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Preface

Motivation

This set of notes spawned out of the tutorials for a module I taught in the Fall of 2020 and the Spring of
2021. The module, EE2211 Introduction to Machine Learning, is a core module that is a requirement for
all sophomores of the Faculty of Engineering at the National University of Singapore. Machine learning is,
obviously, prevalent and extremely useful to the practising engineer as well as anyone interested in dealing
with and systematically analyzing data. It is my hope that the bite-sized summaries of the key topics as
well as the additional examples will aid in the students’ understanding of the material and also pique the
students’ interest of this fascinating subject. Sections marked as “Optional” are more advanced and are not
required based on the syllabus of EE2211. In the Spring of 2021, I added practice problems to each of the
chapters. Some of the problems may require background beyond the scope of the class and precise thinking,
but they serve as good vehicles for character building in mathematics.

A word of caution: There is no guarantee of these notes being error- or typo-free. Comments are very
much welcome. Please contact me at vtan@nus.edu.sg if you spot something that can be improved.

Prerequisites

While the level of mathematical sophistication to appreciate machine learning at the level of EE2211 is
not high, it is nevertheless non-zero. Exposure to comprehensive courses in engineering calculus, linear
algebra, and a tiny bit of probability and statistics is necessary to understand the material herein. To
further strengthen one’s understanding of the algorithms, it is also useful to code them up, e.g., in Python.
Hence, knowledge of a programming language as well as how to use libraries (e.g., numpy, pandas, seaborn,
matplotlib, and scikit-learn) is useful.

At the Faculty of Engineering at the National University of Singapore, students are expected to have
taken and passed MA1513 Linear Algebra with Differential Equations, GER1000H Quantitative Reasoning
and CS1010E Programming Methodology. As and when needed, we will review the necessary mathematical
background, but these reviews will be too quick for those who have not been exposed to the prerequisites
previously.

Notational Conventions

The number of samples and dimensions of the feature vectors (also known as training samples or training
examples) will always be denoted by m and d respectively. The number of classes or clusters will be denoted
as c or K. Vectors are denoted by lower case bold letters (e.g., a) or letters with an underline (e.g., a).
Matrices are always denoted by upper bold case letters (e.g., A). By convention, all vectors are column
vectors, unless otherwise stated. In particular, training and test samples are column vectors in Rd, the
d-dimensional real Euclidean space. Training samples are denoted by xi; labels or targets are denoted as
yi. The jth component of xi is denoted as xi,j . Sets will, in general, be denoted in calligraphic font (e.g.,
A). The size (or cardinality or number of elements) of a finite set A is denoted as |A|. The training dataset
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will be denoted as D = {(xi, yi)}mi=1 or Dm when we want to make the number of samples m explicit. The
transpose and inverse (if it exists) of a matrix A are denoted by A> and A−1 respectively. The inner product
between two vectors a and b is a>b or 〈a,b〉. The l2 norm of a is ‖a‖ =

√
〈a,a〉 =

√∑
i a

2
i . Other notation

will be introduced as needed within the chapters.
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Chapter 1

Types of Machine Learning Problems

In this chapter, we will summarize three main problems in machine learning.
Vectors (e.g., x) will be denoted by boldface while scalars (e.g., y) will be denoted by san-serif font. The

set of all real numbers (resp. natural numbers) is denoted as R (resp. N).

1.1 Classification

The most canonical task is classification. This problem takes the following form. We have a dataset D which
consists of a certain number m of data examples (xi, yi), i = 1, . . . ,m. Each data example (xi, yi) consists of
a feature vector (also called training sample or training example)

xi =


xi,1
xi,2

...
xi,d

 or xi =
[
xi,1 xi,2 . . . xi,d

]>
, (1.1)

(usually an element of d-dimensional Euclidean space Rd) and a label yi. The crux of classification is that
the label yi can only take on finitely many values so yi ∈ {1, 2, . . . , c} for some integer c ≥ 2, where c is the
number of classes. We do not allow yi to take on infinitely many values.

The classification problem consists in finding a classifier which is a function f : Rd → {1, 2 . . . , c} such
that it accurately predicts labels given new samples, called test samples. This function f is constructed or
learned based on the dataset D = {(xi, yi) : 1 ≤ i ≤ m}.

A couple of examples will illustrate this point.

• We have records ofm = 100 emails. Let d = 2. Thus, there are two components in each xi. Furthermore
the first component of xi, denoted as xi,1, counts the number of times the word “love” appears. The
second component of xi, denoted as xi,2, counts the number of times the word “money” appears. Each
label yi ∈ {0, 1} where yi = 1 means that the ith email is spam while yi = 0 means that the ith email
is non-spam. Based on the dataset D = {(xi, yi) : 1 ≤ i ≤ 100} of m = 100 emails, we are tasked
to learn a classifier f : R2 → {0, 1} such that we can accurately predict whether the next email you
receive (which is of course not in the training dataset) is spam or not. See Fig. 1.1. In this case in
which there are only two classes, we refer to this as binary classification.

• Consider an image classification problem. We are given a dataset of size m = 106, namely, D =
{(xi, yi) : 1 ≤ i ≤ 106} where each xi represents an image that is vectorized into a vector. For
example, each image contains 5× 5 = 25 pixels and for the sake of simplicity, each pixel value is 0 or
1. Thus xi ∈ {0, 1}5×5 ∼= {0, 1}25 and d = 25. Of course, we can have more complicated images that
have multiple quantization levels (not restricted to binary) and colors as well, but the treatment will
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Figure 1.1: Spam classification

be the same. To each image, there is a label yi which can take on 10 values so c = 10. These 10 values
signify what object is in the image, e.g., yi ∈ {dog, cat, . . . , snake}. We would now like to design a
image classifier f : {0, 1}25 → {dog, cat, . . . , snake} that “does well” (in some sense) on new images (or
test images) that contain one of the 10 animals. Since there are more than two classes in this scenario,
we refer to this as multi-class classification.

• Is the following a classification problem? There are a total of M ≥ 2 football teams. Each football
team i ∈ {1, 2, . . . ,M} plays L games against every other football team j. Say there are no draws.
The number of times i beats j is denoted as bij ∈ {0, 1, . . . , L} so necessarily bij + bji = L (convince
yourself that this is the case). We set bii = 0 for all i. Clearly, if one team wins all its games against
other team, it is the best. When this is not case, which is common, it is not so clear what is the
best strategy to rank the team. More precisely, given the matrix B = [bij ]1≤i≤M,1≤j≤M we would
like to rank the teams from top (best) to bottom (worst). This is a non-standard machine learning
problem. However, notice that the total number or rankings is M !, which is finite, so in some sense
this is like a classification problem. In what way is it not a classification problem? See [XFTF19] for
some discussion of how we can use machine learning to learn the skills of tennis players.

Classification belongs to the class of supervised learning methods.

1.2 Regression

Regression is just like classification except that yi are no longer restricted to belong to a finite set. Rather it
can take on uncountably1 many values. In the case of regression, we typically do not say that yi is the label.

1A set A is countable if there is a bijection between A and the set of natural numbers N. A set A is uncountable if its
cardinality is strictly larger than that of the natural numbers. Check that the set of rationals is countable. A well-known, but
non-trivial, fact (due to Cantor) is that the interval [0, 1] is uncountable.
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Rather we use the term target variable or outcome variable or dependent variable to refer to the yi’s. For
instance yi could take any value in the interval [0, 1] (which is uncountable) or it could take values in R. In
either case, the data examples in the dataset D, denoted as (xi, yi) belong to Rd×R, which means that each
feature vector or training sample xi ∈ Rd (d-dimensional Euclidean space) and each target variable yi ∈ R is
a real number. We wish to learn a regressor f : Rd → R which is a function that brings us from the feature
space to the set of real numbers. The regressor f should be designed such that given a new feature vector
x′, its corresponding target value y′ is “well predicted”, in some precise mathematical sense, by f(x′).

Again some examples would make this clear.

• Say each feature vector xi ∈ R is scalar (so d = 1) and represents the height of a student. The target
variable yi represents the weight of the same student. Given the data of m = 600 students in EE2211
captured in the dataset D = {(xi, yi) : 1 ≤ i ≤ 600}, I am tasked to learn a regressor f : R→ R so that
I can use the height of Alice x′ in a new class EE9999 to predict her weight y′ = f(x′). See Fig. 1.2.

• Say each feature vector xi ∈ R3 is a 3-dimensional vector and xi,1 represents the air pressure at location
i, xi,2 represents the amount of rainfall at location i and xi,3 represents the “amount of greenery” at
location i. Each yi corresponds to the temperature at location i. The temperature can take on
uncountably many values—it is a real number. Given the dataset D = {(xi, yi) : 1 ≤ i ≤ m}, we would
like to learn a regressor f : R3 → R such that if I give you the feature vector of new location x′, you
can tell me the temperature y′ = f(x′).

Regression also belongs to the class of supervised learning methods.

1.3 Clustering

In clustering, the labels or target variables yi are no longer available and we only have access to the feature
vectors D = {xi : 1 ≤ i ≤ m}. There is often reason to believe that these feature vectors can be grouped or
clustered into different clusters.
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• Say the vector xi = [xi,1, xi,2]> represents the height and weight of the ith student in this semester’s
EE2211 cohort. There is reason to believe that girls are shorter and lighter than boys. So given
D = {xi : 1 ≤ i ≤ m}, can we assign each partition this set into 2 groups automatically? See Fig. 1.3.
Note that while the clustering algorithm knows that there are 2 clusters, it does not and cannot assign
semantic meanings (such as “boys” and “girls”) to the clusters it discovers. It can only tell us that D
is partitioned into two non-empty disjoint subsets D1 and D2 (i.e., D1 ∩ D2 = ∅ and D1 ∪ D2 = D).

• Say each xi = [xi,1, xi,2, xi,3, xi,4]> and xi,1, xi,2, xi,3, xi,4 respectively represent the number of times
the words “winner”, “victory”, “stock”, “prices” appeared in the ith article in a bag of m news articles.
There is reason to believe that sports articles would contain more of the first 2 words but finance
articles would contain more of the last 2 words. Hence, it seems possible to design a clustering
algorithm to group the m feature vectors into two clusters, one representing sports articles while the
other representing finance articles.

Clustering belongs to the class of unsupervised learning methods.

1.4 Practice Problems

Exercise 1.1. Another class of machine learning problems is known as semi-supervised learning, which
straddles between supervised and unsupervised learning. Here, just as in classification and regression, we are
given a labelled dataset Dl = {(xi, yi) : 1 ≤ i ≤ m}. In addition, we are given a set of unlabelled data points
Du = {x̃j : 1 ≤ j ≤ n} where typically n is much larger than m.

(i) Provide a real-life example of when semi-supervised learning is applicable.

(ii) Suggest a reasonable procedure to utilize all the (labelled and unlabelled) data points Dl ∪Du to predict
the labels of other new feature vectors or test samples xnew.
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Chapter 2

Types of Data

In this chapter, we will summarize the different types of data you will encounter. We will also discuss
normalizing data of different scales (or units).

2.1 Numerical Data

Numerical data, as the name suggests, is data that represents numbers. However, simple as it is, there are
different types of numerical data we should be aware of.

• Discrete Data: These are data that are distinct and separate and can only take on certain values
(usually finitely many values). This type of data can be counted. For example, the “number of heads
in 100 coin flips” is discrete numerical data because they can only take on values in the set of 101
values {0, 1, 2, . . . , 99, 100}. The “outcomes of a digital thermometer” is also discrete data because the
real temperature is necessarily quantized, say to the range {35.0, 35.1, 35.2, . . . , 40.4, 40.5} centigrade.
To ascertain whether you’re dealing with discrete data, you can ask yourself the following questions:
“Can you count it?” and “Can it be divided up in to smaller and smaller parts?”. If the first answer
is “yes” and the second is “no”, you know you’re dealing with discrete numerical data. If the discrete
data only takes on the two values (e.g., in {0, 1}), then it is called binary data.

• Continuous Data: These are data that can’t be counted but they can be measured. The height of a
person is a real number. Note that no matter how fine the markings are of a ruler, you can’t nail down
the height of a person to infinite precision (because your measurements will be “off by a bit”). Similarly,
the temperature is a real number; no matter how accurate your thermometer, the reading quantized
and so what you get is only an approximation (to a certain number of significant digits/decimal points)
to the true temperature. Think of it this way, how many decimal points are needed to describe the
number π ≈ 3.14159 . . . or e ≈ 2.71828 . . .? Infinitely many! This is analogous to the temperature. If
the outcome variable is continuous, it makes sense to build a regression model.

Let me show you a real life example in which discrete data is present and we would like to predict discrete
data given discrete data. Consider the Netflix problem1 in which we have n users and m movies. The rating
of each user i ∈ {1, 2, . . . , n} to each movie j ∈ {1, 2, . . . ,m} is a number in the set {1, 2, 3, 4, 5} in which 5
means user i very much likes movie j and 1 means s/he does not like it. Thus, the ratings constitute discrete
data. In the Netflix problem, n is of the order of 106 and m is of the order 104. Because each user only rates
a small subset of movies (s/he does not have enough time to rate all m movies), what we observe is a small
subset of the rating matrix M ∈ {1, 2, 3, 4, 5}n×m. The indices of the entries in M that are observed are
captured by the set Ω = {(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . ,m} : user i has rated movie j}. Thus, we observe
MΩ, defined as the entries of matrix we observe. There is also reason to believe that the full rating matrix

1Read more about it here: https://en.wikipedia.org/wiki/Netflix_Prize
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Figure 2.1: We observe the partially filled matrix MΩ on the left. We would like to use an algorithm
to learn the filled (approximately low-rank) matrix on the right. What do you expect the singular value
decomposition of the matrix on the right to look like?

Person Race Gender

Ravi Indian Male
Alice Eurasian Female
Li Ting Chinese Female
Ali Malay Male
Aisha Malay Female
Teck Seng Chinese Male
Giselle Eurasian Female
Jerry Eurasian Male

Table 2.1: A small dataset of 8 Singaporeans. “Race” and “gender” are the two features here.

M , which seems large, is low rank because the number of types of movies (column rank) is small (romance,
action, documentary) and the number of types of users (row rank) is also small. The fact that M is low
rank constitutes side-information for us to exploit to learn MΩc = {Mi,j : (i, j) ∈ Ωc}, the entries of the
matrix we do not observe. See Fig. 2.1. One simple formulation that exploit the low rank nature of M is
the following convex optimization problem:

M̂ ∈ arg min
{
‖M̃‖∗ : M̃i,j = Mi,j ,∀ (i, j) ∈ Ω

}
(2.1)

where ‖ · ‖∗ is the nuclear norm (or sum of singular values), which is a proxy of the rank.2 Thus, we are
seeking a real-valued matrix M̂ ∈ Rn×m that minimizes the nuclear norm and is consistent with the given
entries in MΩ. There are many algorithms and provable guarantees for solving the problem in (2.1). I am
personally interested in this problem.

2.2 Categorical Data

• Nominal data: These data represent discrete units and are used to represent variables that have no
natural quantitative value. They are nothing but “labels”. For example, consider the dataset in
Table 2.1.

Categorical data represent characteristics. Again there are several types but we focus on the two below.

2It is known that the nuclear norm ‖ · ‖∗ is the convex envelope of the rank function rank( · ) on the unit ball {X : ‖X‖2 ≤ 1}.
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Person isChinese isMalay isIndian isEurasian isMale isFemale

Ravi 0 0 1 0 1 0
Alice 0 0 0 1 0 1
Li Ting 1 0 0 0 0 1
Ali 0 1 0 0 1 0
Aisha 0 1 0 0 0 1
Teck Seng 1 0 0 0 1 0
Giselle 0 0 0 1 0 1
Jerry 0 0 0 1 1 0

Table 2.2: A small dataset of 8 Singaporeans after one-hot encoding

We see that there are four categories for race {Chinese, Indian,Malay,Eurasian} and two categories
for gender {Male,Female}. So the features “race” and “gender” are categorical nominal data. To deal
with categorical variables within a machine learning framework (which is more amenable to numerical
data), we may use one-hot encoding, converting the above table/dataset to Table 2.2. Is the last column
of Table 2.2 necessary for subsequent data analysis?

In Python, you can do one-hot encoding by using LabelEncoder and OneHotEncoding. Please play
with the following code and use it to do one-hot encoding of the two nominal variables in Table 2.1.

from numpy import array

from numpy import argmax

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import OneHotEncoder

# define example

data = [’cold’, ’cold’, ’warm’, ’cold’, ’hot’, ’hot’, ’warm’, ’cold’, ’warm’, ’hot’]

values = array(data)

print(values)

# integer encode

label_encoder = LabelEncoder()

integer_encoded = label_encoder.fit_transform(values)

print(integer_encoded)

# binary encode

onehot_encoder = OneHotEncoder(sparse=False)

integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)

onehot_encoded = onehot_encoder.fit_transform(integer_encoded)

print(onehot_encoded)

# invert first example

inverted = label_encoder.inverse_transform([argmax(onehot_encoded[0, :])])

print(inverted)

• Ordinal data: These data represent discrete and ordered units. It is therefore nearly the same as nominal
data, except that its ordering matters. For example, the set of all possible educational backgrounds in
a survey form could be

{primary, secondary,pre-university,university,postgraduate}.
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One can see that this values of this feature are ordered – hence the term ordinal. Indeed, the “differ-
ence” between primary and secondary is “smaller than” primary and postgraduate. This is the main
limitation of ordinal data – the differences between the values are not really known. Because of that,
ordinal scales (e.g., integers) are usually used to measure non-numeric features like happiness, customer
satisfaction and so on. Thus when you rate your Grab driver, you rate her/him on a scale of 1 to 5
(likened to discrete numerical data), which is more quantitative, and amenable to machine learning,
than

{very unsatisfactory,unsatisfactory, satisfactory, good, excellent}.

2.3 Normalizing Raw Data

Often we have feature vectors in which features are on different scales. We let m be the number of training
samples and d be the number of features as usual. Say the feature vectors are

x1 =


x1,1

x1,2

...
x1,d

 , x2 =


x2,1

x2,2

...
x2,d

 , . . . and xm =


xm,1
xm,2

...
xm,d

 . (2.2)

The first feature xi,1 for 1 ≤ i ≤ m could be the height of students measured in centimeters so the dynamic
range is [xmin,1, xmax,1] = [140, 190]. The second feature xi,2 for 1 ≤ i ≤ m could measure the (American)
shoe size of the students so it ranges from [xmin,2, xmax,2] = [6, 13]. So even if both features are deemed
equally “important”, unfortunately, any machine learning method would place more importance on the first
feature because of its larger values, which is not ideal. Thus, we have to scale or normalize the features so
that their dynamic ranges are roughly the same. We can use (at least) two methods to do so:

• Z-score scaling: First we calculate the empirical mean and empirical standard deviation of each feature,

say the ith. These are

x̂1 =
1

m

m∑
i=1

xi,1, and σ̂1 =

√√√√ 1

m− 1

m∑
i=1

(xi,1 − x̂1)2. (2.3)

Then we create the normalized 1st features associated to each training sample as

x̄i,1 :=
xi,1 − x̂1

σ̂1
. (2.4)

We can do this for all features so that, in some sense, they are all “normalized”. What is the empirical
and empirical standard of the set of numbers {x̄i,1 : 1 ≤ i ≤ m} now? Why do we divide by m − 1
in the second equation in (2.3)? This is not so easy to answer actually. Can we divide by m? Read
up on unbiased estimator of (population) variance or look at the notes for Lecture 3. Is the estimator
for standard deviation σ̂1 or the estimator for variance σ̂2

1 unbiased? Can you prove it and what
assumptions do we need to make? What happens as m → ∞? The reason why this method of
normalizing is called “Z-score” is because the standard normal random variable with density x ∈ R 7→

1√
2π

exp
(
− x2/2

)
is usually denoted as Z ∼ N (0, 1).

You can try this code for Question 1 in Tutorial 2 as follows.

av_ExpenditureList = statistics.mean(expenditureList)

sd_ExpenditureList = statistics.stdev(expenditureList)

subtraction = list(np.array(expenditureList) - np.array(av_ExpenditureList))

norm_ExpenditureList = list(np.array(subtraction)/np.array(sd_ExpenditureList))

print(norm_ExpenditureList)
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Alternatively, you can use StandardScaler in sklearn.preprocessing to do this “automatically”.
See the documentation.

• Min-Max scaling: Define the minimum and maximum values of feature 1 to be

xmin,1 := min
1≤i≤m

xi,1, and xmax,1 := max
1≤i≤m

xi,1. (2.5)

Then we create the normalized 1st features associated to each training sample as

x̄i,1 :=
xi,1 − xmin,1

xmax,1 − xmin,1
. (2.6)

Now what are the minimum and maximum of {x̄i,1 : 1 ≤ i ≤ m}? Create your own code to verify
this. You can use MinMaxScaler in sklearn.preprocessing to implement this instead of doing it
manually. See the documentation.

2.4 Practice Problems

Exercise 2.1. This problem pertains to data normalization discussed in Section 2.3.

(i) Find the empirical mean and the empirical (unbiased) standard deviation of the set of numbers {x̄i,1 :
1 ≤ i ≤ m} defined in (2.4); that is, find

ˆ̄x1 =
1

m

m∑
i=1

x̄i,1, and ˆ̄σ1 =

√√√√ 1

m− 1

m∑
i=1

(x̄i,1 − ˆ̄x1)2. (2.7)

(ii) Find the maximum and minimum of the set of numbers {x̄i,1 : 1 ≤ i ≤ m} defined in (2.6).
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Chapter 3

Probability and Estimation

In this chapter, we will summarize some key concepts from probability and provide some examples of maxi-
mum likelihood estimation. The topics of probability, statistics, and estimation theory are so rich and vast
that a few pages will not do justice to them. Nevertheless, we will try.

