein using the blowing-
up lemma also extends to this case, thereby, strengthening the
weak converse of [15], which is based on Fano’s inequality.

6. CONCLUSION

The application of the blowing-up technique can also be used
to strengthen the converse statements for learning the struc-
ture of discrete graphical models [23,24] and estimating low-
rank matrices over finite fields [25]. However, the discrete-
ness of the observations is crucial in applying the blowing-
up technique (cf. (27)). Future work involves extending the
blowing-up technique to continuous observations. Alterna-
tive techniques such as those proposed by Das et al. [26] may
prove to be useful in strengthening impossibility results in
models with continuous observations.
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