A word about notation we adopt in this chapter. Random variables and the values that they take on will
be denoted in upper (e.g., X) and lower case (e.g., x, xi, x) respectively. Sets (in which the random variables
assume their values) will be denoted by calligraphic font (e.g., X ). The probability, expectation and variance
operators are respectively denoted by Pr( · ), E[ · ] and Var( · ).

3.1 Basic Probability Theory

Because all of modern statistical machine learning deals with uncertainty, it seems appropriate to start of by
reminding ourselves of the definitions of events, probabilities, joint probabilities and conditional probabilities.
For more details, the reader is encouraged to consult any standard probablity textbook such as those by
Bertsekas and Tsitsiklis [BT02] or Ross [Ros12].

Let us motivate probability and statistical (Bayesian) inference by considering an example from Bishop’s
machine learning book [Bis08].

Example 3.1. There is a red box and a blue box. In the red box there are a total of 8 fruits, 2 apples and 6
oranges. In the blue box, there are a total of 4 fruits, 3 apples and 1 orange. The probability of selecting the
red box is Pr(B = r) = 2/5 and probability of selecting the blue box is Pr(B = b) = 3/5. Having selected a
box, selecting any item within the box is equally likely. Some of the questions we would like to ask include:

• What’s the probability that we select an orange?

• Given that we’ve selected an orange, what’s the probability that we chose it from the blue box?

3.1.1 Joint and Conditional Probabilities for Discrete Random Variables

Now, let us consider a more general example involving two random variables X and Y . Suppose, as in the
example above, the random variables are only permitted to take on finitely many values. So X can only
take on values in the finite set X = {x1, . . . , xM} and Y takes on values in Y = {y1, . . . , yL}. Such random
variables are known as discrete random variables (in which no mathematical peculiarities arise). It should
be clear that

M∑
i=1

Pr(X = xi) = 1. (3.1)
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Consider m trials (of sampling X and Y ) and let the number of trials for which X = xi and Y = yj be mij .
Then, if m is large, we can assume that

Pr(X = xi, Y = yj) =
mij

m
. (3.2)

The argument of Pr( · ) is known as an event. Roughly speaking, an event is a set in which a random variable
(or multiple random variables) assume some value(s) in some set, e.g., {X = xi, Y = yj}. What’s the
probability that X = xi? Well, we simply sum up those mij ’s for which the first index equals to i. In other
words,

Pr(X = xi) =

L∑
j=1

mij

m
=:

ci
m
, (3.3)

where ci :=
∑L
j=1mij . Expressed slightly differently, we have

Pr(X = xi) =

L∑
j=1

Pr(X = xi, Y = yj). (3.4)

This is the important sum rule in probability and will be used extensively in statistical machine learning so
the reader is urged to internalize this. Similarly, the marginal probability that Y = yj is

Pr(Y = yj) =

M∑
i=1

Pr(X = xi, Y = yj). (3.5)

Now, we introduce the important notion of conditional probabilities. Given that X = xi, what is the
probability that Y = yj? Clearly,

Pr(Y = yj | X = xi) =
mij

ci
. (3.6)

But note also that

Pr(X = xi, Y = yj) =
mij

m
=
mij

ci
· ci
m

= Pr(Y = yj | X = xi) Pr(X = xi). (3.7)

We have derived the important product-rule in probability. The (two basic) rules of probability are summa-
rized as follows:

Pr(X = x) =
∑
y∈Y

Pr(X = x, Y = y), (3.8)

Pr(X = x, Y = y) = Pr(Y = y | X = x) Pr(X = x). (3.9)

A note about notation. We will usually write pX(x) := Pr(X = x) or simply denote this function as p(x)
when the random variable is clear from the context. The function p(x) is known as the probability mass
function or pmf and it satisfies

p(x) ≥ 0 ∀x ∈ X and
∑
x∈X

p(x) = 1. (3.10)

You will also often hear the colloquial term “distribution”. This is often used synonymously with “pmf”.
Similarly, the joint pmf of random variables X and Y is denoted as p(x, y) := Pr(X = x, Y = y). Finally,
the conditional will be denoted as p(y | x) := Pr(Y = y | X = x).
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By combining the sum rule in (3.8) and the product rule in (3.9), we can derive Bayes’ rule:

p(y | x) =
p(x, y)

p(x)
=
p(x | y)p(y)

p(x)
=

p(x | y)p(y)∑
y′∈Y p(x | y′)p(y′)

. (3.11)

This is a central relationship in pattern recognition, machine learning and statistical physics. Note that we
have “inverted the causal relationship” between X and Y . On the left, Y “depends on” X while on the
right, we have expressed the same causality relationship in terms of the causal dependence of X on Y .

Bayes’ theorem can be written alternatively as follows:

p(x | y) ∝ p(y | x)p(x), (3.12)

where ∝ denotes equality up to a constant (not depending on x). If x designates an unknown variable,
something we would like to infer and p(x) is its prior probability, then p(x | y) denotes the posterior probability,
the belief we have about x after1 we know that Y = y. In the parlance of statistical inference, Bayes’ rule
in (3.11) can be written as

posterior =
likelihood × prior

model evidence
∝ likelihood × prior . (3.13)

We can now use this relation to solve Exercise 3.1 that is based on Example 3.1. Once you solve it, you see
that if F is the fruit chosen, Pr(F = o) = 9/20 and Pr(B = b | F = o) = 1/3.

Note the following: Prior to having any additional information about what fruit we chose, the prior
probability of choosing from a blue box is Pr(B = b) = 3/5. However, if we know the identity of the fruit we
chose, say orange, then the posterior probability of choosing from the blue box is Pr(B = b | F = o) = 1/3.
This is the simplest non-trivial example of statistical inference. Intuitively, this is true because the blue box
contains far fewer oranges so knowing that we chose an orange biases our belief about the box we chose from.

3.1.2 Continuous Random Variables

We now segue into the land of continuous random variables. To introduce continuous random variables
formally, we would require too much mathematical machinery that goes beyond the scope of the class;
see [Ros12] for a gentle introduction. However, very roughly speaking, X is said to be a continuous random
variable if its cumulative distribution function (cdf) x ∈ R 7→ FX(x) = Pr(X ≤ x) is differentiable on R.2

Its derivative is then called the probability density function (pdf) of X and written as

fX(x) =
d

dx
FX(x), x ∈ R. (3.14)

Any pdf has the following properties (why?):

fX(x) ≥ 0 ∀x ∈ R and

∫
R
fX(x) dx = 1. (3.15)

Now, it is easy to see (cf. the second fundamental theorem of calculus) that for any −∞ < a ≤ b <∞,

Pr(a < X ≤ b) = FX(b)− FX(a) =

∫ b

a

fX(x) dx. (3.16)

We can define the joint density (or joint probability density function) of a pair of continuous random variables
as

fX,Y (x, y) =
∂2

∂x ∂y
FX,Y (x, y), (x, y) ∈ R2. (3.17)

Conditional probability and independence can be defined analogously to the discrete case. Clearly,

Pr(a < X ≤ b, c < Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y) dxdy. (3.18)

1The word “posterior” is derived from the word “post”, which means “after” (e.g., post-midnight means after midnight).
2Roughly speaking, a function g : I → R defined on an interval I ⊂ R is said to be differentiable at x ∈ I if the limit

limε→0(g(x+ ε)− g(x))/ε exists. In addition, g : I → R is said to be differentiable on I if it is differentiable at each x ∈ I.
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3.1.3 Independence

What does it mean for two random variables X and Y to be independent? Roughly speaking, knowledge of
one does not influence our knowledge of the other. More precisely, this can be expressed in a variety of ways.
Two random variables X and Y are independent if their joint distribution pX,Y (x, y) := Pr(X = x, Y = y)
factorizes, i.e.,

pX,Y (x, y) = pX(x)pY (y), (3.19)

for every x ∈ X and y ∈ Y. Note from (3.19) that if X and Y are independent if

pX|Y (x | y) = pX(x) (3.20)

for every x ∈ X and every y ∈ Y such that pY (y) > 0 (what if pY (y) = 0?). Intuitively, (3.20) means that
knowledge that Y = y tells you no additional information about X.

For example, I toss a coin 2n times and all tosses are mutually independent. Let X be the number of
heads that I observe in the first n coin tosses and let Y be the number of heads that I observe in the second
n coin tosses. Since X and Y are the result of independent coin tosses, the two random variables X and
Y are independent. Consider another example. Let X and Y denote respectively, the presence of rain in
Jurong and in Clementi. These random variables are clearly not independent because if I know that there
is rain in Jurong, due to the proximity of the two locations, it is also likely that there is rain in Clementi.
So knowledge of X does provide some information about Y .

3.1.4 Expectation and Variance

The expectation of a discrete random variable X with pmf pX is defined to be

E[X] =
∑
x∈X

xpX(x). (3.21)

If X is a continuous random variable with pdf fX , we have

E[X] =

∫
R
xfX(x) dx. (3.22)

Note that the expectation is a statistical summary of the distribution of X, rather than depending on the
realized value of X.

If g is a function from the domain of X to R, we can obtain the expectation of Y = g(X) in the same
way. It can be shown that

E[Y ] = E[g(X)] =

∫
R
yfY (y) dy =

∫
R
g(x)fX(x) dx. (3.23)

In particular if g(X) = aX + b (for constants a, b ∈ R), then E[g(X)] = aE[X] + b = g(E[X]). This fact is
known as the linearity of expectation.

The variance of X is the expectation of g(X) = (X − E[X])2, a particular function of X. Thus,

Var(X) = E[(X − E[X])2] =
∑
x∈X

(x− E[X])2pX(x) (discrete rvs), (3.24)

Var(X) = E[(X − E[X])2] =

∫
R

(x− E[X])2fX(x) dx (continuous rvs). (3.25)

3.2 Maximum Likelihood Estimation

In machine learning, we almost always do not have access to the underlying distributions that the data
are generated from. Rather, we have access to sample data and we would like to use it to estimate some
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parameters. For example, in class, you saw that if D = {X1, . . . , Xm} are independent samples from the
univariate Gaussian distribution

fX(x;µ, σ2) = N (x;µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
x ∈ R, (3.26)

then we can use the samples in D to estimate the parameter vector θ = (µ, σ2). Note that we use the
notation fX(x;µ, σ2) or fX(x; θ) to emphasize that the density is parametrized by the parameters (µ, σ2) or
θ.3 We obtained the maximum likelihood estimates for the mean and variance as

µ̂ML =
1

m

m∑
i=1

Xi and σ̂2
ML =

1

m

m∑
i=1

(Xi − µ̂)2. (3.27)

In the following, I would like to expand on this point by providing you with a couple more examples.

Example 3.2 (Bernoulli Distribution). Let us say that the samples in D = {X1, . . . , Xm} are generated
independently from the Bernoulli (coin toss) distribution

pX(x; θ) =

{
1− θ x = 0
θ x = 1

. (3.28)

It would be convenient to write this as

pX(x; θ) = (1− θ)1−xθx, x ∈ {0, 1}. (3.29)

Check that this is true. The mean of the distribution E[X] is clearly θ ∈ (0, 1) (check). How would we
estimate θ from samples? Consider,

θ̂ML = arg max
θ∈(0,1)

m∏
i=1

pX(Xi; θ) (3.30)

= arg max
θ∈(0,1)

m∑
i=1

log pX(Xi; θ) (3.31)

= arg max
θ∈(0,1)

m∑
i=1

[(1−Xi) log(1− θ) +Xi log θ] (3.32)

= arg max
θ∈(0,1)

(m−M1) log(1− θ) +M1 log θ (3.33)

where we have used M1 :=
∑m
i=1Xi to denote the total number of ones in D. Since the objective function is

strictly concave, differentiating and setting to zero yields the (unique) maximum which is

−m−M1

1− θ̂ML

+
M1

θ̂ML

= 0 =⇒ θ̂ML =
M1

m
. (3.34)

So the mean θ is estimated by using the empirical mean M1/m, which agrees with common sense!

Example 3.3 (Exponential Distribution). Now we consider an example involving continuous random vari-
ables. Let us say that the samples in D = {X1, . . . , Xm} are generated independently from the exponential
distribution (this distribution models waiting times for buses)

fX(x; θ) =

{
θ exp(−θx) x ≥ 0

0 x < 0
. (3.35)

3Contrast this to the notation fX|Y (x | y) in which Y is random (and takes on the value y). When we use the semicolon in
fX(x; θ), the parameter θ is not random; rather it is deterministic but unknown.
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Here, θ > 0 is the unknown (rate) parameter. In fact, 1/θ = E[X] is the mean of the exponential distribution.
Check this by integration by parts. How would we estimate θ from samples? Consider,

θ̂ML = arg max
θ>0

m∏
i=1

fX(Xi; θ) (3.36)

= arg max
θ>0

m∑
i=1

log fX(Xi; θ) (3.37)

= arg max
θ>0

m∑
i=1

(log θ − θXi) (3.38)

= arg max
θ>0

m log θ − θ
m∑
i=1

Xi. (3.39)

Since the objective function is strictly concave, differentiating and setting to zero yields the (unique) maximum
which is

m

θ̂ML

=
m∑
i=1

Xi =⇒ θ̂ML =
m∑n
i=1Xi

=

(
1

m

m∑
i=1

Xi

)−1

. (3.40)

Notice that the result makes sense because 1
m

∑m
i=1Xi is the empirical mean. Indeed, since θ is the reciprocal

of the mean E[X], it seems plausible that m/(
∑m
i=1Xi) is a “good” estimate of θ. Why would it not be

“good”? Hint: What happens to E[θ̂ML] when m is small?

3.3 Practice Problems

Exercise 3.1. Let F be the random variable denoting the fruit chosen. Using the sum, product and Bayes’
rules, show that the answers to the questions in Example 3.1 are Pr(F = o) = 9/20 and Pr(B = b | F =
o) = 1/3 respectively.

Exercise 3.2. Flip a fair coin four times. Let X be the number of Heads obtained, and let Y be the position
of the first Heads i.e. if the sequence of coin flips is TTHT, then Y = 3, if it is THHH, then Y = 2. If there
are no heads in the four tosses, then we define Y = 0.

(i) Find the joint probability mass function (pmf) of X and Y ;

(ii) Using the joint pmf, find the marginal pmf of X.

Exercise 3.3. Check from the definitions of the variance in (3.24) and (3.25) that the variance can also be
expressed as

Var(X) = E[X2]−
(
E[X]

)2
. (3.41)

When is the variance of a random variable identically equal to 0?

Exercise 3.4. Assume that the samples in D = {X1, . . . , Xm} are sampled independently from the Geometric
distribution

pX(x; θ) = (1− θ)xθ, x = 1, 2, 3, . . . (3.42)

Find the maximum likelihood estimate θ̂ML of θ.

Exercise 3.5. Assume that the samples in D = {X1, . . . , Xm} are sampled independently from the Poisson
distribution

pX(x; θ) =
e−θθx

x!
, x = 0, 1, 2, . . . (3.43)

Find the maximum likelihood estimate θ̂ML of θ.
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Figure 3.1: Figure for Exercise 3.7 for 16 teams

Exercise 3.6 (Challenging). Assume that the samples in D = {X1, . . . , Xm} are sampled independently
from the uniform distribution

fX(x; θ) =

{
1/θ 0 ≤ x ≤ θ
0 else

. (3.44)

Find the maximum likelihood estimate θ̂ML of θ. Discuss the (peculiar) properties of the estimate.

Exercise 3.7 (Challenging). In the knockout phase of a football tournament, there are 16 teams of equal skill
that compete in an elimination tournament. This proceeds in a number of rounds in which teams compete in
pairs; any losing team retires from the tournament. See Fig. 3.1 for an illustration. What is the probability
that two given teams will compete against each other? Generalize your answer to 2k teams where k is an
arbitrary positive integer.

The following argument is wrong but the answer is right. There has to be 15 games to knock out all but
the ultimate winner. There are

(
16
2

)
possible pairs, so that the probability of a given pair being selected for a

particular match is 1/
(

16
2

)
= 1/(8 · 15). Since the selection of the teams in the different matches is mutually

exclusive, the probability of a given pair being selected is 15 times this, which is 1/8. Why is this wrong and
what’s the correct way of doing it?

This problem is taken from Problem 297 of Five Hundred Mathematical Challenges (Mathematical As-
sociation of America, 1996).
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Chapter 4

Systems of Linear Equations

In this chapter, we summarize some key concepts involving the solution set of a system of linear equations.
We will first review some basics of linear algebra. Most of the material here can be found in standard linear
algebra texts such as Strang [Str16].

4.1 Review of Linear Algebra

Here we review some linear algebra which you should have seen before.

Definition 4.1. A vector space over the reals consists of a set V, a vector sum operation + : V × V → V
and a scalar multiplication operation · : R× V → V satisfying the following properties.

• Commutativity: x + y = y + x for all x,y ∈ V;

• Associativity: (x + y) + z = x + (y + z) for all x,y, z ∈ V;

• Identity element of addition: x + 0 = x for all x ∈ V;

• Inverse element of addition: For every x ∈ V, there exists an element −x ∈ V such that x + (−x) = 0;

• Associativity of scalar multiplication: For all a, b ∈ R and x ∈ V, a(bx) = (ab)x;

• Identity element of scalar multiplication: 1x = x for x ∈ V.

• Distributivity of scalar multiplication with respect to vector addition: a(x + y) = ax + ay for all a ∈ R
and x,y ∈ V;

• Distributivity of scalar multiplication with respect to addition in R: (a+ b)x = ax + bx for all a, b ∈ R
and x ∈ V.

Definition 4.2. A set of vectors {x1,x2, . . . ,xk} from a vector space V is linearly independent if

β1x1 + β2x2 + . . .+ βkxk = 0 (4.1)

implies that β1 = β2 = . . . = βk = 0.

In Exercise 4.1, you will show that {x1,x2, . . . ,xk} being linearly independent is equivalent to the fact
that no vector xi can be expressed as a linear combination of the other vectors x1, . . . ,xi−1,xi+1, . . . ,xk.

To illustrate the above definition, let us consider a couple of examples in which V = R2.
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Example 4.1. Consider the vectors x1 = [1, 1]> and x2 = [−3,−3]>. We claim that these vectors are
not linearly independent. This is because if we form the equation β1x1 + β2x2 = 0, we can find non-zero
β1, β2 such that this equation holds true. In particular, check that (β1, β2) = (3, 1) does the job. Thus,
according to the contrapositive of Definition 4.2, x1 and x2 are not linearly independent. In fact, for all
t 6= 0, (β1, β2) = (3t, t) does the job.

Example 4.2. Now consider the vectors x1 = [1, 1]> and x2 = [−3, 2]>. We claim that these vectors
are linearly independent. This is because if we form the equation β1x1 + β2x2 = 0, we get the equations
β1 − 3β2 = 0 and β1 + 2β2 = 0. Convince yourself that the only way that these two equations can hold
simultaneously is if (β1, β2) = (0, 0). Thus, according to Definition 4.2, the vectors are linearly independent.

Definition 4.3. A set of vectors {x1,x2, . . . ,xk} is a basis for a vector space V if

• V = span{x1,x2, . . . ,xk};
• {x1,x2, . . . ,xk} is a linearly independent set of vectors.

Equivalently, every x ∈ V can be uniquely written as
∑k
i=1 βixi for some {βi}ki=1 ⊂ R. The number of

vectors in any basis of V is called the dimension of V, written as dim(V).

Definition 4.4. The nullspace (also called kernel) of a matrix A ∈ Rm×d is defined as

N (A) := {x ∈ Rd : Ax = 0}. (4.2)

The range or column space of A is defined as

R(A) := {Ax : x ∈ Rd} ⊂ Rm. (4.3)

Definition 4.5. The column rank or rank of a matrix A ∈ Rm×d is defined as

rank(A) = dim(R(A)). (4.4)

In other words, the column rank of A is the dimension of the column space of A.

The rank-nullity theorem says that

rank(A) + dim(N (A)) = d. (4.5)

It is always true that rank(A) ≤ min{m, d}. We say that a matrix is full rank if rank(A) = min{m, d}. A
matrix is full column rank (resp. full row rank) if the set of columns (resp. rows) of the matrix is linearly
independent. If the matrix A is square (i.e., m = d) and it is full rank, then the inverse A−1 exists.

4.2 Nature of Solutions to Linear Systems

Often in engineering, we would like to “solve” systems of equations of the form

Xw = y or
[
x1 x2 · · · xd

]

w1

w2

...
wd

 =


y1

y2

...
ym

 , (4.6)

where xi, 1 ≤ i ≤ d are the columns1 of X so

xi =


x1,i

x2,i

...
xm,i

 ∈ Rm for all i = 1, 2, . . . , d. (4.7)

1We usually denote the training samples, rows of X, as xi ∈ Rd. Hence, we use a different notation xi ∈ Rm to denote the
columns of X.
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The matrix X ∈ Rm×d and vector y ∈ Rm are given and w ∈ Rd is to be found. As mentioned, if the
matrix X is square and full rank, X−1 exists and so we can solve for w by simple matrix inversion and
multiplication w = X−1y. However, most of the time in engineering, m 6= d and more care is needed to
discuss the existence and uniqueness of solutions to the linear system in (4.6). For this, we appeal to the
Rouché-Capelli Theorem. We need the notion of the augmented matrix

X̃ =
[
X y

]
∈ Rm×(d+1). (4.8)

Note that the augmented matrix X̃ has rank at least as large as that of X, i.e., rank(X) ≤ rank(X̃). This
is because X̃ has more columns than X so the dimension of its column space must be as large as that of X.

Theorem 4.1 (Rouché-Capelli Theorem). For the linear system in (4.6), the following hold:

(i) The system in (4.6) admits a unique solution if and only if

rank(X) = rank(X̃) = d; (4.9)

(ii) The system in (4.6) has no solution if and only if

rank(X) < rank(X̃); (4.10)

(iii) The system in (4.6) has infinitely many solutions if and only if

rank(X) = rank(X̃) < d. (4.11)

Proof sketch (Only the ⇐= directions). For part (i), we note that the condition that rank(X) = rank(X̃)

means that y is in the column space of X. This means that there exists {wi}di=1 ⊂ R such that
∑d
i=1 wixi = y

where the xi’s are the d columns of X. Since rank(X) = d, {xi}di=1 span Rd and the representation∑d
i=1 wixi = y is unique (see discussion after Definition 4.3), which means there is a unique solution.

For part (ii), the condition that rank(X) < rank(X̃) means that y is not in the column space of X so
there is no solution.

For part (iii), since rank(X) < d, {xi}di=1 do not span Rd and the dimension of the nullspace of X is
non-zero. This means that if ŵp is a particular solution so is ŵp + w0 where w0 ∈ N (X). Hence, are
infinitely many solutions.

Let us consider a few examples.

• Consider the following over-determined system in which m = 3 and d = 2:

X =

2 1
4 3
5 6

 , and y =

1
2
3

 . (4.12)

The augmented matrix is

X̃ =
[
X y

]
=

2 1 1
4 3 2
5 6 3

 . (4.13)

In this case rank(X) = 2 and rank(X̃) = 3. This is case (ii) of the Rouché-Capelli Theorem and there
is no solution. This is the usual case for over-determined systems. Note that in Python, you can find
the rank of a matrix (2D array) A using np.linalg.matrix rank(A).

24



• Consider the following over-determined system in which m = 3 and d = 2:

X =

2 1
4 3
5 6

 , and y =

 4
10
17

 . (4.14)

In this case rank(X) = 2 and rank(X̃) = 2. This is case (i) of the Rouché-Capelli Theorem and there
is a unique solution even though the system is over-determined. Note that y is one times the first
column of X plus two times the second column of X, so it is in the linear span of the columns of X.

• Consider the following over-determined system in which m = 3 and d = 2:

X =

2 1
4 2
6 3

 , and y =

 8
16
24

 . (4.15)

In this case rank(X) = 1 and rank(X̃) = 1 and both these ranks are less than d = 2. This is case
(iii) of the Rouché-Capelli Theorem and there are infinitely many solutions even though the system is
over-determined. Note that the three columns of X̃ are collinear.

• Consider the following under-determined system in which m = 2 and d = 3:

X =

[
2 1 3
4 2 5

]
, and y =

[
10
7

]
. (4.16)

In this case, rank(X) = 2 and rank(X̃) = 2 but d = 3. This is case (iii) of the Rouché-Capelli Theorem
and there are infinitely many solutions. This is the usual case for under-determined systems.

• Consider the following under-determined system in which m = 2 and d = 3:

X =

[
2 1 3
4 2 6

]
, and y =

[
1
3

]
. (4.17)

In this case, rank(X) = 1 and rank(X̃) = 2 because y /∈ R(X). This is case (ii) of the Rouché-Capelli
Theorem and there is no solution. Note that y boosts the rank of X by 1 in the augmented matrix X̃,
i.e., y is not in the column space of X, which is the ray {[t, 2t]> : t ∈ R}.

• For under-determined systems (m < d), can we have case (i)? See Exercise 4.4.

In the above, we have indicated some usual cases for over- and under-determined systems. What do we mean
by this? We mean that if the matrix X and vector y are chosen randomly from continuous distributions,
then the chance, or probability, that an unusual scenario occurs is 0. In other words, for an unusual scenario
to occur, one has to be very lucky, e.g., for the example in (4.14), y lies in the span of the columns of X. If
y were sampled from a continuous distribution, the chance that it lies in the span of X is exactly 0. This is
because a two dimensional plane is “infinitely skinny” in three dimensional space.

4.3 Least Squares Estimation for m > d

We consider the case in which X is tall (m > d) and full rank. This means that rank(X) = d; equivalently, all
columns are linearly independent. This over-determined scenario happens a lot in engineering. For example,
this happens in estimation problems, where one tries to estimate a small number d of parameters given a
lot of (noisy) experimental measurements, say m > d. As seen from the usual case of the Rouché-Capelli
Theorem (case (ii) in which y is not in the linear span of the columns of X), there is no solution. Hence,
one way to find “the best” solution is to minimize the sum of squares of the errors

minimize ‖Xw − y‖2. (4.18)
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Figure 4.1: The least squares problem consists in finding ŵls, the point such that Xŵls ∈ R(X) is closest to
a given point y.
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Figure 4.2: The least norm problem consists of finding the particular solution ŵp that minimizes the norm.
All other solutions ŵp + w0 where w0 ∈ N (X) have norms that are at least as large as that of ŵp.

The optimal w is the least squares estimate (why can we use the article “the” here?). We can solve this
problem by means of calculus (a more elegant way is through the projection theorem explored in Chapter 5).
See Appendix 4.A for a recapitulation of the relevant multivariate calculus you need to know. Now, letting
f(w) = ‖Xw − y‖2, we obtain

∇wf(w) = ∇w

(
w>X>Xw − 2y>Xw + y>y

)
= 2X>Xw − 2X>y. (4.19)

Setting this to zero, we see that the optimal w is the least squares estimate

ŵls = (X>X)−1X>y. (4.20)

The existence of (X>X)−1 is guaranteed by the fact that X has full column rank. See the geometry of the
problem in Fig. 4.1.

A few words about the matrix X† := (X>X)−1X>. This matrix is called the pseudo-inverse of the full
rank tall matrix X. It is also called the left-inverse of X because if we multiply X on the left with X†, we
obtain X†X = (X>X)−1X>X = I.

The left-inverse of X can be implemented in Python as np.linalg.pinv(X). Note that this function
is more powerful than computing the left-inverse; it computes the so-called Moore–Penrose pseudo-inverse.
When the matrix has full column rank, the Moore–Penrose pseudo-inverse coincides with the left-inverse.

4.4 Least Norm Solution for m < d

Now we consider the case in which X is wide (m < d) and full rank. This means that rank(X) = m;
equivalently, all rows are linearly independent (full row rank). This under-determined situation also occurs
a lot in engineering.
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Example 4.3. For example, in control engineering (a field of study within mechanical and electrical engi-
neering), one often considers the following discrete-time state-space system (e.g., describing the dynamics of
a robot operating over a quantized time interval):

vi+1 = avi + bwi, i = 0, 1, . . . , d− 1, (4.21)

where vi is the state of the system at time i and wi is our control. We assume the system starts at the origin
v0 = 0. We desire to design the wi’s such that the terminal state vd = y (for some given y) while minimizing

the cost of the control
∑d−1
i=0 w

2
i . After some algebra, this can be rewritten as

minimize ‖w‖2 subject to y =
[
b ab a2b · · · ad−1b

]

wd−1

wd−2

...
w0

 . (4.22)

This is exactly an under-determined problem if we make the identifications X =
[
b ab a2b · · · ad−1b

]
(for obvious reasons, this is called the d-step reachability matrix) and w =

[
wd−1 wd−2 · · · w0

]>
and y

is scalar (i.e., m = 1).

We return to the equation Xw = y in which m < d and the matrix X has full row rank. It is clear that
(XX>)−1 exists and

ŵp = X>(XX>)−1y (4.23)

is a solution to the equation (check!). The subscript p indicates that this is a particular solution to the linear
system. From the usual case of the Rouché-Capelli Theorem (case (iii)), we know that there are infinitely
many solutions. Where are these infinitely many solutions? Let w0 ∈ N (X) be any vector in the nullspace
of X. Note that the nullspace has positive dimension because rank(X) = m < d so w0 can be chosen to be
a non-zero vector. Then ŵp + w0 is also a solution to (4.6) (check!). In the following, we argue that among
all the solutions, ŵp has a special place in our hearts because is the least norm solution to (4.6).

Suppose that w is any solution to Xw = y. Then since ŵp is also a solution, we have X(w − ŵp) = 0
and

(w − ŵp)>ŵp
(4.23)

= (w − ŵp)>X>(XX>)−1y =
(
X(w − ŵp)

)>
(XX>)−1y = 0. (4.24)

This means that w − ŵp is orthogonal to ŵp. By the Pythagorean theorem,

‖w‖2 = ‖(w − ŵp) + ŵp‖2 = ‖w − ŵp‖2 + ‖ŵp‖2 ≥ ‖ŵp‖2, (4.25)

which shows that ŵp is the least norm solution to Xw = y, so we also denote this as

ŵln = X>(XX>)−1y (4.26)

See the geometry of the least norm problem in Fig. 4.2.
Finally, we say a few words about the matrix X† = X>(XX>)−1. This matrix is called the pseudo-

inverse of the full-rank wide matrix X. It is also know as the right-inverse of X (why?). The right-inverse
of a matrix with full row rank can be implemented in Python as np.linalg.pinv(X).

4.5 Practice Problems

Exercise 4.1. Prove that {x1,x2, . . . ,xk} is linearly independent if and only if no vector xi can be expressed
as a linear combination of the other vectors x1, . . . ,xi−1,xi+1, . . . ,xk.

Exercise 4.2. Can the linear system Xw = y have finitely many solutions? If you think so, provide an
example else formulate a precise mathematical statement and supply a proof of your statement.
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Exercise 4.3. Prove the =⇒ directions of the Rouché-Capelli Theorem.

Exercise 4.4. For under-determined systems (m < d), briefly explain why we cannot have case (i) of the
Rouché-Capelli Theorem? We have seen that for over-determined systems (m > d) all three cases of the
Rouché-Capelli Theorem are possible. Why is there an asymmetry here?

Exercise 4.5. Show that for any matrix X, we have rank(X) = rank(XX>) = rank(X>X).

Exercise 4.6. Consider the square system Xw = y where

X =

[
−3 2
5 a

]
, and y =

[
2
−1

]
. (4.27)

Find the value of a such that there is no solution to Xw = y.

Exercise 4.7. Consider the square system Xw = y where

X =

[
−4 2
2 b

]
, and y =

[
2
−1

]
. (4.28)

Find the value of b such that there is at least one solution to Xw = y.

Exercise 4.8. Consider the over-determined system Xw = y where

X =

1 2
5 10
3 7

 , and y =

1
5
c

 . (4.29)

Find the value of c such that there is a unique solution to Xw = y.

Exercise 4.9. Consider the under-determined system Xw = y where

X =

[
1 2 −1
−1 −2 d

]
, and y =

[
−3
3

]
. (4.30)

Find the value of d such that there is no solution to Xw = y.

Exercise 4.10. Consider the matrix

X =

1 2
5 10
3 e

 . (4.31)

Find the set of values of e such that the left-inverse of X exists.

Exercise 4.11. Consider the matrix

X =

[
1 2 3
−2 −2 f

]
. (4.32)

Find the set of values of f such that the right-inverse of X does not exist.

Exercise 4.12. Consider the linear system Xw = y where X is an m× d matrix. This represents a linear
system of m equations in d variables. Give a proof or counterexample for each of the following:

1. If d = m, there is always at most one solution.

2. If d > m, we can always find a solution to Xw = y.

3. If d > m the nullspace of X has dimension greater than zero.

4. If d < m then for some y, there is no solution of Xw = y.

5. If d < m, the only solution of Xw = 0 is w = 0.
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4.A Differentiation of Scalar-Valued Functions of Several Vari-
ables

In this course, we will need to differentiate scalar-valued differentiable functions of several variables. Such a
function takes the form f : Rd → R. That is, it maps a vector of d components to a real-number (scalar).
We often want to differentiate this with respect to the argument w. The derivative, denoted as ∇wf(w),
is a function that maps a vector to a vector. We write this as ∇wf : Rd → Rd. The ith component of the
vector ∇wf(w) is ∂f(w)/∂wi and so we can express the column vector ∇wf(w) as

∇wf(w) =

[
∂f(w)

∂w1

∂f(w)

∂w2
. . .

∂f(w)

∂wd

]>
. (4.33)

In the majority of this course (sans Chapter 12), we will only need to apply this to two examples, namely
the functions f(w) = w>a and g(w) = w>Aw for a vector a ∈ Rd and a square matrix A ∈ Rd×d. Note
that these two functions map vectors to scalars. For the former, we have

∇wf(w) = ∇w(w>a) = a. (4.34)

This is because w>a =
∑d
j=1 wjaj and differentiating this with respect to wi (for a fixed 1 ≤ i ≤ d) yields

ai. This generalizes the familiar derivative rule d
dw (aw) = a. For the latter function g(w) = w>Aw, very

careful bookkeeping yields
∇wg(w) = (A + A>)w. (4.35)

Often, we will apply this result to symmetric2 matrices (in which A = A>) so (4.35) reduces to ∇wg(w) =
2Aw. This generalizes the familiar derivative rule d

dw (aw2) = 2aw. For more on differentiation of such
functions and further generalizations, please refer to the Matrix Cookbook [PP12].

2An example of a symmetric matrix is the Gram matrix X>X.
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Chapter 5

Least Squares Estimation and the
Projection Theorem

In this chapter, we will present one interesting example of least squares estimation. We will also unify the
concepts of least squares estimation and the least norm solution from Chapter 4 via the Projection Theorem.

5.1 Predicting the Outcome of Presidential Elections: An Appli-
cation of Least Squares

While most of news this year has been dominated by Covid-19, there is still the little matter of another
event that has monumental importance to the world—the quadrennial Presidential Elections in the United
States of America, pitting the incumbent President Donald J. Trump (R) against former Vice President
Joe Biden (D). We will put what we have learned to do linear regression on four potentially important
factors that influence the incumbent’s winning (or losing) margin. This analysis is based on Nate Silver’s
study in November 2011, one year before President Obama beat Mitt Romney in the 2012 elections. The
original article, which contains much more analysis, can be found here—https://fivethirtyeight.blogs.

nytimes.com/2011/11/18/which-economic-indicators-best-predict-presidential-elections/.
We consider four economic indicators:

(a) Real GDP growth rate x1;

(b) Change in non-farm payrolls x2;

(c) ISM (Institute of Supply Management) manufacturing index x3;

(d) Unemployment rate x4.

We consider predicting the target variable—the incumbent party’s margin of victory y. This can be negative
if the incumbent party wins fewer votes than the challenger. For example, in 1996 the incumbent Bill Clinton
(D) beat Bob Dole (R) by 8.5% so y = 8.5. In 2008, Barack Obama (D) beat John McCain (R) by 7.2% and
the incumbent was a Republican (George W. Bush) so y = −7.2. Scatter plots of each of the unnormalized
or raw indicators against the incumbent party’s margin of victory are shown in Fig. 5.1. We have data of all
the above economic indicators and margins of victory from 1948 (Truman against Dewey) to 2008 (Obama
against McCain), constituting 16 presidential elections. Do note that even if a candidate wins the popular
vote, s/he may not be elected president as one needs to win the so-called electoral college instead of the
popular vote. For example, George W. Bush became president-elect in 2000 even though he lost the popular
vote to Al Gore and more recently, Donald J. Trump became president-elect in 2016 even though he lost the
popular vote (by 3 million votes) to Hillary R. Clinton.
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Figure 5.1: Scatter plots of incumbent party’s victory margin against various economic factors

We do a min-max normalization of the features to ensure that all of them are in [0, 1]. We include the
offset or bias term to obtain our design matrix X and target vector y, i.e.,

X =


1 x1,1 x1,2 x1,3 x1,4

1 x2,1 x2,2 x2,3 x2,4

...
...

...
...

...
1 x16,1 x16,2 x16,3 x16,4

 ∈ [0, 1]16×5 and y =


y1

y2

...
y16

 ∈ R16. (5.1)

Hence, x2,2 corresponds to the change in non-farm payrolls of the 1952 election (Eisenhower vs Stevenson).
In Fig. 5.2, we show the regression lines for each feature against y. For example, for Fig. 5.2(a), we only

consider the matrix1 X(:, 1 : 2) ∈ [0, 1]16×2 (first two columns of X) and learn the vector

ŵ1 =
(
X(:, 1 : 2)>X(:, 1 : 2)

)−1
X(:, 1 : 2)>y. (5.2)

1Here, we find it convenient to use Matlab notation. In particular X(:, a : b) denotes the submatrix of X consisting of all its
columns indexed from a to b.
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From the plots, we visually see that the first three economic indicators seem to have correlation with y.
Unemployment rate, somewhat surprisingly, has minimal impact on y. In statistics, a common measure of
linear dependence is the coefficient of determination or R2 value. This is the proportion of the variance in
the dependent variable y that is predictable from the independent variable xi. You do not need to know
what the formula is or how to use it but all that is needed to appreciate is that the closer the value is to one,
the larger the linear dependence. The R2 values for each of the variables is tabulated in Table 5.1. Again
the values confirm that the first three independent variables are rather correlated to y.

Variable GDP Growth Rate Non-Farm Payroll Manufacturing Output Unemployment Rate
R2 0.3134 0.3984 0.2892 0.0007

Table 5.1: R2 for each of the economic indicators

Now, let us use the three variables x1, x2 and x4 as our variables to do linear regression, omitting x3

(Manufacturing output) for simplicity. The design matrix is thus the horizontally concatenated matrix
X′ = [X(:, 1 : 3) X(:, 5)] ∈ [0, 1]16×4 (we omit the 4th column corresponding to x3). Then we estimate

ŵ1,2,4 =
(
(X′)>X′

)−1
(X′)>y =


−12.5102

4.1531
21.5454
1.9871

 . (5.3)

So the offset term if −12.51 and the coefficients associated to GDP growth rate, change in non-farm payroll
and unemployment rate are 4.15, 21.55 and 1.99 respectively. Again, we see that the last feature seems to
have a small effect due to the small coefficient.

Suppose we want to predict the winning margin in 2004 (the 15th data sample). So as not to bias our
model, we remove this data point from X′ ∈ [0, 1]16×4 and y ∈ R16. Call the new design matrix and
dependent vector X′′ ∈ [0, 1]15×4 and y′′ ∈ R15 respectively. The coefficient vector learned in the absence of
the 2004 data point is

ŵ′′1,2,4 =
(
(X′′)>X′′

)−1
(X′′)>y′′ =


−12.5310

4.1519
21.5617
1.9822

 . (5.4)

Great! The removal of one data example did not affect the regression coefficients too much. Now let’s try
to predict the winning margin in 2004. We have

ŷ15 =


1

0.5622
0.5285
0.5435


>

︸ ︷︷ ︸
2004’s normalized feature vector

ŵ′′1,2,4 = 2.2748% (5.5)

From the economic indicators, this means that George W. Bush (the incumbent in 2004) is expected to win
by 2.27%. In actual fact, he won the popular vote by 2.4%, which means that our model did pretty well!
Some natural questions.

1. It seems from Fig. 5.1(d) that the unemployment rate is not a very good predictor of the incumbent’s
margin of victory. What if we removed it from the model? Do you expect predictions to improve? Try
it for yourself using the csv file, which is provided with this tutorial.

2. What if we included manufacturing output as a variable in the model? Do you expect predictions to
improve?
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3. Why was our prediction of 2004’s result in (5.5) so good? From Fig. 5.1, we see that the data for
2004 are very close to the individual regression lines. What if we tried to predict a result in a very
“atypical” year, e.g., 1956?

4. Redo everything for the electoral college to predict the president-elects (which is arguably more im-
portant). Before collecting results and doing any machine learning, do you expect your results to be
more or less accurate than predicting the winning margins?

5. We predicted a result that is known (2004’s result), which is not so interesting. Try predicting Donald
Trump’s winning or losing margin against Joe Biden this Fall. For this, you need to know how and
where to get reliable data. Let me know if you find something interesting! We now know that Joe
Biden beat Donald Trump by 3.8% based on the popular vote. More importantly, Joe Biden beat Donald
Trump in the electoral college (306 to 232) to become the 46th president of the United States.

5.2 The Projection Theorem (Optional)

In this section, we unify the solutions of the least squares estimator and the least norm solution via the
Projection Theorem.

Theorem 5.1. Let M ⊂ V be a subspace of a vector space V. Then the solution m̂ to the optimization
problem

minimize ‖y −m‖ subject to m ∈M (5.6)

is unique and satisfies
(y − m̂) ⊥M. (5.7)

Conversely, if m̂ satisfies (5.7), it is the optimal solution to (5.6).

This means that the optimal solution m̂ is such that the induced “error vector” y − m̂ is orthogonal to
the any vector that lies in the subspace M. The proof is given in Appendix 5.A.

5.2.1 Application to Least Squares Estimation

Let us see how to apply this to the least squares estimation problem, a problem considered and solved by
Legendre and Gauss. In Chapter 4, we saw how to do this by means of differentiating functions of vectors. It
turns out that you neither need to remember nor derive these formulate—i.e., differentiation (as was done in
Appendix 4.A) is not necessary. Recall that in the least squares problem, we are given a matrix X ∈ Rm×d
with full column rank in which m > d and a vector y ∈ Rd and considered the problem

minimize ‖y −Xw‖. (5.8)

In other words, we want to find w in the range of X such that Xw is closest to y. By the Projection
Theorem, ŵls is optimal if and only if

(y −Xŵls) ⊥ R(X). (5.9)

Note that Xŵls plays the role of m̂ in the Projection Theorem. However, (5.9) means that

x>i (y −Xŵls) = 0, for all i = 1, 2, . . . , d, (5.10)

where {xi}di=1 ⊂ Rm is the set of d columns of X. Stacking the conditions in (5.10) together in matrix form,
we obtain 

x>1
x>2
...

x>d

 (y −Xŵls) = 0 ⇐⇒ X>(y −Xŵls) = 0 ⇐⇒ ŵls = (X>X)−1X>y. (5.11)
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Note that the inverse of X>X exists because X has full column rank. This recovers the least squares solution
without knowledge of differentiation.

5.2.2 Application to the Least Norm Problem

Recall that in the least norm problem, we are given a matrix X ∈ Rm×d with full row rank in which m < d
and a vector y ∈ Rd and we considered the problem

minimize ‖w‖ subject to Xw = y. (5.12)

By the Rouché-Capelli Theorem (Theorem 4.1), we see that since rank(X) = rank([X y]) = m < d, there
are infinitely many solutions to the system Xw = y. Let

ŵp := X>(XX>)−1y (5.13)

be one of the solutions (check that this is indeed a solution!). By writing w = ŵp −w0 for some w0, above
optimization problem can be rewritten as

minimize ‖ŵp −w0‖ subject to X(ŵp −w0) = y (5.14)

where the optimization variable is now w0. Our objective is to show that the optimal w0 = 0, which would
validate that ŵp is the least norm solution. Since Xŵp = y, the optimization problem in (5.14) is the same
as

minimize ‖ŵp −w0‖ subject to Xw0 = 0. (5.15)

This means that

minimize ‖ŵp −w0‖ subject to w0 ∈ N (X). (5.16)

By the Projection Theorem,

(ŵp −w0) ⊥ N (X). (5.17)

Since

w0 ∈ N (X) (5.18)

we have

0
(5.17)

= (ŵp −w0)>w0
(5.13)

= (X>(XX>)−1y −w0)>w0
(5.18)

= y>
(
(XX>)−1

)>
Xw0︸ ︷︷ ︸

=0

−w>0 w0. (5.19)

Thus, ‖w0‖2 = 0 which means that w0 = 0 as desired. This proof uses the Projection Theorem in (5.17) to
show that the minimum norm solution w = ŵp −w0 of Xw = y is such that w0 = 0.

5.3 Practice Problems

Exercise 5.1. In the least squares problem, we wish to minimize the squared `2 norm of the error vector e =
y−Xw over w. That is, we are interested in minimizing ‖e‖2 = e2

1+e2
2+. . .+e2

m. Devise a new least squares
solution if we wish to instead minimize the weighted norm of the error vector ‖e‖2q = q1e

2
1 +q2e

2
2 + . . .+qme

2
m

where qi > 0 for all i.

Exercise 5.2. In the least norm problem, we are interested to minimize ‖w‖ subject to Xw = y. Devise
a new least norm solution if we wish to instead minimize the weighted norm of the weight vector ‖w‖2q =
q1w

2
1 + q2w

2
2 + . . .+ qdw

2
d where qi > 0 for all i.
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Exercise 5.3. This is a problem on autoregressive (AR) modelling. In econometrics (or electrical, control
or mechanical engineering), an autoregressive model is a representation of a random process. The simplest
such process consists in having the current value of a certain stock xt as a linear function of its past value
xt−1 plus some imperfections et. In other words,

xt = wxt−1 + et for all t = 1, 2, . . . ,m. (5.20)

Formulate this as a least squares problem to find the least squares estimate for the scalar w by minimizing
the sum of squares e2

1 + e2
2 + . . .+ e2

m. The system in (5.20) is known as an AR(1) process since xt depends
on its immediate past. A slight generalization of (5.20) is the AR(d) process in which xt depends linearly on
the past d stock values (xt−1, xt−2, . . . , xt−d), i.e.,

xt =

d∑
k=1

wkxt−k + et for all t = 1, 2, . . . ,m. (5.21)

Again, formulate this as a least squares problem to find the least squares estimate for (w1, w2, . . . , wd).

Exercise 5.4. This is a problem on recursive least squares. Consider the system Xw = y where X is an
m × d matrix that has full column rank. Then the least squares solution is ŵls = (X>X)−1X>y. Suppose
we obtain one more data point (xm+1, ym) and so the design matrix becomes X̄ = [X> x>m+1]> and it has
m + 1 rows and d columns. The observation vector becomes ȳ = [y, ym+1]>. Express the least squares
estimator of the system X̄w̄ = ȳ, namely ˆ̄wls, in terms of the old least squares solution ŵls, the new data
point (xm+1, ym). You may find the Woodbury formula (6.35) in Appendix 6.B useful.

The point here is that the least squares estimator can be updated in an online or recursive fashion without
having to perform any computationally heavy inversion of the (m + 1) × (m + 1) Gram matrix X̄>X̄ given
we know the least squares solution ŵls to the slightly smaller m× d system.

The preceding two problems form the basis of the the Kalman filter (named after Rudolf E. Kalman),
which was used in the Apollo program in the 1960s and 70s to send humans to the moon and back safely.

The following problem is inspired by notes from MIT 6.241.

Exercise 5.5 (Challenging). This is an example from mechanical engineering that makes use of the least
norm solution as discussed in Section 4.4. It can be considered as a continuous-time analogue of Example 4.3.
Consider a unit mass particle moving in a straight line with a force w(t) with position at time t given by
y(t). The particle starts from rest at the origin, i.e., y(0) = ẏ(0) = 0 and we would like to use the force w(t)
(which is equal to the acceleration ÿ(t)) to manoeuvre the particle to location ȳ at time T , i.e., y(T ) = ȳ
(with no constraint on ẏ(T )). At the same time, we want to minimize the total amount of force used in terms

of its squared norm
∫ T

0
w(t)2 dt. The constraint that y(T ) = ȳ is equivalent to

ȳ = y(T ) =

∫ T

0

(T − τ)w(τ) dτ = 〈x(·), w(·)〉 (5.22)

where x(t) = T − t. Thus, we are interested to solve

minimize

∫ T

0

w(t)2 dt subject to ȳ = 〈x(·), w(·)〉. (5.23)

This is a typical under-constrained problem where there are many solutions to the constraint but only one
least norm solution. Use the application of the Projection Theorem as described in Section 5.2.2 to find the
least norm solution, i.e., the minimizer to (5.23).

We remark that the final displacement in (5.22) can be derived using the relation between displacement,
velocity and acceleration and some multivariable calculus gymnastics as follows

ȳ = y(T ) =

∫ T

0

ẏ(s) ds =

∫ T

0

∫ s

0

w(τ) dτ ds =

∫ T

0

∫ T

0

w(τ)1{τ < s} dτ ds (5.24)

=

∫ T

0

w(τ)

∫ T

0

1{τ < s} dsdτ =

∫ T

0

(T − τ)w(τ) dτ. (5.25)
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m̂

y − m̂

y M

s
m̂ + ηm0

Figure 5.2: Illustration of the proof of the Projection Theorem. If y − m̂ is not orthogonal to the subspace
M, shift m̂ in the direction m0 by an “amount” η. The distance to y will be reduced. In this figure,
η = (y − m̂)>m0 > 0 as the angle between y − m̂ and m0 is acute.

5.A Proof of the Projection Theorem

Proof of Theorem 5.1. Assume that M 6= {0} otherwise the claim is immediate. Suppose, to the contrary,
there exists some m0 ∈ M \ {0} of unit norm such that (y − m̂)>m0 =: η 6= 0. Then, we claim that the
vector m̂ + ηm0 ∈M yields a better solution in the sense that its distance from y is strictly smaller. (Why
can we assume ‖m0‖ = 1 and why is m̂ + ηm0 in the subspace M?)

Consider,

‖y − (m̂ + ηm0)‖2 = ‖(y − m̂)− ηm0‖2 (5.26)

= ‖y − m̂‖2 − 2η(y − m̂)>m0 + η2 ‖m0‖2 (5.27)

(a)
= ‖y − m̂‖2 − 2η2 + η2 ‖m0‖2 (5.28)

(b)
= ‖y − m̂‖2 − 2η2 + η2 (5.29)

< ‖y − m̂‖2 , (5.30)

where (a) is due the definition of η and (b) is because m0 has unit norm. Thus, we have found a vector in
M, namely m̂ + ηm0, that has strictly smaller distance to y, contradicting the optimality of m̂.

See Fig. 5.2 for an illustration of this proof.

36



Chapter 6

Ridge Regression, Linear
Classification and Polynomial
Regression

In this chapter, we will cover several important topics. First, we motivate the use of ridge regularization in
the context of least squares estimation. We then derive the ridge regression solution. We will discuss both
its primal and dual forms. The latter will allow us to segue to the (optional) topic of kernels. Second, we
discuss how linear models can be used for classification. Finally, we consider a certain form of generalized
linear models for regression known as polynomial regression.

6.1 Motivation for Ridge Regression

In the previous lectures, you learned about least squares estimation. Let us recap that. We assume here that
we have more data points m than dimensions or attributes d. The data or training samples are denoted, as
usual, as column vectors x1,x2, . . . ,xm ∈ Rd. For the sake of notational brevity, we omit the offset from our
training samples. The corresponding target variables are denoted as y1, y2, . . . , ym ∈ R. The data samples
and the target variables are stacked in the design matrix and target vector as follows:

X =


x>1
x>2
...

x>m

 =


x1,1 x1,2 · · · x1,d

x2,1 x2,2 · · · x2,d

...
...

. . .
...

xm,1 xm,2 · · · xm,d

 ∈ Rm×d and y =


y1

y2

...
ym

 ∈ Rm. (6.1)

We aim to find a good weight or coefficient vector w ∈ Rd such that Xw is “close to” y. Note that the ith

row of Xw, i.e.,
∑d
j=1 xi,jwj is the prediction of the target of the ith data point. This error in predicting

the ith data point is denoted as

ei := yi −
d∑
j=1

xi,jwj 1 ≤ i ≤ m. (6.2)

To ensure that all errors are small—or equivalently, Xw is close to y—we seek to minimize the sum of
squares of the ei’s over w, i.e.,

minimize

m∑
i=1

e2
i . (6.3)
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It is clear that this is equivalent to

minimize

m∑
i=1

yi − d∑
j=1

xi,jwj

2

⇐⇒ minimize

m∑
i=1

(
yi − [Xw]i

)2

⇐⇒ minimize ‖y −Xw‖2 .

(6.4)

We saw that if X has full column rank, the solution for w is the least squares solution, denoted as

ŵls = (X>X)−1X>y. (6.5)

While this is elegant, there is substantial motivation to study refinements of the optimization problem
in (6.3), or equivalently, (6.4). We state three reasons here.

1. Firstly, in modern data science applications, we often have data that is extremely high dimensional.
In contrast, the number of data points is often small to moderate. Think of a clinical application
where we have m = 500 subjects in our cohort. Getting a single person to be in a study is extremely
costly. Indeed, we need to compensate the subject for her/his time. For each subject, however, we
can collect a large amount of information using today’s acquisition devices. Indeed, a single blood test
can reveal a lot about a person’s genomic information in the form of single nucleotide polymorphisms
(SNPs). Furthermore, there are roughly 4 to 5 million SNPs in a person’s genome and SNPs may give
us information about whether a person is susceptible to certain diseases or ailments such as cancer.
Thus d can be of the order of millions, which is certainly larger than the number of subjects in our
study. As a result, X is now a wide matrix, which almost surely does not have full column rank and
the solution (6.5) does not exist. While one can appeal to the least norm solution, there are better
solutions that make explicit use of prior information about the solution.

2. Secondly, we often want to go beyond using linear models to do prediction because of the flexibility
that such richer models affords us. We have seen from the lecture that we can use polynomial models
(see Section 6.4) in which case the effective number of features is

(
p+d
d

)
where p is the order of the

polynomial (show this by looking up monomial numbers or refer to Appendix 6.A!). In fact, there is
often motivation to use infinite-dimensional models, in which there are infinitely many features. In
this case, the feature vectors can be kernelized using the so-called radial basis functions. Clearly, the
new dimension (which may be even be infinite) exceeds that of the number of samples m and (6.5) is
no longer applicable.

3. Finally, even if m is larger than d, we often want to stabilize and robustify the solution so that it
generalizes well. By regularizing the optimization problems in (6.3) and (6.4), we often get more stable
solutions that do not fluctuate as much under small (or even large) changes in the data. We will see
this when we discuss about the bias-variance tradeoff in Chapter 7.

6.2 Ridge Regression

The way we achieve this stability or robustness in the least squares solution is to consider a regularized
version of the optimization problem in (6.4). We consider the ridge regression or Tikhonov regularization
problem

minimize ‖y −Xw‖2 + λ‖w‖2, (6.6)

where λ > 0 is known as the regularization parameter. Let us try to understand this a bit further. The first
part of the objective function ‖y−Xw‖2 is the same; it forces the solution w to be such that the predictions
contained in the vector Xw are close to the targets contained in y. This is the so-called data fidelity or risk
term. The second term in (6.6)—also known as the regularization term—forces the solution w to be small.
This has the effect of stabilizing or robustifying the solution as large values of w do not lead to favorable
generalization on new test examples.
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6.2.1 Primal Form

To find the solution ŵλ to (6.6), we differentiate the objective function with respect to w. By noting
that ∇wλ‖w‖2 = 2λw and ∇w‖y − Xw‖2 = ∇w(−2y>Xw + w>X>Xw) = −2X>y + 2X>Xw (see
Appendix 4.A), we obtain

X> (y −Xŵλ)− λŵλ = 0. (6.7)

In other words,
ŵλ = (X>X + λI)−1X>y. (6.8)

This is the ridge regression solution in primal form. Note that the matrix X>X + λI is always non-singular
if λ > 0 because it is positive definite. (Indeed, z>(X>X + λI)z = ‖Xz‖2 + λ‖z‖2 > 0 for any z 6= 0.)

We note two extreme cases. If λ → 0+, then ŵλ reduces to ŵls. In this case, we place our entire faith
in the data (X,y) and omit the regularization term. If λ→∞, then ŵλ reduces to the zero vector. In this
case, we do not trust the data at all and our predictions of any test example is 0 because x>testŵ0 = 0 for
any xtest ∈ Rd.

6.2.2 Dual Form

Let us examine the optimization problem (6.6) in greater detail. The objective function can be written as

m∑
i=1

(yi − x>i w)2 + λ‖w‖2. (6.9)

Differentiating this meticulously, we obtain that

− 2

m∑
i=1

(yi − x>i w)xi + 2λw = 0. (6.10)

Rearranging, we see that the solution ŵλ satisfies

ŵλ =
1

λ

m∑
i=1

(
yi − x>i ŵλ

)
xi. (6.11)

For each 1 ≤ i ≤ m, define the real number ai := λ−1(yi − x>i ŵλ). Hence, ŵλ can be written as

ŵλ =

m∑
i=1

aixi ∈ span
(
{xi}mi=1

)
. (6.12)

While this is simple, the result in (6.12) is surprisingly deep and is a special instance of the Representer
Theorem in statistical learning theory; see the seminal works by Kimeldorf and Wahba [KW70, Lemma 2.2]
and Schölkopf, Herbrich and Smola [SHS01]. It says that no matter how high dimensional the data samples
xi are—they may even be infinite dimensional—we do not need to solve the high-dimensional optimization
problem in (6.6) to find the optimal w. All that is required to solve for ŵλ within a ridge regression
framework is the set of m coefficients {ai}mi=1! So we have reduced a d-dimensional optimization problem to
one that is “only” m dimensional and m may be much smaller than d. Here, we note the importance of λ
being positive. If λ = 0 (no regularization), this will no longer be true because (6.11) would not hold.

Now we notice from (6.12) that ŵλ can be written as

ŵλ = X>a (6.13)

where a = (a1, a2, . . . , am)> ∈ Rm is the vector of coefficients that defines the optimal ridge regularized
weight vector ŵλ. In other words, ŵλ is in the the column space (range) of X>. Substituting this into (6.6),
we obtain the optimization problem (in a)

minimize
∥∥y −XX>a

∥∥2
+ λ‖X>a‖2

⇐⇒ minimize y>y − 2y>XX>a + a>(XX>)>(XX>)a + λa>XX>a. (6.14)
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Differentiating and solving for a yields

XX>y = (XX>)>(XX>)a + λXX>a (6.15)

= (XX>)(XX>)a + λ(XX>)a (6.16)

= (XX>)
(
XX> + λI

)
a. (6.17)

We note that (6.16) holds because XX> is symmetric. The set of a that satisfies (6.18) is not a singleton if
X does not have full row rank. In fact, the set of solutions a that satisfies (6.17) is{(

XX> + λI
)−1

y + z : z ∈ N (XX>)
}
. (6.18)

However, we note from a simple argument1 that N (XX>) = N (X>) and so substituting (6.18) into (6.13),
we see that the dual form of the solution is

ŵλ = X>a = X>
((

XX> + λI
)−1

y + z
)

= X>
(
XX> + λI

)−1
y, (6.19)

since X>z = 0. Even though a may not be unique, ŵλ is.
Note that the dual solution in (6.19) is really cool. Originally in the primal form of the solution in (6.8),

we needed to invert a d×d matrix X>X+λId. This costs O(d3) operations2 (additions and multiplications)
in general. As mentioned, d could be really large and could even be infinite. In the dual form, however, we
(only) need to invert an m×m matrix XX> + λIm. This costs O(m3), which is much less than O(d3)! We
note that m is always finite because we always only have finite number of training samples.

In Appendix 6.B, we use the Woodbury matrix identity to show that the primal and dual forms of the
least squares solution are equal for any λ > 0.

6.2.3 Interpretation In Terms of Kernels (Optional)

Substituting
∑m
i=1 aixi for w in (6.9), we see that the optimization over w is equivalent to optimizing the

following function over the vector (a1, a2, . . . , am) ∈ Rm:

J(a1, a2, . . . , am) =

m∑
i=1

yi − ( m∑
j=1

aixj

)>
xi

2

+ λ

∥∥∥∥∥∥
m∑
j=1

aixj

∥∥∥∥∥∥
2

(6.20)

=

m∑
i=1

yi − m∑
j=1

aix
>
j xi

2

+ λ

m∑
i=1

m∑
j=1

aiajx
>
i xj (6.21)

=

m∑
i=1

yi − m∑
j=1

aiK(xi,xj)

2

+ λ

m∑
i=1

m∑
j=1

aiajK(xi,xj), (6.22)

where K(x,x′) = 〈x,x′〉 is the inner product between two vectors. This says that even if d is much larger than
m, we simply have to solve a lower-dimensional optimization problem of m dimensions—the m components
in a—to obtain w in the form in (6.12). In fact, a is given exactly in (6.18). Furthermore, all that is
needed in this endeavour are the pairwise inner products between the feature vectors K = [K(xi,xj)], a
matrix of size m×m. There is no need to “look at” the feature vectors; all we need are pairwise similarities
between them. So we do not even need the xi’s to be in Rd; they could be text or string data [LSST+02]
or other categorical variables. There is a lot more we can say here, but we need to introduce the notion of
kernels [SSB18], which unfortunately is beyond the scope of the course.

1The only non-trivial direction is N (XX>) ⊂ N (X>). Take z ∈ N (XX>). Then XX>z = 0. Pre-multiply by z> to obtain
z>XX>z = 0. Hence, ‖X>z‖2 = 0 and so X>z = 0 or equivalently z ∈ N (X>).

2We say that f(n) = O(g(n)) if lim supn→∞ |f(n)/g(n)| <∞. Roughly speaking, when we say the number of operations is
O(d3), it is ≤ cd3 for some large enough (but finite) constant c > 0.
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(1)
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Figure 6.1: The positively (resp. negatively) labelled training points are the red stars (resp. blue circles).

The learned linear classifier has normal vector given by ŵ. If a given test point x
(1)
test (resp. x

(2)
test) makes an

acute (resp. obtuse) angle with ŵ, it is classified as positively (resp. negatively) labelled.

6.3 Linear Models for Classification

Recall that in classification, the label yi belongs to a finite set. We now briefly discuss how to extend the
preceding framework into the realm of classification.

6.3.1 Binary Classification

In the simplest form of classification, one assumes that each yi can only take on two values; this is called
binary classification. The two values can be encoded in any reasonable way, but for the sake of concreteness,
clarity, and simplicity, we assume that yi ∈ {−1,+1}. The samples in P = {xi : yi = +1} are from the
positive class and the samples N := {xi : yi = −1} are from the negative class.

Given what we have learned about linear regression thus far, the binary classification formulation and
algorithm that we propose here is conceptually rather straightforward. The dataset D := {(xi, yi) : 1 ≤ i ≤
m} is available to us where now yi ∈ {−1,+1}. If we decide to use an offset (i.e., a bias term), then similarly
to (6.1), we form the design matrix and target vector, except that we note that the target or label vector
now lives in {−1,+1}m. The same procedures—least squares, regularized least squares (ridge regression) in
both the primal and dual forms—can be used to learn a weight vector w ∈ Rd′ where d′ = d if no offset is
used or d′ = d+ 1 if an offset term is included into the model. Call the learned weight vector ŵ.

Let us assume that there is no offset. For prediction purposes, we are given a new example xtest ∈ Rd
and would like to predict its class, i.e., whether it belongs to the positive or negative class. Our prediction is

ŷtest = sgn
(
x>testŵ

)
(6.23)

where sgn returns 1 of the argument is non-negative and −1 otherwise.3

While the formula in (6.23) is relatively simple, the interpretation is more important for the purposes of
generalizing to the multiclass case in Section 6.3.2. What the rule in (6.23) is telling us is that we should
declare the class of xtest to be positive (resp. negative) if its inner product with ŵ is positive (resp. negative),
i.e., the angle it makes with ŵ is acute (resp. obtuse). Roughly speaking, this means that xtest is “more
similar” (resp. “more dissimilar”) to the samples in the positive class P (resp. the negative class N ). See
Fig. 6.1 for an illustration of this explanation.

3The definition of sgn(0) is immaterial in most engineering applications.
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6.3.2 Multiclass Classification

In real-world applications, yi may take on many possibilities. For instance, the image classification example
we discussed in Chapter 1 posits that each image contains one out of a possible c = 10 animals.4 Thus, we
must expand the scope of our discussion for linear classification. We perform one-hot encoding of the class
label and this is stored in a label matrix Y = [yi,k] ∈ {0, 1}m×c, where yi,k = 1 means that training example
i ∈ {1, 2, . . . ,m} belongs to class k ∈ {1, 2, . . . , c}. Note that each row of Y contains only one 1; the rest of
the entries are 0. This is because we assume that each training example belongs to exactly one class.

In this framework, we aim to find W ∈ Rd×c such that XW ≈ Y. To quantify the approximation error,
we generalize (6.4) and minimize the sum of squares of all the entries in the error matrix E := Y −XW;
this is known as the square of the Frobenius norm of E. That is, we consider the optimization problem

minimize ‖Y −XW‖2F =

m∑
i=1

c∑
k=1

yik − d∑
j=1

xi,jwj,k

2

. (6.24)

Going through the same procedure to optimize over the matrix W, we find that its least squares solution is

Ŵls = (X>X)−1X>Y ∈ Rd×c, (6.25)

assuming again that X has full column rank. Given a new test sample xtest ∈ Rd, analogously to the rule
for binary classification in (6.23), we declare its class to be

ŷtest = arg max
k∈{1,2,...,c}

x>testŴls(:, k), (6.26)

where Ŵls(:, k) denotes the k-th column of Ŵls. That is, we find the label k ∈ {1, 2, . . . , c} that maximizes
the “correlation” or “similarity” between the new test sample xtest and the weights corresponding to that
class, i.e., Ŵls(:, k).

6.4 Polynomial Regression and Classification

Up till now, our discussion has focused on linear models. However, there is significant motivation to go
beyond linear models. Consider the dataset in Fig. 6.2, which is labelled as follows:

x1 =
[
+1 +1

]>
y1 = +1

x2 =
[
−1 +1

]>
y2 = −1

x3 =
[
+1 −1

]>
y3 = −1

x4 =
[
−1 −1

]>
y4 = +1. (6.27)

For obvious reasons, this is known as the XOR problem. No matter how hard we try, we cannot find
a weight vector (with offset term) w = (w0, w1, w2)> ∈ R3 such that all the training samples are classified
correctly, i.e.,

yi = sgn

([
1
xi

]>
w

)
, for all 1 ≤ i ≤ 4. (6.28)

This dataset is not linearly separable. However, notice that there is a simple nonlinear classifier that does
the job. If we take the products of the first and second components of each feature vector, we obtain

x1,1x1,2 = +1, x2,1x2,2 = −1, x3,1x3,2 = −1, x4,1x4,2 = +1. (6.29)

4The well known ImageNet dataset contains m ≈ 14× 106 images and c ≈ 2× 104 labels or categories.
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Figure 6.2: XOR example which is not linearly separable

Voila! Now we have transformed our dataset into one that is linearly separable because I can simply choose
w12, the weight associated to the product of the first and second components to be 1. Then it is easy to
check that sgn(w12xi,1xi,2) = yi for all 1 ≤ i ≤ 4. We have achieved zero training error.

This simple observation motivates the use of products (or, in general, nonlinear functions) of individual
features. Suppose our feature vectors are one-dimensional, i.e., xi ∈ R for all 1 ≤ i ≤ m. Then, for regression
and similarly for classification, we might want to consider going beyond the linear model y = w0 + w1x to
learn a richer model involving powers of the x, i.e.,

y = w0 + w1x+ w2x
2 + . . .+ wpx

p. (6.30)

This is known as a degree-p (univariate) polynomial as the maximum power of the sole indeterminate x is
p. In machine learning however, we have many features in most datasets. For the sake of discussion, say we
have two features—x1 and x2. In this case, we have to introduce the notion of a degree-p (bivariate and, in
general, multivariate) monomial which is a term of the form xa1x

b
2 where a and b are non-negative integers

satisfying a+ b = p. Hence, for two features x1 and x2, an degree-2 (bivariate) polynomial model is

y = w0 + w1x1 + w2x2 + w12x1x2 + w11x
2
1 + w22x

2
2. (6.31)

Here the vector of weights to be learned is w = [w0, w1, w2, w12, w11, w22]>. Note that for the XOR problem
a w that works in the sense of achieving zero training error is w = [0, 0, 0, 1, 0, 0]>. In effect, what this
w does it to partition the (x1, x2) plane as in Fig. 6.2 into two parts—the first and third quadrant to be
declared as the region that contains the samples from the positive class and the second and fourth quadrant
as the region that contains negatively labelled samples.

While this theory allows us to learn complicated (more precisely, nonlinear) decision boundaries, the
number of weights grows rapidly with the degree of the polynomial p and the original number of features d.
In the above example with p = d = 2, we had a total of 6 weights to be learned—w0, w1, w2, w12, w11, w22. In
general, one can prove that the total number of weights is

(
p+d
d

)
. However, there is an easy way to ameliorate

this explosive growth in the number of weights; one exploits a theory known as kernels (discussed briefly in
Section 6.2.3). This is somewhat similar to the discussion leading to the dual solution in Section 6.2.2.

6.5 Practice Problems

Exercise 6.1. Show that XX> + λIm is non-singular for any λ > 0.
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Exercise 6.2. Derive the solution to the following weighted ridge regression problem

minimize ‖y −Xw‖2 + λ‖w‖2q, (6.32)

where ‖w‖2q =
∑d
i=1 qiw

2
i where qi > 0 for all i.

Exercise 6.3. Derive the solution to the following shifted ridge regression problem

minimize ‖y −Xw‖2 + λ‖w − v‖2, (6.33)

where v ∈ Rd is a fixed vector.

Exercise 6.4. Repeat Exercise 5.4 for the regularized least squares solution ŵλ. That is, find the new
regularized least squares solution in terms of the old one when one new data point is given.

Exercise 6.5. Let w be a random vector that is a multivariate Gaussian with zero mean and covariance
matrix λI. Let y be a correlated Gaussian random vector dependent on x according to the linear model
y = Xw + e where e is a multivariate Gaussian with zero mean and covariance matrix I. Show that the
maximum a posteriori (MAP) estimate of w given y (see (3.13)) is exactly the ridge regression solution
in (6.8). This shows that the ridge regression solution can be interpreted as a Bayesian estimate of an
unknown vector corrupted in Gaussian noise.

Exercise 6.6. As we have seen from Section 6.2.3, the dual solution can be interpreted in terms of the
coefficients (a1, a2, . . . , am). To do so, we need to compute the kernel matrix K(x,x′) evaluated at two
training points x and x′. Suppose that we consider two-dimensional feature vectors x = (x1, x2) and x′ =
(x′1, x

′
2) and a polynomial feature vector of order two, i.e., a polynomial of the form (6.31). Show that if the

polynomial features corresponding to x are given by
[
1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2

]
, the equivalent kernel

K(x,x′) is (1 + 〈x,x′〉)2 = (1 + x1x
′
1 + x2x

′
2)2.

The point here is that for the purpose of polynomial regression, we do not have to form the high-
dimensional feature vector [1,

√
2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2]; all we have to do to compute the kernel matrix

[K(xi,xj)]i,j is to compute (1 + 〈xi,xj〉) (raised to the desired power) for each i, j. This demonstrates the
power and utility of kernels.

6.A Dimension of Feature Space of Polynomial Kernel (Optional)

The polynomial kernel (of order p) is defined as Kp(x,x
′) = (1 + 〈x,x′〉)p. We claim that dimension of the

feature space of the polynomial kernel Kp(·, ·) is
(
p+d
d

)
. Expanding the polynomial kernel using the binomial

theorem we have Kp(x,x
′) =

∑p
s=0

(
p
s

)
(〈x,x′〉)s . A possible feature space is given by all monomials of degree

exactly s, namely xi11 x
i2
2 . . . xidd where ij ∈ N and

∑d
j=1 ij = s.

So we just have to show that the number of monomials of degree at most p in d variables is
(
p+d
p

)
=
(
p+d
d

)
.

This original constraint is 0 ≤ ∑d
j=1 ij ≤ p where (i1, i2, · · · , id) ∈ {0, 1, · · · , p}d. If we introduce id+1 ∈

{0, 1, · · · , p}, this is equivalent to
∑d+1
j=1 ij = p. The term id+1 takes care of the “slack” in the inequality. So

it would be like dividing a row of p balls into d+ 1 partitions, which requires d dividers. Then it boils down
to choosing which d of the p+ d objects to be the dividers, hence

(
p+d
d

)
.

6.B Equivalence of Primal and Dual Solutions (Optional)

Here, we show that for any λ > 0 and for any (X,y), we have

(X>X + λI)−1X>y = X>(XX> + λI)−1y. (6.34)

For this, we use the Woodbury matrix identity,

(I + UV)−1 = I−U(I + VU)−1V. (6.35)
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Starting from the expression on the right of (6.34), we have

X>(XX> + λI)−1y = λ−1X>(I + λ−1XX>)−1y (6.36)

= λ−1X>
[
I− λ−1X(I + λ−1X>X)−1X>

]
y (6.37)

= λ−1(X>y −X>X(X>X + λI)−1X>y) (6.38)

= λ−1(I−X>X(X>X + λI)−1)X>y (6.39)

= λ−1
[
I− (X>X + λI)(X>X + λI)−1 + λI(X>X + λI)−1

]
X>y (6.40)

= (X>X + λI)−1X>y, (6.41)

where (6.37) follows from the Woodbury matrix identity with the identifications U ≡ λ−1X and V ≡ X>.
This is an alternative proof, based solely on matrix algebra, that the primal and dual forms of the least
squares solutions in (6.8) and (6.19) are the same.
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Chapter 7

Overfitting and the Bias-Variance
Tradeoff

In this chapter, we motivate overfitting by provide a interesting real-life example illustrating its perils. We
then use polynomial regression to describe overfitting and underfitting. Finally, we use linear regression to
clearly illustrate the bias-variance tradeoff.

7.1 Beware of Overfitting!

As you have learned, in machine learning, we want to learn a model that fits the pattern of the data and not
the data itself. Learning an overly complex model that “hugs” the data too tightly may result in overfitting.
In this section, we describe an example in which overfitting has catastrophic consequences. This example,
which should be of interest to the structural engineers in the class, is taken from Brian Stacey’s report [Sta16],
with additional analysis from Nate Silver [Sil12], whose book [Sil12] I strongly recommend.

(a) Overfitting (b) Linear Fit (Gutenberg-Richter)

Figure 7.1: Plots of the predictions based on historical data

As you probably have heard of, in March 2011, there was a major earthquake in Japan that affected the
Fukushima nuclear power plant. In fact, the design of the plant was based on historical earthquake data over
more than 400 years. It was designed to withstand an earthquake of magnitude 8.6 (on the Richter scale).
However, the earthquake in March 2011 had a magnitude of 9.0. Could this have been prevented with better
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Figure 7.2: Polynomial regression with various orders

engineering? Perhaps if the engineers had taken NUS EE2211, they would have been in a better position to
prevent the Fukushima disaster by using a more conservative and sturdy design for the plant.

The historical earthquake data is shown as scatter plots in Fig. 7.1. As can be seen, small earthquakes
occur frequently while massive earthquakes occur rarely. The engineers saw the data and because of the
kink around magnitude 7.3, they fitted a polynomial model (of order > 1), resulting in Fig. 7.1(a). Note
that the regression curve “hugs” the points very closely. There is, however, another method known as the
Gutenberg-Richter model which uses simple linear regression to predict frequency versus magnitude. It looks
like Fig. 7.1(b). The models in Fig. 7.1(a) and Fig. 7.1(b) respectively say that an earthquake of magnitude
9.0 will occur on average once every 104 years and 500 years. Since the data is collected over 400 years, an
earthquake of magnitude 9.0 is rather likely based on the second model. Hence, the overfitting error that
the structural engineers made resulted in them designing a power plant that was not sufficiently strong to
withstand a 9.0-earthquake, one that may occur once every 500 (as opposed to 104) years. This shows the
importance of fitting the pattern of the data, and not the actual data.

7.2 Overfitting for Polynomial Regression

Now let us refer to a more concrete example based on what we have learned regarding polynomial regression
in Section 6.4. In Fig. 7.2, we generated m = 10 data points from the one-dimensional quadratic model

y = 4x2 − 2x+ 3 + e, (7.1)

where e is a zero-mean unit variance Gaussian random variable. More precisely, the points on the abscissa
x are equally spaced between −2 and 2, while the points on the ordinate are generated according to (7.1)
given the x’s. The 10 points are plotted as blue crosses in Fig. 7.2. If we only observed these points, in
general, we will not be able to know the order of the polynomial and, of course, the coefficients. We found
and plotted the least squares curves assuming polynomials with orders 1, 2 and 9.

• For the polynomial of order 1, we are using affine functions of the form y = w0 + w1x. The fit is not
good as the model is too simple and the error between the training points and the learned line is bad.
If we have a new data point xnew, we expect that the model fit is also bad. For example, if xnew = 1.8,
the prediction is around 6.2 which is very far from the ground truth 4(1.8)2− 2(1.8) + 3 = 12.36. This
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Order Fit on Training Data Fit on Test Data MSE Remarks
1 Bad Bad High Underfitting
2 Good Good Low Correct Order
9 Perfect Very Bad High Overfitting

Table 7.1: Summary of effect of various polynomial orders for the data points in Fig. 7.2

Polynomial Order

MSE

Test Fit

Train Fit

1 9

Figure 7.3: Schematic of the training and test errors in terms of the MSE with respect to polynomial order
(complexity). The minimum of the test fit curve should be near the true polynomial order; in the case of
Fig. 7.2, the optimal polynomial order is 2.

can be quantified more precisely in terms of the mean-squared error (MSE), which will be high. This
is a case of underfitting.

• For the polynomial of order 9, we are using functions of the form y =
∑9
i=0 wix

i. Since there are
only 10 data points, it can seen that the fit on the training points is perfect.1 However, if we have a
new data point xnew, we also expect that the model fit is very bad. For example if xnew = 1.8, the
prediction is around 23, which is again very far from the ground truth 12.36. This is a case of severe
overfitting, which may be disastrous as described in Section 7.1, leading to the Fukushima disaster.

• For the polynomial of order 2, we are using quadratic functions y = w0 + w1x + w2x
2. The fit to

the training data points is not bad; the errors are all reasonably small. More importantly, on new
data points, we can see that the prediction is also good. This is unsurprising as the model we posit, a
quadratic, is the same as the true one.

This discussion is summarized in Table 7.1 and Fig. 7.3. Thus, the point we want to make here is that
the choice of the model is of paramount importance. If we choose a model that is either too simple or too
complex, predictions made on new data points (that are not part of the training set) will be bad, i.e., the
MSEs of predictions on new data points will be high. We should choose a model that fits the pattern of the
data and not the actual data itself. One can choose the (polynomial) model by cross-validation, a topic we
discuss in Chapter 10. The code used to generate Fig. 7.2 is available in Appendix 7.A. You can play with
it to generate polynomials of other orders.

1This is because the training points are distinct and so the 10 by 10 polynomial design matrix, a so-called Vandermonde
matrix, is non-singular.
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7.3 Bias-Variance Tradeoff for Linear Models with Ridge Regres-
sion

Another way we can control the complexity of models is via regularization. In this section, we illustrate
the use of regularization in controlling the mean-squared error. En route, we also discuss the bias-variance
tradeoff. First, consider the linear model for d-dimensional data

y = w∗0 + w∗1x1 + . . .+ w∗dxd + e (7.2)

where e is zero-mean noise with variance σ2 (not necessarily Gaussian). We can also write (7.2) more
compactly as

y = f(x) + e (7.3)

where f(x) = x̃>w∗ and the bias-augmented sample is x̃ =

[
1
x

]
∈ Rd+1 and w∗ = (w∗0 , w

∗
1 , . . . , w

∗
d)> ∈ Rd+1

is the unknown weight or coefficient vector. We observe samples from a dataset D = {(xi, yi)}mi=1 where
xi ∈ Rd and yi ∈ R for 1 ≤ i ≤ m are respectively the feature vectors and targets. Stacking these observations
into matrix form, we obtain

y = Xw∗ + e (7.4)

where X ∈ Rm×(d+1) is the design matrix with a vector of ones in the first column, y = (y1, y2, . . . , ym)> ∈
Rm is the length-m vector of targets and e = (e1, e2, . . . , em)> ∈ Rm is the vector of i.i.d. noises. Note that
E[e] = 0 and Cov(e) = σ2I.

Suppose we do least squares regression with X assumed to be full column rank (usually the case when
m > d+ 1). Then you know that the least squares estimate of the unknown w∗ is

ŵls = (X>X)−1X>y ∈ Rd+1. (7.5)

Given a new (or test) sample x ∈ Rd, we can obtain its prediction as the following inner product

f̂D(x) = x̃>ŵls = x̃>(X>X)−1X>y. (7.6)

Let us evaluate the bias and variance of f̂D(x) in (7.6); note that f̂D(x) is only random through the
noise e (not the dataset (X,y), the true coefficients w∗, or the test sample x). Also recall that the bias is

Bias(f̂D(x)) = E[f̂D(x)] − f(x). The term E[f̂D(x)], which is an expectation (or colloquially an average)

over all training datasets D, was denoted as f̂avg(x) in the lecture notes. In the following calculation, we will
keep the training samples xi the same but only average over their noises ei, or equivalently, their targets yi.
We have

Bias(f̂D(x)) = E
[
f̂D(x)− f(x)

]
(7.7)

(7.6)
= E

[
x̃>(X>X)−1X>y − f(x)

]
(7.8)

(7.4)
= E

[
x̃>(X>X)−1X>(Xw∗ + e)− f(x)

]
(7.9)

(7.3)
= E

[
x̃>(X>X)−1(X>X)w∗ + x̃>(X>X)−1X>e− x̃>w∗

]
(7.10)

= x̃>w∗ + x̃>(X>X)−1X>E[e]− x̃>w∗ = 0, (7.11)

so the least squares estimator is unbiased. We emphasize that the only quantity that is random in the above
calculation is the noise e. For the variance, we first note from (7.6) that f̂D(x) = x̃>w∗ + x̃>(X>X)−1X>e

and since x̃>w∗ is deterministic, the variance of f̂D(x) is that of x̃>(X>X)−1X>e. Let c = X(X>X)−1x̃.
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Then

Var
(
f̂D(x)

) (7.6)
= Var

(
c>e

)
(7.12)

=

m∑
i=1

c2iVar(ei) (7.13)

= ‖c‖2σ2 (7.14)

=
∥∥X(X>X)−1x̃

∥∥2
σ2 (7.15)

= x̃>(X>X)−1X>X(X>X)−1x̃σ2 (7.16)

= x̃>(X>X)−1x̃σ2. (7.17)

Note that (7.13) holds because the ei’s (noises added on to the training samples) are assumed to be indepen-

dent. This result is intuitive because Var(f̂D(x)) is proportional to σ2 and as the number of training samples
m increases, the design matrix X>X =

∑m
i=1 xix

>
i ∈ R(d+1)×(d+1) (sum of rank-one outer products) also

increases linearly and so (X>X)−1 decreases as 1/m.2 Recall that the bias-variance formula says that

MSE(f̂D(x)) = E
[
(f(x) + e− f̂D(x))2

]
(7.18)

=
(
Bias(f̂D(x))

)2
+ Var(f̂D(x)) + Irreducible Noise. (7.19)

See Appendix 7.B for a proof of this formula. The three terms can be explained as follows:

• The bias quantifies the error caused by simplifying assumptions in the model. For example, when we
use a linear function to approximate a model which is inherently quadratic, we will suffer some bias.

• The variance quantifies how much the estimated solution f̂D(x) fluctuates around its mean.

• The irreducible error quantifies the measurement noise that is inherent in the new test sample.

For the least squares predictor in (7.6), putting the bias in (7.11) and variance in (7.17) together, we see
that

MSE(f̂D(x)) = σ2
(
x̃>(X>X)−1x̃ + 1

)
. (7.20)

Now, we go a bit further and calculate explicit expressions for the bias and variance when we use ridge
regression with regularization parameter λ > 0. In this case, we can jettison the assumption that X has full
column rank and we have

ŵλ = (X>X + λI)−1X>y ∈ Rd+1. (7.21)

The prediction of the target of a new sample x (another column vector), denoted as f̂D,λ(x), is

f̂D,λ(x) = x̃>ŵλ = x̃>(X>X + λI)−1X>y, (7.22)

where x̃ ∈ Rd+1 is the bias-augmented version of x. Note that for λ > 0, the prediction is smaller than the
unregularized case because of the additional term +λI in the inverse. Thus, this is sometimes called weight
shrinkage. Using similar but more tedious calculations (see Appendix 7.C), we obtain the bias and variance
of the ridge regularized prediction in (7.22) as follows:

Bias(f̂D,λ(x)) = −λx̃>(X>X + λI)−1w∗ and (7.23)

Var(f̂D,λ(x)) = x̃>
(
(X>X + λI)−1 − λ(X>X + λI)−2

)
x̃σ2. (7.24)

Note that since Bias(f̂D,λ(x)) 6= 0 in general, the regularized least squares solution is biased. We will see,
however, that its variance is smaller than that of the unregularized solution. Indeed, by comparing (7.17)

and (7.24), we see that for any σ2 > 0, Var(f̂D,λ(x)) ≤ Var(f̂D(x)) with equality if and only if λ = 0.

2More precisely, if xi are sampled i.i.d. from a distribution p(x), then as m grows, X>X/m→ C (in probability and almost
surely) where C = E[xix

>
i ] is the covariance matrix of xi for any i (C does not depend on i because xi are i.i.d.). Thus, roughly

speaking, (X>X)−1 decays at a rate of 1/m.
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Figure 7.4: Plots of Bias(f̂D,λ(x))2 and Var(f̂D,λ(x)) and their sum for various noise levels σ

λ Fit on Training Data Fit on Test Data MSE Remarks
0 Good Bad High Overfitting

Moderate Good Good Low Correct Regularization
Too large Bad Bad High Underfitting

Table 7.2: Summary of effect of λ

7.4 An Example of the Bias-Variance Tradeoff

We provide an example in which we can compute the bias and variance in (7.23) and (7.24) in closed form.
Say d = 1 and we observe the two (scalar) training samples x1 = −1 and x2 = 1. Let w∗ = [0, 1]> so the
true model is nothing but the simple linear model y = x+ e (cf. Eqn. (7.3)). Then

X =

[
1 −1
1 1

]
, X>X =

[
2 0
0 2

]
, (X>X + λI)−1 =

[
1/(2 + λ) 0

0 1/(2 + λ)

]
. (7.25)

Suppose our test sample is x = 1.5, i.e., we are trying to predict the target of a point outside the range of
values within our dataset. We plot Bias(f̂D,λ(x))2, Var(f̂D,λ(x)) and their sum for different noise variances
σ2 in Fig. 7.4. A few remarks are in order:

• The bias is always zero when λ = 0 or when the least squares estimator in (7.5) is used; this is in line
with (7.11). However, the squared bias grows as λ increases.

• The variance is initially large when λ = 0. However, it tends to zero as λ increases. This is in
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Figure 7.5: Plots the predicted lines given 10 noise realizations

line with (7.24). In essence, with more regularization, the solution stabilizes and the variance of the

prediction on a new test sample is reduced. It holds that Var(f̂D,λ(x))→ 0+ as λ→ 0+.

• The sum of the squared bias and variance, which is the mean-squared error minus the irreducible error
(cf. Eqn. (7.19)), has a “sweet spot” at around λ ≈ 1.44 for σ = 1.0.

• The effect of regularization is more pronounced for large noise, i.e., when σ is increased. Indeed,
observe that the reduction of the sum of the squared bias and the variance from the case in which
λ = 0 is more pronounced when the noise is larger. When the noise is large, there is severe overfitting
and we are essentially fitting the curve to the noise. Hence, it is imperative to regularize the solution.
For small σ, say σ = 0.1, the benefit of regularization is not obvious.

This discussion is summarized in Table 7.2. The code to generate Fig. 7.4 is provided in Appendix 7.D. You
can play with it to generate other bias-variance plots.

In Fig. 7.5, we generate 10 datasets D as follows. Fixing x1 = −1 and x2 = 1, we generate 10 corre-
sponding y’s according to the true model in (7.3). Using the datasets, we learned the regression lines based
on ŵλ in (7.21). Here, we fix the noise to be σ = 0.3 and consider two values of λ ∈ {0.1, 10}. For the
small λ = 0.1, we notice that the regression lines have low bias on average; their averaged value is close
to the ground truth red line y = x. However, they have large variability among themselves. For the large
regularization parameter λ = 10, we see that the lines have high bias; they do not seem to approximate the
ground truth very well indeed. However, among the 10 lines, they are close to one another and hence when
λ is large, the variance of the solution is small. Finally, we see that for large λ, the intercept and slope of
the regression lines are both small, which is intuitive as if λ is large ŵλ defined in (7.21) is small.

7.5 Practice Problems

Exercise 7.1. Suppose we have m distinct training examples xi in d dimensions. The target values yi are
related to the training examples as a polynomial of order p corrupted by some noise. What is the order of
the polynomial we need to ensure zero training error? What happens if the points xi are not distinct?

Exercise 7.2. In Section 7.3, we showed the bias-variance decomposition of the MSE. Show that in terms
of the learned parameter ŵ, we have

E
[∥∥ŵ −w∗

∥∥2
]

=
∥∥E[ŵ]−w∗

∥∥2
+ E

[∥∥ŵ − E[ŵ]
∥∥2
]
. (7.26)

The first term on the right-hand-side is squared bias in terms of estimating the parameter w. It is the
deviation of the expected value of the learned parameter ŵ from the ground truth w∗. The second term is the
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variance. It represents the fluctuation of the learned parameter ŵ around its own expectation E[ŵ]. Why is
there no irreducible error here?

Exercise 7.3. In the bias-variance tradeoff formulas in (7.19) and (7.26), the use of the squared `2 norm

to measure the discrepancy between the estimated value f̂D(x) (or estimated parameter ŵ) and target value
f(x) + e (or target parameter w∗) was important. If we use some other distance measure, the bias-variance
formula would not hold in general. However, there is one other scenario in which the bias-variance formula
would hold for a different discrepancy measure. This observation is due to Heskes [Hes98].

The Kullback-Leibler (KL) divergence between two discrete distributions p̂ and q is defined as

DKL(q ‖ p̂) =
∑
y∈Y

q(y) log
q(y)

p̂(y)
. (7.27)

Unlike the squared `2 norm, DKL is not symmetric in its arguments. Nevertheless, we will prove a bias-
variance formula. Suppose q in (7.27) is a deterministic “target” distribution (analogous to f(x) + e and

w∗). Suppose p̂ is a estimate of q (analogous to f̂D(x) and ŵ), which is allowed to be random. Define p̄ to

be the following average distribution (analogous to E[f̂D(x)] and E[ŵ])

p̄ = arg min
r:r(y)≥0 ∀y∈Y,

∑
y∈Y r(y)=1

E
[
DKL(r ‖ p̂)

]
. (7.28)

Prove the following bias-variance formula for the KL divergence

E
[
DKL(q ‖ p̂)

]
= DKL(q ‖ p̄) + E

[
DKL(p̄ ‖ p̂)

]
. (7.29)

Note that DKL(q ‖ p̄) and E[DKL(p̄ ‖ p̂)] are analogous to the squared bias and variance respectively.

7.A Code to Generate the Learned Polynomials

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import PolynomialFeatures

np.random.seed(0)

x = np.linspace(-2,2,10)

y = 4 *(x ** 2) - 2 * x + 3 + np.random.normal(0, 1, x.size)

plt.plot(x,y, ’bx’, label=’Original data points’)

orders = np.array([1, 2, 9])

strs = ["1st", "2nd", "9th"]

x_vec = np.linspace(-2,2,1000)

i = 0

for j in orders:

poly = PolynomialFeatures(degree=j)

x = np.reshape(x, (x.size,1))

P = poly.fit_transform(x)

w = np.linalg.pinv(P).dot(y)

plt.plot(x_vec, np.polyval(np.flip(w), x_vec), label=strs[i] + ’ order polynomial’)

i = i+1

plt.grid()
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plt.xlabel(’x’)

plt.ylabel(’y’)

plt.legend()

7.B Proof of Bias-Variance Formula

We prove (7.19) here. We note that f(x) is deterministic and f̂D(x) is random due to the randomness of D.
Clearly, e is also random. By expanding the right-hand-side of (7.18), we find that

MSE(f̂D(x)) = E
[(
f(x) + e− f̂D(x) + E[f̂D(x)]− E[f̂D(x)]

)2]
(7.30)

=
(
f(x)− E[f̂D(x)]

)2
+ E

[(
f̂D(x)− E[f̂D(x)]

)2]
+ E[e2]

+ 2
(
f(x)− E[f̂D(x)]

)
E[e] + 2E

[
e
(
f̂D(x)− E[f̂D(x)]

)]
+ 2
(
f(x)− E[f̂D(x)]

)
E
[
f̂D(x)− E[f̂D(x)]

]
. (7.31)

We investigate the last three terms, which we will argue are all 0. First, because E[e] = 0,

2
(
f(x)− E[f̂D(x)]

)
E[e] = 0. (7.32)

Second, because the noise on the test data point e is independent of the original dataset D and E[e] = 0,

2E
[
e
(
f̂D(x)− E[f̂D(x)]

)]
= 2E[e]E

[
f̂D(x)− E[f̂D(x)]

]
= 0. (7.33)

Third, by linearity of expectation,

2
(
f(x)− E[f̂D(x)]

)
E
[
f̂D(x)− E[f̂D(x)]

]
= 2
(
f(x)− E[f̂D(x)]

) (
E[f̂D(x)]− E[f̂D(x)]

)
= 0. (7.34)

Thus, following (7.31), we have

MSE(f̂D(x)) =
(
f(x)− E[f̂D(x)]

)2
+ E

[(
f̂D(x)− E[f̂D(x)]

)2]
+ E[e2] (7.35)

=
(
Bias(f̂D(x))

)2
+ Var(f̂D(x)) + σ2, (7.36)

where E[e2] = Var(e) = σ2 because e has zero mean.

7.C Proofs of (7.23) and (7.24)

For the bias, we have

Bias(f̂D,λ(x)) = E
[
f̂D,λ(x)− f(x)

]
(7.37)

(7.22)
= E

[
x̃>(X>X + λI)−1X>y − x̃>w∗

]
(7.38)

(7.4)
= E

[
x̃>(X>X + λI)−1X>(Xw∗ + e)− x̃>w∗

]
(7.39)

= E
[
x̃>(X>X + λI)−1(X>Xw∗ + X>e)− x̃>w∗

]
(7.40)

= E
[
x̃>(X>X + λI)−1((X>X + λI)w∗ − λw∗ + X>e)− x̃>w∗

]
(7.41)

= x̃>w∗ − λx̃>(X>X + λI)−1w∗ + E
[
x̃>(X>X + λI)−1X>e

]
− x̃>w∗ (7.42)

= −λx̃>(X>X + λI)−1w∗ (7.43)
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as desired. For the variance, we first note that the prediction can be simplified as follows:

f̂D,λ(x) = x̃>(X>X + λI)−1X>(Xw∗ + e) (7.44)

= x̃>(X>X + λI)−1X>Xw∗ + x̃>(X>X + λI)−1X>e. (7.45)

The first part is non-random. So the variance of f̂D,λ(x) is precisely that of the noise term x̃>(X>X +
λI)−1X>e. Let c = X(X>X+λI)−1x̃. Then by the same steps as those for the variance of the unregularized
case (see steps leading to (7.14)),

Var(f̂D,λ(x)) = ‖c‖2σ2 (7.46)

= x̃>(X>X + λI)−1X>X(X>X + λI)−1x̃σ2 (7.47)

= x̃>(X>X + λI)−1
[
(X>X + λI)− λI

]
(X>X + λI)−1x̃σ2 (7.48)

= x̃>(X>X + λI)−1
(
I− λ(X>X + λI)−1

)
x̃σ2 (7.49)

= x̃>
(
(X>X + λI)−1 − λ(X>X + λI)−2

)
x̃σ2 (7.50)

as desired.

7.D Code to Generate the Bias-Variance Plots

import numpy as np

import matplotlib.pyplot as plt

X = np.array([[1, -1], [1, 1]])

XTX = X.T @ X

N = 1000

lam = np.linspace(0.0001,5,N)

x_test = 1.5

x = np.array([1, x_test])

w_s = np.array([0, 1]).T

sigma = 1

bias = np.zeros(N)

var = np.zeros(N)

for i in range(0, len(lam)):

reg = lam[i]*np.identity(2)

bias[i] = -reg @ x @ np.linalg.inv(XTX + reg) @ w_s

var[i] = x @ ( np.linalg.inv(XTX + reg) - lam[i] * np.linalg.inv(XTX + reg)

@ np.linalg.inv(XTX + reg))@x.T*sigma**2

MSE = np.power(bias,2)+var

plt.plot(lam, np.power(bias,2), label = ’Bias squared’)

plt.plot(lam, var, label = ’Variance’)

plt.plot(lam, MSE, label = ’MSE without irr noise’)

plt.legend()

plt.grid()

plt.xlabel(’lambda’)

plt.savefig(’bias_variance.eps’, format=’eps’)

print(lam[np.argmin(MSE)])
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Chapter 8

Loss Functions, Regularizers and
Gradient Descent

In this chapter, we provide several examples of loss functions and regularizers in Section 8.1. We also
illustrate some interesting features of the gradient descent algorithm in Section 8.2. You do not need to
know the convergence analysis in the latter half of Section 8.2 (i.e., from Eqn. (8.5) onwards).

8.1 Loss Functions and Regularizers

In this module thus far, we are given dataset D = {(xi, yi)}mi=1 and we wish to find a vector of weights w
that minimizes the “distance” between Xw and y where X is the design matrix (with or without an offset)
and y is the vector of targets. How did we measure the “distance”? We considered the criterion

minimize

m∑
i=1

(x>i w − yi)2. (8.1)

We can write each term as Loss(f(xi,w), yi) where Loss(ŷ, y) = (ŷ − y)2 is the l2 loss and f(xi,w) = x>i w
is a function of the i-th training sample xi and the weight vector w. In addition, to stabilize the solution,
we added a regularization term or regularizer R(w) = ‖w‖2 = w>w =

∑d
i=1 w

2
i to the objective function

in (8.1). This resulted in the ridge regression problem

minimize
m∑
i=1

(x>i w − yi)2 + λ‖w‖2 ⇐⇒ minimize ‖Xw − y‖2 + λ‖w‖2. (8.2)

Recall that λ is known as the regularization parameter. Most machine learning problems can be stated as

minimize

m∑
i=1

Loss(f(xi,w), yi) + λR(w), (8.3)

where Loss(ŷ, y) is a loss function and R(w) is a regularization term. Note that f(xi,w) is the prediction of
the target or class of xi and so we will denote this as ŷi, or simply ŷ if the sample is x (without an index).

Let us provide some examples of loss functions.

• The l2 loss is Loss(ŷ, y) = (ŷ−y)2. This loss function, used for regression, is perhaps the most common
and is used for least squares problems as you have learned in EE2211.

• The l1 loss is Loss(ŷ, y) = |ŷ − y|. This loss function, also used for regression, enforces robustness to
outliers. To wit, the minimum of

∑m
i=1 |w − yi| over w is the median of the yi’s. The l1 and l2 losses

are plotted in Fig. 8.1(a). Generally, for regression, loss functions measure the deviation of y and ŷ.
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Figure 8.1: Plots of various losses.

• The 0-1 loss is Loss(ŷ, y) = 1{yŷ ≤ 0}. This loss function is often a starting point in (binary)
classification but is difficult to optimize analytically as it is non-convex and non-differentiable. Note
that we incur a loss of 1 (resp. 0) if the signs of y and ŷ do not coincide (resp. do coincide).

• The exponential loss is Loss(ŷ, y) = exp(−yŷ). This loss function is used in boosting [FS97], a popular
algorithm for classification.

• The hinge loss is Loss(ŷ, y) = max{0, 1 − yŷ}. This loss function is used in support vector machines
(SVMs) [Vap95], another popular algorithm for classification.

• The logistic loss is Loss(ŷ, y) = log[1 + exp(−yŷ)]. This loss function is used in logistic regression,
which has a probabilistic interpretation.

The last four losses, used for classification, are plotted in Fig. 8.1(b). Notice that the losses are monotonically
non-increasing in yŷ, which can be interpreted as the agreement between the true target y and the estimated
one ŷ. The more agreement there is, the smaller the loss. The agreement is also called margin in statistical
learning theory. Observe from Fig. 8.1(b) that the exponential and hinge losses are convex surrogates of the
0-1 loss, i.e., convex functions that “approximate” the 0-1 loss.

Let us provide some examples of regularizers.

• The ridge or Tikhonov regularizer R(w) = ‖w‖2 =
∑m
i=1 w

2
i . This enforces that the solution’s mag-

nitude is small, enhances robustness and mitigates overfitting as you have seen in previous lectures.
This is also used in SVMs.

• The total variation regularizer R(w) = ‖w‖2TV =
∑m−1
i=1 (wi+1 − wi)2 forces adjacent elements of w to

be close to one another. It is particularly useful in signal smoothing or image denoising problems.

• The l1 regularizer (or Manhattan norm) R(w) = ‖w‖1 =
∑m
i=1 |wi| enforces sparsity in the elements

of w. This is useful in feature selection or extraction. It a cornerstone of compressed sensing, which
used to be very popular. The l2 loss coupled with the l1 regularizer is called the Lasso [Tib96], which
stands for Least Absolute Shrinkage and Selection Operator.

There is a lot more we can say about loss functions and regularizers (see [HTF09]) but we will not delve into
these topics in any further detail in this course.

8.2 Gradient Descent Algorithm

In machine learning, besides the formulation of a suitable loss function with a regularization term, it is
imperative to choose an optimization algorithm to optimize the chosen objective function. For the purposes
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of this course, we will only discuss the ubiquitous gradient descent algorithm. It works as follows. We are
given an objective function C : Rd → R and we would like to find

w∗ = arg min
w∈Rd

C(w). (8.4)

Figure 8.2: The gradient vector (indicated in
the black arrow) points in the direction of
steepest ascent.

We will assume that C is differentiable. Hence, if C
includes the l1 regularizer ‖w‖1, it does not satisfy this
differentiability assumption and we might have to use al-
ternative methods such as subgradient or proximal gradient
methods. The intuition for the gradient descent algorithm
is the following. The gradient of C at w, which is denoted as
∇wC(w) points in the direction that C increases the fastest;
see Fig. 8.2. To minimize it, we want to walk in the direc-
tion in which f decreases the fastest, which is −∇wC(w).
Now that we have established a direction for us to walk,
we need to decide how far to follow in this direction. This
is dictated by our choice of the step-size or learning rate,
which is usually denoted as η, a positive number. We walk
in the direction −∇wC(w) for a distance of η, stop and find
a new direction to follow, walk along that direction for an-
other possibly different length η′, and so on. The iterative
algorithm is summarized in Algorithm 1. The k-th iterate
of the optimization variable is denoted as w(k).

There are many termination criteria one could use. For
example, we could use the following criteria.

• Gradient becomes smaller than a threshold, i.e., ‖∇wC(w(k))‖ ≤ ε;
• Difference in function values becomes smaller than a threshold, i.e., |C(w(k))− C(w(k+1))| ≤ ε;
• Difference in iterates becomes smaller than a threshold, i.e., ‖w(k) −w(k+1)‖ ≤ ε;
• Iteration number exceeds a certain threshold.

In Algorithm 1, we adopt the first stopping criterion, which makes sense because at any optimal solution,
the first-order optimality condition dictates that ∇wC(w) = 0.

An important design parameter here is the step-size η. If η is too small, we take too long to converge as
the steps are too short. If η is too large, we may “overshoot” the minimum. Note that η can also depend on
the iteration number k. In practice, on datasets with little structure, one makes “guesses” for an appropriate
step-size but this is unsatisfactory from a theoretical standpoint. Can we do better? In this section, we show
that indeed, at least for a small class of “nice” functions, we can analytically find the best step-size that
minimizes the number of steps until which a certain convergence criterion is satisfied.

Let us consider the objective function given by the quadratic form

C(w) =
1

2
w>Qw (8.5)

where Q is a positive definite (and symmetric) matrix. Clearly the optimal solution (why can we use “the”
here?) is w∗ = 0. The gradient of C with respect to w = [w1, w2]> is ∇wC(w) = Qw. For concreteness in
the subsequent discussion, say Q is the diagonal matrix

Q =

[
λ1 0
0 λ2

]
(8.6)

so the objective function is

C(w) =
1

2
(λ1w

2
1 + λ2w

2
2) (8.7)
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Data: Differentiable function f ; Step-size η > 0; Stopping threshold ε > 0
Result: An approximate solution to minw C(w)
Initialize: Initial point w(0); iteration count k = 0; flag notConverged = true
while notConverged do

w(k+1) ← w(k) − η∇wC(w(k));
k ← k + 1;
if ‖∇wC(w)‖ < ε then

notConverged = false;
end

end
Algorithm 1: Gradient descent with constant step size

for some λi > 0 for i = 1, 2. Without loss of generality, assume λ2 ≥ λ1. The iterative steps of the gradient
descent algorithm are

w(k+1) = w(k) − η∇wC(w(k)) (8.8)

= w(k) − ηQw(k) (8.9)

= (I− ηQ)w(k). (8.10)

By noting that the matrix I− ηQ is also diagonal, we have

w(k+1) =

[
1− ηλ1 0

0 1− ηλ2

]
w(k). (8.11)

If the algorithm is initialized at w(0), then clearly (or by induction), the k-th iterate

w(k) =

[
(1− ηλ1)k 0

0 (1− ηλ2)k

]
w(0). (8.12)

Hence, in order to maximize the the rate or speed of decay1 of w(k) to 0, we should solve the following
optimization problem

η∗ = arg min
η>0

max
{
|1− ηλ1|, |1− ηλ2|

}
. (8.13)

This requires a moment’s of thought.
The solution of (8.13) is η∗ = 2/(λ1 + λ2); see Fig. 8.3. This is the step-size that minimizes the number

of iterations until ‖w(k)‖2 < ε for any ε > 0. Substituting the optimal η∗ into (8.12), we see that

‖w(k)‖2 =

(
λ2 − λ1

λ2 + λ1

)k
‖w(0)‖2. (8.14)

Observe that if λ1 = λ2 (isotropic), regardless of the initial point, gradient descent converges in one step
using the optimal step-size. If λ1 6= λ2, then to ensure that ‖w(k)‖2 < ε, we need log

(
‖w(0)‖2/ε

)
log
(λ2/λ1+1
λ2/λ1−1

)
 iterations. (8.15)

This is called linear convergence in the optimization literature because the dependence of the number of
iterations on ε is O(log(1/ε)).2 The ratio λ2/λ1 ∈ [1,∞) is known as the condition number. The smaller it

1By “maximize the rate of decay”, roughly speaking, we mean the minimizing the contraction factor ρ ∈ (0, 1), i.e., the
constant ρ satisfying ‖w(k)‖ ≤ ρk‖w(0)‖ for k large enough. The smaller the ρ, the faster ‖w(k)‖ converges to zero. For
example, 0.99k and 0.5k require k ≥ 688 and k ≥ 10 to be less than 10−3.

2This nomenclature appears strange initially but on log scales, the convergence as given by (8.14) is indeed linear.
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Figure 8.3: Illustration of (8.13) for λ1 = 1 and λ2 = 3. In this case, η∗ = 2/(1 + 3) = 0.5.
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Figure 8.4: Illustration of gradient descent on two examples

is, the faster the convergence. Notice that λi > 0 for i = 1, 2 are the eigenvalues of the matrix Q. In general
(i.e., not necessarily d = 2 or diagonal or isotropic Q), the formula one should use to minimize a quadratic
form in (8.5) is

η∗ =
2

λmin(Q) + λmax(Q)
, (8.16)

where λmin(Q) and λmax(Q) are respectively the minimum and maximum eigenvalues of Q. This is true
more generally (see Exercise 8.3) for so-called strongly convex functions with bounded Lipschitz gradients
(strongly smooth); see recent work [TVT21] for a unified way of proving convergence rates of first-order
optimization algorithms based on sum-of-squares (polynomial) optimization.

In Fig. 8.4, we show the iterates of gradient descent for two examples

(a) Q1 =

[
1 0
0 1.5

]
and (b) Q2 =

[
2 1
1 15

]
. (8.17)

The contours (level sets) of Ci(w) = 1
2w>Qiw for i = 1, 2 are also plotted. We use the optimal step

size as given in (8.16). Our stopping criterion is ‖w(k)‖2 < 10−5 and for both problems, we start from
w(0) = [5, 3]>. We see that gradient descent on these problems “work” (in the sense of w(k) converging
to 0 as k → ∞) but for the well-conditioned problem involving Q1, the convergence is much faster than
the ill-conditioned problem involving Q2 (which is also non-isotropic). Indeed, Fig. 8.4(b) shows that the
iterates exhibit inefficient zig-zag behavior. To get to ‖w(k)‖2 < 10−5, the well-conditioned problem requires
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only 9 iterations but the ill-conditioned problem requires 52 iterations. Optimization of ill-conditioned
problems can be improved via pre-conditioning, conjugate gradient methods, or Newton’s method (if C is
twice differentiable and we have the computational resources). The code to generate Fig. 8.4 is provided in
Appendix 8.A.

There is a lot more we can say about optimization theory and optimization algorithms [BV04] but
unfortunately, the only algorithm that you will learn in EE2211 is gradient descent with constant step-size.

8.3 Practice Problems

Exercise 8.1. Consider the univariate function C(w) = 5w2 and the initial point w0 = 2. Find the learning
rate η so that gradient descent converges in one step. Find the set of learning rates such that gradient descent
diverges. Finally, find the set of learning rates such that gradient descent converges.

Exercise 8.2. Show that the optimal step size for a general positive definite matrix Q is (8.16).

Exercise 8.3. One way to find the step size for a general function is to use use exact line search

η = arg min
s>0

f (w − s∇wf(w)) . (8.18)

Show that if f is (µ,L)-strongly convex (i.e., µI � ∇2
wf(w) � LI for 0 < µ < L <∞), then gradient descent

with exact line search converges linearly. Identify the rate of convergence.

8.A Code for Gradient Descent for Quadratic Functions

import numpy as np

import matplotlib.pyplot as plt

Q = np.array([[1, 0], [0, 1.5]])

[x1,x2] = np.meshgrid(np.linspace(-10,10,1001),np.linspace(-10,10,1001))

x_vals = np.linspace(-10, 10, 1001)

y_vals = np.linspace(-10, 10, 1001)

X, Y = np.meshgrid(x_vals, y_vals)

Z = Q[0,0]*X**2 + Q[1,1]*Y**2 + 2*Q[0,1]*X*Y

cp = plt.contour(X, Y, Z, np.linspace(0,200,10))

x_iter = np.array([[5], [3]]);

notConverged = 1;

lambdas, v = np.linalg.eig(Q)

eta = 2/(np.max(lambdas)+np.min(lambdas)) # optimal step size

iter = 0

x = np.zeros([2,1000])

while notConverged and iter < 1e3:

plt.plot(x_iter[0],x_iter[1],’gx’)

x[:,iter] = x_iter.T

x_iter = x_iter - eta*Q.dot(x_iter)

if (np.linalg.norm(x_iter) < 1e-5):

notConverged = 0

iter = iter + 1

plt.plot(x[0,0:iter-1],x[1,0:iter-1],’b--’)
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Chapter 9

Decision Trees for Classification and
Regression

In this chapter, we provide examples of the use of decision trees for classification and regression. We present
all the steps slowly to aid understanding. It is my hope that this will bring some clarity to the algorithms,
which are usually done using tree.DecisionTreeClassifier() and tree.DecisionTreeRegressor() in
sklearn. It is good, and indeed essential, to know what exactly is going on in these powerful functions.

9.1 Decision Trees for Classification

Consider the dataset on whether we decide or not to play golf G. Here, there are four features or attributes—
outlook O, temperature T , humidity H and wind W . There are a total of 15 labelled training samples.

Outlook Temp Humidity Wind Golf
1 Rainy Hot High False No
2 Rainy Hot High True No
3 Overcast Hot High False Yes
4 Sunny Mild High False Yes
5 Sunny Cool Normal False Yes
6 Sunny Cool Normal True No
7 Overcast Cool Normal True Yes
8 Rainy Mild High False No
9 Rainy Cool Normal False Yes
10 Sunny Mild Normal False Yes
11 Rainy Mild Normal True Yes
12 Overcast Mild High True Yes
13 Overcast Hot Normal False Yes
14 Sunny Mild High True No
15 Sunny Mild Normal True Yes

We want to build a decision tree using the (Shannon) entropy impurity measure Qm. For a node m,

Qm = −
c∑
i=1

pi log pi, (9.1)

where c is number of classes, pi is the fraction of samples in class i, and log( · ) = log2( · ).
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1. Our first attribute to split is decided in the following way. First, we calculate the entropy of the class
label G. We have

QG = −pYes log pYes − pNo log pNo

= −10

15
log

10

15
− 5

15
log

5

15
= 0.9183. (9.2)

Now, we have to calculate the average conditional entropy of G given O, T , H and W . Let us show
how to do this for the average conditional entropy of G given O. The outlook can take on 3 different
values Rainy, Overcast and Sunny. We create the three sub-tables fixing the outlook to these three
values. When we fix the outlook to Rainy, we get the following table.

Outlook Temp Humidity Wind Golf
1 Rainy Hot High False No
2 Rainy Hot High True No
8 Rainy Mild High False No
9 Rainy Cool Normal False Yes
11 Rainy Mild Normal True Yes

Thus, the conditional entropy of G given that O = Rainy is

QG|Rainy = −pYes|Rainy log pYes|Rainy − pNo|Rainy log pNo|Rainy

= −2

5
log

2

5
− 3

5
log

3

5
= 0.971. (9.3)

When we fix the outlook to Overcast, we get the following table.

Outlook Temp Humidity Wind Golf
3 Overcast Hot High False Yes
7 Overcast Cool Normal True Yes
12 Overcast Mild High True Yes
13 Overcast Hot Normal False Yes

Thus, the conditional entropy of G given that O = Overcast is

QG|Overcast = −pYes|Overcast log pYes|Overcast − pNo|Overcast log pNo|Overcast

= −4

4
log

4

4
− 0

4
log

0

4
= 0. (9.4)

Since all the labels here are the same (Yes), this is a pure node.

Finally when we fix the outlook to Sunny, we get the following table.

Outlook Temp Humidity Wind Golf
4 Sunny Mild High False Yes
5 Sunny Cool Normal False Yes
6 Sunny Cool Normal True No
10 Sunny Mild Normal False Yes
14 Sunny Mild High True No
15 Sunny Mild Normal True Yes

Thus, the conditional entropy of G given that O = Sunny is

QG|Sunny = −pYes|Sunny log pYes|Sunny − pNo|Sunny log pNo|Sunny

= −4

6
log

4

6
− 2

6
log

2

6
= 0.9183. (9.5)
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Figure 9.1: Decision Tree for the golf example. Terminal (leaf) nodes where decisions are made are indicated
in orange.

The conditional entropy of G given O is then

QG|O = pRainyQG|O=Rainy + pOvercastQG|O=Overcast + pSunnyQG|O=Sunny

=
5

15
× 0.9710 +

4

15
× 0 +

6

15
× 0.9183 = 0.6910. (9.6)

Thus, the gain of the attribute O over class G is

Gain(O;G) = QG −QG|O = 0.9183− 0.6910 = 0.2273. (9.7)

In a similar way, we can compute the gains of various other attributes over class G as

Gain(T ;G) = 0.0325, Gain(H;G) = 0.1686, Gain(W ;G) = 0.0258. (9.8)

Make sure you know how to compute these based on the calculation above. Note that these gains are
always non-negative, or equivalently, QG|a ≤ QG for attributes a ∈ {O, T,H,W}. In other words, the
impurity can only go down as we split nodes. We provide a proof of this in Appendix 9.A.

Since Gain(O;G) yields the largest gain over all features, the first split will be based on attribute O. So
at this point, we have the tree shown in Fig. 9.1 but up to the 1st level only. Note that since overcast
is a pure node, if it is an overcast day, G is definitely “Yes” and we will definitely play golf.

2. Now, we have to continue splitting the tree. First, we look at the left branch where it is definitely
Sunny. Removing the Sunny variable, we have the following table.

The entropy of G for this new table is

QG = −pYes log pYes − pNo log pNo

= −4

6
log

4

6
− 2

6
log

2

6
= 0.9183. (9.9)
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Temp Humidity Wind Golf
4 Mild High False Yes
5 Cool Normal False Yes
6 Cool Normal True No
10 Mild Normal False Yes
14 Mild High True No
15 Mild Normal True Yes

For the Temp variable,

QG|Mild = 0.8113 and QG|Cool = 1 =⇒ QG|T =
4

6
QG|Mild +

2

6
QG|Cool = 0.8742. (9.10)

For the Humidity variable,

QG|High = 1 and QG|Normal = 0.8113 =⇒ QG|H =
2

6
QG|High +

4

6
QG|Normal = 0.8742. (9.11)

For the Wind variable

QG|False = 0 and QG|True = 0.9183 =⇒ QG|W =
3

6
QG|False +

3

6
QG|True = 0.4592. (9.12)

The gains are

Gain(T ;G) = 0.0441, Gain(H;G) = 0.0441, Gain(W ;G) = 0.4592. (9.13)

Hence, here we split according to the Wind variable, resulting in the left branch of the 2nd level.

3. Now, we have to split the right branch where it is definitely Rainy. Removing the Rainy variable, we
have the following table.

Temp Humidity Wind Golf
1 Hot High False No
2 Hot High True No
8 Mild High False No
9 Cool Normal False Yes
11 Mild Normal True Yes

Here, it is obvious that we should split according to the Humidity variable, resulting in the right branch
of the 2nd level.

4. Observe that when it is sunny and Windy = False, the node is pure and we declare that we will
definitely play golf. Otherwise, we have to consider the following table. In this case, both attributes
will result in the same gain (verify) and it does not matter which attribute we choose to split. Say we
choose Temp. Then the resultant tree is given the tree truncated to the 3rd level. Finally, we examine
the final attribute Humidity resulting in the tree up to the 4th level.

Temp Humidity Wind Golf
6 Cool Normal True No
14 Mild High True No
15 Mild Normal True Yes
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Figure 9.2: Comparison of impurity measures for the two-class case

Some remarks are in order. First, in practice, we may want to limit the maximum depth of the tree and
not mandate that all leaf nodes are pure. We can also prune the tree after learning it. These methods serve
to prevent overfitting. Second, observe that small changes in the dataset will result in dramatically different
trees; this is often undesirable as we want our solutions in machine learning tasks to be stable and robust.
Thus, one typically improves the robustness of decision trees by bootstrapping or using random forests.

Besides the entropy in (9.1), there are many other impurity measures we can use such as the Gini impurity
measure

Qm := 1−
c∑
i=1

p2
i (9.14)

or the misclassification rate

Qm := 1− max
i=1,...,c

pi. (9.15)

Here, c again denotes the number of classes. These impurity measures are plotted in Fig. 9.2 for binary
(Bernoulli) distributions parameterized by a single value p ∈ [0, 1], which represents the proportion of
samples in any one of the classes. Note that when the distribution is pure (i.e., p = 0 or p = 1) the impurity
measure is equal to 0. When the distribution has its most uncertainty or is most impure p = 1/2, and we
see that the impurity measures also attain their maximal values.

We note that all these measures are simple functions of a broader family of entropy measures known as
Rényi entropies

Hα(X) =
1

1− α log

c∑
i=1

pαi (9.16)

where α ≥ 0 and α 6= 1 is the parameter of the Rényi entropy. Note that when α → 1, we recover
the Shannon entropy H(X) = H1(X) = −∑c

i=1 pi log pi by invoking L’Hospital’s rule. When α = 2, we
obtain the collision entropy H2(X) = − log

∑c
i=1 p

2
i . When α → ∞, we get the min-entropy H∞(X) =

− log maxi=1,...,c pi. These quantities measure uncertainty and so its not surprising that they are used for
assessing impurity in our context. They have many other applications in other areas, not least in the study
of information theory and cryptography.
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9.2 Decision Trees for Regression

Now we consider using decision trees for regression. Consider the following (very) hypothetical dataset of
house prices in Singapore. The target variable is Price P and the attributes are House Size S and Number
of Rooms R.

House Size (’000 sq ft) Num of Rooms Price (’000,000 SGD)
1 0.5 2 0.19
2 0.6 1 0.23
3 1.0 3 0.28
4 2.0 5 0.42
5 3.0 4 0.53
6 3.2 6 0.75
7 3.8 7 0.80

Note that I have arranged the data points in increasing order of P , which so happens to be increasing
order of S as well. However, this is not the same order as that of R.

In regression, we use the mean squared error (MSE) for each node. The MSE for a node m with samples
{yi : 1 ≤ i ≤ Jm} is

Qm =
1

Jm

Jm∑
i=1

(yi − µ̂m)2 where µ̂m =
1

Jm

Jm∑
i=1

yi. (9.17)

The overall MSE is QP = 0.0520. For regression problems, we also have to determine the threshold to split
each attribute into two. Let’s focus on the House Size attribute S. If we set the threshold at τ = 0.75, then
the targets of the two classes are {0.19, 0.23} and {0.28, 0.42, 0.53, 0.75, 0.80}. The individual conditional
MSEs are

QP |S<0.75 = 4× 10−4 and QP |S≥0.75 = 0.0385 (9.18)

and thus, the averaged conditional MSE with a split of S at 0.75 is

QP |S(0.75) =
2

7
QP |S<0.75 +

5

7
QP |S≥0.75 = 0.0276. (9.19)

We need to sweep through all possible thresholds τ to determine the best threshold for attribute S. Since P
is monotonically increasing and in the same order as S, we can just use the order as presented in the table
above. Doing so, we get the following results:

QP |S(0.55) QP |S(0.75) QP |S(1.5) QP |S(2.5) QP |S(3.1) QP |S(3.5)

0.0402 0.0276 0.0145 0.0102 0.0116 0.0325

To deal with the attribute Number of Rooms R, we need to rearrange the target variables in order of
the house sizes. Doing so we get (0.23, 0.19, 0.28, 0.53, 0.42, 0.75, 0.80). Now we sweep through all possible
thresholds τ for R to get the following averaged conditional MSEs

QP |R(1.5) QP |R(2.5) QP |R(3.5) QP |R(4.5) QP |R(5.5) QP |R(6.5)

0.0435 0.0276 0.0145 0.0222 0.0116 0.0325

The minima of the split of the S and R variables at different thresholds τ are shaded. We choose
the minimum MSE as doing so and keeping in mind that QP is the same throughout, the gain which is
Gain(S(τ);P ) = QP − QP |S(τ) or Gain(R(τ);P ) = QP − QP |R(τ) for various τ is maximized (just like for
classification). We see that the minimum MSE is attained for the split of the S attribute at τ = 2.5.

Thus, for the first split, we should split the dataset into two branches, the left branch indicating S < 2.5
and the right with S ≥ 2.5. We then split the dataset into two sub-datasets and we may decide to stop or split
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the R feature. If we decide to stop, then for any new/test house with a house size of < 2.5, we will predict that
its price is the average of the houses in our training set whose size is < 2.5, i.e., (0.19+0.23+0.28+0.42)/4 =
0.28. Similarly, for a new/test house with a house size of ≥ 2.5, we will predict that its price is the average
of the houses in our training set whose size is ≥ 2.5, i.e., (0.53 + 0.75 + 0.80)/3 = 0.6933.

9.3 Practice Problems

Exercise 9.1. Using the Shannon entropy measure, learn the decision tree with the dataset given in Sec-
tion 9.1 but with the 15th row (data sample) removed.

Exercise 9.2. Convince yourself from Fig. 9.2 that in the binary classification case, using the entropy, Gini
impurity measure and the misclassification rate result in the same learned decision tree. Can we say the
same for multiclass classification?

Exercise 9.3. In Section 9.2, we first discretized each feature by selecting thresholds and then found the split,
together with the threshold, that minimizes the average conditional MSE. A more direct way is to employ
variance reduction, defined as

Vm :=
1

|Jm|2
∑

(i,j)∈J 2
m

1

2
(yi − yj)2

−

 |Jm,1|2
|Jm|2

· 1

|Jm,1|2
∑

(i,j)∈J 2
m,1

1

2
(yi − yj)2 +

|Jm,2|2
|Jm|2

· 1

|Jm,2|2
∑

(i,j)∈J 2
m,2

1

2
(yi − yj)2

 . (9.20)

Here Jm is the set of points at node m and Jm,i, i = 1, 2 are the sets of points after node m has been split.
Note that each of the sums is an estimate of the variance of the points in each set. Prove an analogue of
Proposition 9.2, i.e., that Vm ≥ 0 for any split of Jm into Jm,1 and Jm,2.

9.A Proof of Non-Increase of Impurity (Optional)

In this appendix, we show that the impurity “can only go down”. We need a basic definition.

Definition 9.1. A function f : [a, b]→ R is convex if f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) for all λ ∈ [0, 1]
and x, y ∈ [a, b]. A function f is concave if −f is convex.

We only consider two classes here. In this case, the impurity h : [0, 1] → R is a function of a single
parameter p which can be interpreted as the fraction of samples in class 1.

Proposition 9.1. Suppose we have m1 samples in class 1 and m2 samples in class 2. Let m = m1 +m2. For
any split such that m1 = m11 +m12 and m2 = m21 +m22, for any concave impurity measure h : [0, 1]→ R,

m11 +m21

m
h

(
m11

m11 +m21

)
+
m12 +m22

m
h

(
m12

m12 +m22

)
≤ h

(m1

m

)
. (9.21)

We remark that the LHS represents the average impurity after we have split the original m samples into
two groups. The first group has m11 +m21 samples with m11 of those samples from class 1 and m21 samples
from class 2. The second group has m21 + m22 samples with m21 of those samples from class 1 and m22

samples from class 2. See Fig. 9.3 for the notation used. Equation (9.21) basically says that the impurity
can only go down; it cannot increase. Notice from Fig. 9.2 that all the impurity measures are concave so for
the entropy, Gini, and misclassification impurities, these impurities can only decrease if we do any arbitrary
split. Of course, we want to do the best split, but if you notice that after your split, the impurity increases,
you must have calculated something wrongly!
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Group 1 Group 2 

Figure 9.3: Here, m1 = 7 (yellow circles) and m2 = 5 (red triangles). They are split into two groups as
shown. In this split, which may not be optimal, m11 = 5, m12 = 1, m21 = 2 and m22 = 4.

Proof of Proposition 9.1. Note that if we set λ = (m11 + m21)/m, then 1 − λ = (m12 + m22)/m. In other
words, the coefficients on the LHS of (9.21) are non-negative and add up to one. Since we assumed that
h : [0, 1]→ R is concave, the LHS of (9.21) simplifies to

m11 +m21

m︸ ︷︷ ︸
=λ

h

(
m11

m11 +m21

)
+
m12 +m22

m︸ ︷︷ ︸
=1−λ

h

(
m12

m12 +m22

)

Def. 9.1
≤ h

(
m11 +m21

m
· m11

m11 +m21
+
m12 +m22

m
· m12

m12 +m22

)
(9.22)

= h
(m11

m
+
m12

m

)
= h

(m1

m

)
(9.23)

as desired.

A natural question: Can we do the same for the MSE for “regression using decision trees” as in Section 9.2?

Proposition 9.2. Suppose we have m (unordered) target values {y1, y2, . . . , ym} ⊂ R in our original dataset
and the MSE is Q1. We partition (or split) the dataset into two mutually disjoint parts {y1, y2, . . . , ym1

}
and {ym1+1, ym1+2, . . . , ym}. The MSEs of each node at level 2 are Q21 and Q22 respectively. Then, it holds
that

m1

m
Q21 +

m−m1

m
Q22 ≤ Q1. (9.24)

In other words, the MSE (just like the impurity measures) can only go down after a split.

Proof of Proposition 9.2. By the definition of MSE in (9.17), we have

Q1 :=
1

m

m∑
i=1

(yi − µ̂1)2, Q21 :=
1

m1

m1∑
i=1

(yi − µ̂21)2, and Q22 :=
1

m−m1

m∑
i=m1+1

(yi − µ̂22)2, (9.25)

where the means are

µ̂1 =
1

m

m∑
i=1

yi, µ̂21 =
1

m1

m1∑
i=1

yi, and µ̂22 =
1

m−m1

m∑
i=m1+1

yi. (9.26)

Hence, the LHS of (9.24), can be written as

1

m

[
m1∑
i=1

(yi − µ̂21)2 +

m∑
i=m1+1

(yi − µ̂22)2

]
. (9.27)
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Now, let us consider the function

f(a, b) :=

m1∑
i=1

(yi − a)2 +

m∑
i=m1+1

(yi − b)2. (9.28)

We would like to minimize it with respect to a and b. By differentiating f with respect to a and setting the
partial derivative to zero, we get

∂f(a, b)

∂a
= −2

m1∑
i=1

(yi − a) = 0 =⇒ a =
1

m1

m1∑
i=1

yi. (9.29)

and so the optimal a is µ̂21, the average of the points in {y1, . . . , ym1
}. Similarly, the optimal b is the average

of the points in {ym1+1, . . . , ym}, namely µ̂22. Thus,

min
a,b

f(a, b) = f(µ̂21, µ̂22). (9.30)

In other words,

(9.27) =
f (µ̂21, µ̂22)

m

(9.30)

≤ f(µ̂1, µ̂1)

m
=

1

m

[
m1∑
i=1

(yi − µ̂1)2 +

m∑
i=m1+1

(yi − µ̂1)2

]

=
1

m

m∑
i=1

(yi − µ̂1)2 = Q1, (9.31)

as was to be shown.

This technique will be useful when we discuss the K-means algorithm in Chapter 11.
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Chapter 10

Cross-Validation and Performance
Metrics

In this chapter, we provide a description of cross-validation for hyperparameter tuning. I describe as carefully
as I can the distinctions between the training, validation and test sets. We perform some basic statistical
analyses for leave-one-out cross-validation. Finally, we discuss performance metrics for binary classification
including the Receiver Operating Characteristic (ROC) and Area Under Curve (AUC).

10.1 Cross-Validation for Tuning Hyperparameters

As we have seen in machine learning, to learn a good model, we not only need to have a good cost function,
regularizer and optimization algorithm, it is also imperative to choose the hyperparameters appropriately.
What exactly are hyperparameters? They are, for example, the λ parameter when we do ridge-regression
with linear features. For a fixed λ ≥ 0, this could be the degree p of the polynomial used to enhance the
feature space in a linear model. A hyperparameter could also be the number of trees we include in a random
forest, the number of levels of a decision tree, or the minimum number of samples at a leaf/terminal node.
How can we use our dataset to learn these hyperparameters to find the best model (out of a given finite set
of them)?

For the sake of simplicity, say we only have a single hyperparamter λ in the context of ridge regression
with a fixed polynomial order p. We do not know what is the best λ we should choose to minimize the test
error. What can we do, at least on a heuristic (no proof) level to learn λ? Cross-validation is one way to do
it. Let us refer to Fig. 10.1.

Figure 10.1: Training and validation sets

What we would do is to split the available training dataset into two parts—the training set and the
validation set (indicated in red above). Consider just the first row. Let us call the training set and validation
set T and V respectively. Note that these sets are mutually disjoint and D = T ∪ V.
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We would presume that λ takes on values in some finite set Λ. In practice, what we would do is to
consider the set Λ to contain pretty “spread out” values of λ, say Λ = {10−3, 10−2, 10−1, 100, 101, 102, 103}.
Here, I chose the values of λ ∈ Λ to be on a logarithmic scale. In this example, the size of Λ is 7. For
this split of D into T ∪ V, we would train the model using each value of λ ∈ Λ on T , the training set. We
would compute the mean-squared errors (or some form of loss) on the validation set V for each λ ∈ Λ. This
we can do because we have the labels or target values of each training example xi belonging to V. Say the
mean-squared errors are MSE(1)(λ), λ ∈ Λ where the superscript (1) represents the current 1st run.

There is no reason to bias the whole procedure to the validation set being at the start of the dataset as
in the first row of Fig. 10.1. Thus, we consider several other runs—also called folds—in order to place the
validation set in various parts of the dataset. We then can obtain MSE(k)(λ) where λ ∈ Λ and k = 1, . . . ,K
where K is the number of folds. In Fig. 10.1, there are K = 4 folds. The best λ to choose is then

λ̂ = arg min
λ∈Λ

1

K

K∑
k=1

MSE(k)(λ). (10.1)

The problem with this procedure is that it is often computationally intensive because we have to train
the models K times; in each time for a different value of hyperparameter. Worse, we often have multiple
hyperparameters in our system (e.g., maximum depth of trees, number of trees, minimum number of samples
in each leaf within a random forest). This creates a multi-dimensional grid of hyperparameters, which
results in an uncontrollable growth of number of models we have to train. Nevertheless, there are some
smart ways to implement cross-validation. Please see this nice article https://towardsdatascience.com/

hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74.

10.2 On Training, Validation, and Test Sets

The validation sets are not to be confused with the test set in which we do not have the labels or targets.
The test set is for us to apply our model with the “best” hyperparameters we got through training the model
using validation sets (e.g., λ̂ in (10.1)) to get a good estimate of the test error. To be clear, the definitions
of the training, validation and test sets are as follows.

• Training Dataset: The sample of data used to fit a certain model.

• Validation Dataset: The sample of data used to provide an unbiased evaluation of a model fit on the
training dataset while tuning the model hyperparameters.

• Test Dataset: The sample of data used to provide an unbiased evaluation of the final model fit on the
training dataset.

Please refer to the pseudocode below just for the workflow based on one split. In practice, we need to do
K > 1 splits and find the best model based on the average performance over the K splits.

1. data = load data()
2. # split data (only one split)
3. train, validation, test = split(data)
4.
5. # tune model hyperparameters
6. set of parameters = ... # a pre-determined finite set
7. for params in set of parameters:
8. model = fit(train, params)
9. performance = evaluate(model, validation)

10.
11. # find best model hyperparameters
12. best params = argmax(performance)
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13.
14. # evaluate final “best” model for comparison to other competitors
15. best model = fit(train, best params)
16. best performance = evaluate(best model, test)

In line 12 above, the performance is computed to be the average over the performances of splits if we have
multiple splits; see Eqn. (10.1).

10.3 Properties of Leave-One-Out Cross-Validation (Optional)

As we mentioned in the previous section, cross-validation is a generic tool that can be used to select appro-
priate features, values for regularization parameters such as λ in ridge regression or the number of trees in a
random forest model. It can even be used to choose among competing models. We will consider here some
basic properties of leave-one-out cross-validation (LOOCV) in which we train m models (where m is the
number of training samples) with one sample left out of the original dataset. This is also known as m-fold
cross-validation.

More formally, let Dm = {(x1, y1), . . . , (xm, ym)} denote our training set with m training samples
and D−im be the corresponding set with the i-th training example and label removed. That is, D−im =
{(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xm, ym)}. LOOCV is performed as follows: For each (xi, yi) in
the training set, we train the classifier on the remaining m − 1 points D−im and test our prediction on the
left-out pair (xi, yi). More precisely, when using the squared loss, we define MSELOOCV as

MSELOOCV(Dm) =
1

m

m∑
i=1

(
yi − f̂−i(xi)

)2

(10.2)

where f̂−i(·) is the estimator trained on D−im . We would like to understand the theoretical properties of
MSELOOCV(Dm)

Let’s start with a simpler strategy. We only leave out the first point, i.e., training with D−1
m , and test on

(x1, y1). The mean-squared error is now

MSE1(Dm) =
(
y1 − f̂−1(x1)

)2

. (10.3)

Assuming each training example and label is sampled independently from some underlying distribution
P (x, y), let us convince ourselves that

E[MSE1(Dm)] = E
[(
y − f̂Dm−1(x)

)2
]

(10.4)

where the expectation on the left is over all random quantities and, on the right hand side, it is over both (x, y)
(test example) as well as a dataset Dm−1 of size m− 1 sampled from the same distribution. In other words,
on average, MSE1(Dm) gives the best test error! To show (10.4), let us note that if A and B are random
variables (RVs) with the same probability distribution or density (say fA = fB), then E[g(A)] = E[g(B)] for
any function g. This may be clearer when we write out the corresponding integral:

E[g(A)] =

∫
g(x)fA(x) dx =

∫
g(x)fB(x) dx = E[g(B)]. (10.5)

This holds also when A and B are sets of RVs. In particular, A = {D−1
m , (x1, y1)}, where we would train on

D−1
m and test on (x1, y1), has the same distribution as B = {Dm−1, (x, y)}, where we would train on another

set of m− 1 samples Dm−1 and test on (x, y), also sampled from the same distribution. Hence, (10.4) holds.
Now, using the above result, we would like to establish that MSELOOCV(Dm) also has this property, i.e.,

E[MSELOOCV(Dm)] = E
[(
y − f̂Dm−1

(x)
)2
]
. (10.6)
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Figure 10.2: The positively and negatively labelled samples arranged in increasing order based on the score
function g. The thresholds are indicated in green lines. The TPRs and FPRs are also indicated.

By the linearity of expectation, and Eqn. (10.4), we have

E [MSELOOCV(Dm)] =
1

m

m∑
i=1

E
[
(yi − f̂−i(xi))2

]
=

1

m

m∑
i=1

MSEi(Dm) = MSE1(Dm). (10.7)

The results in (10.4) and (10.6) seem to indicate that both LOOCV and the single test set approximation
are unbiased estimates of the test error based on the m−1 training examples. Are the variances of MSELOOCV

and MSE1 the same as well? Why can we not näıvely assume that LOOCV is an average of m tests so that
its variance would do down asymptotically as 1/m? Well, alas the variances will not be equal! MSELOOCV

is an estimate based on averaging the error over m trials while MSE1 is based on a single trial. Recall that
if r random variables V1, V2, . . . , Vr are distributed i.i.d., the variance of the sample mean V̄ = 1

r

∑r
j=1 Vj is

1/r times the variance of the Vi’s. While the trials in MSELOOCV are far from independent because there
is a significant amount of “overlap” in the training sets, MSELOOCV will nevertheless have lower variance
(compared to MSE1).

10.4 Receiver Operating Characteristic (ROC) and Area Under
Curve (AUC)

Now, we are in a position to evaluate the goodness of our classifiers. In a binary classification problem, we
have two sets of samples—the positively labelled samples P = {xi : yi = +1} and the negatively labelled
samples N = {xi : yi = −1}. We can design a score function g : Rd → R that evaluates how positive
each training or test sample is. For example, if we have learned a linear classifier with no offset, we have
in fact learned a set of weights w ∈ Rd. Thus, the score function takes the form g(x) = x>w and we
typically declare that x is positively labelled if g(x) ≥ 0 and negatively labelled otherwise. In other words,
the predicted class of x is y = sgn(g(x)) = sgn(x>w) ∈ {±1}. We are implicitly placing the threshold for
deciding whether or not a class is positively labelled at 0. However, the number 0 is not sacrosanct and there
may be better thresholds t 6= 0 that suit the task at hand better.

Let us say that we have fixed threshold t ∈ R and a score function g. That is, the predicted label is

y = sgn(g(x)− t) ∈ {±1}. (10.8)

Then we can compute the number of True Positives TP, False Positives FP, True Negatives TN, False
Negatives FN. The true positives are the positively labelled samples that have been (correctly) classified
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Figure 10.3: The Receiver Operating Characteristic (ROC) corresponding to the dataset and score function
in Fig. 10.2

as positives; the false positives are the negatively labelled samples that have been (incorrectly) classified as
positives. For example, if we using IgE levels to determine a child’s propensity to a certain allergy, a true
positive is the result of a test that declares a child has the allergy when he in fact has the allergy; a false
positive is a test that declares that a child has the allergy when in fact he does not have it. As we vary
the threshold t from −∞ to ∞, the number of true positives decreases and the number of false positives
increases. As an example, look at Fig. 10.2. We have also tabulated the True Positive Rates and False
Positive Rates defined together with the False Negative Rates and False Positive Rates as follows:

TPR =
TP

TP + FN
, FNR =

FN

TP + FN
, TNR =

TN

FP + TN
, FPR =

FP

FP + TN
. (10.9)

The thresholds t are the green bars in Fig. 10.2. Observe that when t = −∞, TPR = FPR = 1 because all
points are classified as being positively labelled. When t = +∞, TPR = FPR = 0 because all points are
classified as being negatively labelled. The TPR and FPR do not increase (and sometimes decrease) as t
increases. Verify that all the numbers in Fig. 10.2 are correct.

We can now place the points in Fig. 10.2 on the axes of Fig. 10.3, which is constructed as follows. On
the vertical axis, we place the positively labelled points in decreasing order. So the topmost blue point on
the vertical axis x3 corresponds to the positively labelled sample with the least value of g. Similarly, on the
horizontal axis, we place the negatively labelled points in decreasing order. So the rightmost red point on
the horizontal axis x1 corresponds to the negatively labelled sample with the least value of g. By varying
the threshold t, we can sketch out a curve, indicated in brown. Check that the piecewise linear brown curve
is indeed correctly drawn based in Fig. 10.2. This is the so-called Receiver Operating Characteristic or ROC.
This term originated from World War II in which the British were designing radar systems to detect if the
German Luftwaffe (air force) was in the air. The ROC used as follows. Suppose one can tolerate a FPR to
be some small number say 1/7. What is the best TPR that can be attained? From the curve, you see that
the best TPR is 4/6.

To compare between different score functions g, one typically compares the Area Under Curve (AUC),
which is a function of the dataset D (or P and N ) and the score function g.
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Proposition 10.1. The AUC is given by the formula

AUC =
1

|P||N |
∑

x+∈P,x−∈N

u
(
g(x+)− g(x−)

)
, (10.10)

where

u(e) =

 1 e > 0
1/2 e = 0
0 e < 0

. (10.11)

Why is the formula in (10.10) the way it is? Let us prove that the AUC is indeed the formula given
in (10.10) when the g(x)’s are distinct for all training samples x in the dataset. In Exercise 10.2, you will
provide the complete proof of Proposition 10.1 for the (rare) case in which we have points x+ and x− such
that g(x+) = g(x−).

Remember the area under the curve is the integral of the curve over its domain. Let us see that (10.10)
indeed gives the area under the brown curve in Fig. 10.3. Randomly and uniformly take a point on the vertical
axis and a point on the horizontal axis. Call them X+ and X− respectively.1 Note that the probability that
X+ (resp. X−) equals any of the positively (resp. negatively) labelled points is 1/6 (resp. 1/7). What is
the chance that (X−,X+) lies under the curve? Because the points on the horizontal and vertical axes are
arranged in decreasing orders, (X−,X+) lies under ROC if and only if the score of the blue point is greater
than the score of the red point, i.e., g(X+) > g(X−). This is indicated by point A (under the ROC) on
Fig. 10.3. Also refer to Fig. 10.2. On the other hand, (X−,X+) is above the ROC if the scores of (X−,X+)
satisfy g(X+) < g(X−). This is indicated by point B (above the ROC) on Fig. 10.3. This says that

AUC = Pr
(
g(X+) > g(X−)

)
, (10.12)

where X+ and X− are respectively uniform over the negatively and positively labelled samples respectively.
Note that2

Pr
(
g(X+) > g(X−)

)
=

∑
x+∈P,x−∈N

Pr(X+ = x+,X− = x−)1
{
g(x+) > g(x−)

}
(10.13)

=
1

|P||N |
∑

x+∈P,x−∈N

1
{
g(x+) > g(x−)

}
, (10.14)

which is exactly equal to the formulae in (10.10) and (10.11) since we assumed that there are no positively
labelled points that have the same g value as negatively labelled points (so the second clause of u is never
activated). The formula (10.10) is proved.

10.5 Practice Problems

Exercise 10.1. Suppose we would like to use K-fold cross-validation to learn the best polynomial order in
the set P = {1, . . . , p} and the best regularization parameter in the set Λ where |Λ| = `. How many models
have to be trained?

Exercise 10.2. Verify the TP, FP, TPR, and FPR values in Fig. 10.2. Thus verify that the ROC is indeed
drawn correctly in Fig. 10.3.

Exercise 10.3. Generalize the proof of Proposition 10.1 to the case in which there are points x+ and x−

such that g(x+) = g(x−) so u( · ) does take on the value 1/2. Some conditions or assumptions may be needed
here.

1We use the upper case letters X+ and X− because these quantities are random variables.
2We use the notation 1{clause} to denote the indicator function which returns 1 if the clause is true and 0 otherwise.
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Chapter 11

K-Means Clustering

In this chapter, we provide a description of the ubiquitous K-means clustering algorithm and prove an
important property of the algorithm. We provide an example to show that initialization affects the solution.
Next, we show how to initialize in a smart way that has some theoretical guarantees. Finally, we provide a
few practice problems for you to familiarize yourself with K-means.

A word about notation. As usual, we have m data samples x1,x2, . . . ,xm ∈ Rd that are unlabelled since
this is an unsupervised learning task. The dataset is thus D = {xi}mi=1 ⊂ Rd. Often this will be abbreviated
as {xi} when the underlying number of samples m is suppressed from the notation (since there is usually
no cause of confusion). We do this for other sets as well. The total number of clusters is K. The cluster
that the i-th sample xi is assigned to at a certain iteration is denoted as ki, an integer in {1, . . . ,K}. The
cardinality or size of a finite set A is denoted as |A|. Iteration count is indicated by a superscript (l). As
usual, the l2 norm of a vector a is defined as ‖a‖ =

√∑
i a

2
i .

11.1 The K-means Clustering Algorithm

Given a set of unlabelled data points D = {xi}mi=1, and a fixed number of clusters 2 ≤ K ≤ m, we execute
the following procedure.

1. Step 0: Initialize the centroids c
(1)
k for each 1 ≤ k ≤ K randomly (and far apart).

2. Step l ∈ N (Assignment step) : Assign each point xi to its closest mean, i.e.,

k
(l)
i = arg min

k=1,...,K

∥∥∥xi − c
(l)
k

∥∥∥2

(11.1)

3. Step l ∈ N (Re-computation step) : Recompute centroids (also called means) by averaging the points
within each cluster

c
(l+1)
k =

1

|{i : k
(l)
i = k}|

∑
i:k

(l)
i =k

xi. (11.2)

We note that |{i : k
(l)
i = k}| denotes the number of points in cluster k.

4. Terminate when cluster assignments k
(l)
i for all i ∈ {1, 2, . . . ,m} no longer change as we increment the

iteration number from l to l + 1.

We can write the cost (objective) function for K-means clustering as

J({wik}, {ck}) =

m∑
i=1

K∑
k=1

wik‖xi − ck‖2 (11.3)
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where wik = 1 if xi belongs to cluster k (i.e., k = arg minj ‖xi − cj‖); otherwise wik = 0. The arguments of
this cost function are the binary matrix {wik : 1 ≤ i ≤ m, 1 ≤ k ≤ K} and the centroids {ck : 1 ≤ k ≤ K}.
Let us see that optimizing this function over {wik} and {ck} yields the updates in (11.1) and (11.2).

Now suppose the centroids {ck} are fixed. We would like to update {wik} ∈ {0, 1}m×K . To do so,

notice that for fixed i ∈ {1, . . . ,m}, the inner sum is
∑K
k=1 wik‖xi − ck‖2. The wik can only be 1 if for one

particular k ∈ {1, . . . ,K}; the rest of the entries are equal to 0. Clearly, to minimize
∑K
k=1 wik‖xi − ck‖2

(over {wik}), we should assign wik = 1 when xi is closest to ck. This is precisely the rule in (11.1). Now for
fixed {wik}, we want to find the best centroids. We can take the derivative of J({wik}, {ck}) with respect
to one particular cj (for 1 ≤ j ≤ K) as follows:

∇cjJ({wik}, {ck}) = −2

m∑
i=1

wij(xi − cj) = 0. (11.4)

This implies that the optimal j-th centroid is the average of the points in the j-th cluster, i.e.,

cj =

∑m
i=1 wijxi∑m
i=1 wij

=

∑
i:ki=j

xi

|{i : ki = j}| (11.5)

which serendipitously coincides with (11.1). Notice that
∑m
i=1 wij = |{i : ki = j}| since both sides are

different ways of expressing the number of points that reside in cluster j. Furthermore, wij = 1 if and only
of ki = j, explaining the numerator of the rightmost term in (11.5).

11.2 Non-Increase of the Cost Function of K-means

The purpose of the next result is to show that the cost function in K-means in (11.3) cannot increase. It can
only decrease until it “gets stuck” at a local minimum; or if you are lucky, a global minimum. Also a priori,
since the cluster assignments and the centroids continually change, it is not clear whether the K-means
algorithm will terminate after a finite number of steps, or like gradient descent, will only converge to a local
minimum. The following proposition shows that we will definitely stop at some point and cannot make any
improvement, no matter how small.

Proposition 11.1. Let J (l) := J({w(l)
ik }, {c

(l)
k }) be the cost function at the l-th iteration based on the cluster

assignments w
(l)
ik and the centroids c

(l)
k . Then, for any unlabelled dataset, the K-means algorithm results in

J (l+1) ≤ J (l) for all l ∈ N. (11.6)

Furthermore, the K-means algorithm terminates in a finite number of steps.

Proof of Proposition 11.1. Once all samples have been assigned to their initial cluster in (11.1), compute the
total distance between each sample xi and its nearest centroid cki . The sum of squares of these distances

is J({w(1)
ik }, {c

(1)
k }) =

∑
i ‖xi − cki‖2 (compare this to (11.3)). When the centroids are recalculated per

the Re-computation step in (11.2), we are minimizing the total distance of each cluster’s samples from the

respective centroid, so the new distance J({w(1)
ik }, {c

(2)
k }) either decreases or remains the same. Note that

the Re-computation step is equivalent to optimizing the functions

fk(c) =
∑
i:ki=k

‖xi − c‖2. (11.7)

The optimum (minimum) of the above function is, of course, attained at

ĉk =
1

|{i : ki = k}|
∑
i:ki=k

xi, (11.8)
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which is another way of stating (11.2). Consequently,

J({w(1)
ik }, {c

(2)
k }) ≤ J({w(1)

ik }, {c
(1)
k }) = J (1). (11.9)

In the subsequent assignment step, if a sample is reassigned to a different centroid then it must be that this
sample is closer to its new centroid than to the previously one. If a sample is not reassigned, then there is

obviously no change in its distance (cost). Therefore, for this new distance J({w(2)
ik }, {c

(2)
k }), we have

J (2) = J({w(2)
ik }, {c

(2)
k }) ≤ J({w(1)

ik }, {c
(2)
k }). (11.10)

Combining the above two relations, we see that

J (2) ≤ J (1). (11.11)

By the same logic, for each subsequent recalculation or assignment step, we have (11.6). So we have shown
that the cost function is monotonically non-increasing. Note that if equality holds in either (11.9) or (11.10),
then there is either no change to any centroid (equality in (11.9)), or no sample is reassigned to a different
cluster (equality in (11.10)).

Now we show that the procedure terminates in a finite number of steps. Since there are a finite number
of samples m and a finite number of labellings, changes to cost function are discrete with a finite set of
possibilities. Indeed, there are only Km possible clusterings. Why? Note that for each clustering determined
by {wik}, we can compute the optimal centroids ĉk’s in (11.8). This leads to the cost J({wik}, {ĉk}). We
note that J({wik}, {ĉk}) can only take on finitely many values; more precisely at most Km values. Because
of this, and because the cost function is lower bounded by 0 then it must be that the algorithm converges to
some J (l∗) with J (l∗) = J (l∗−1) and 0 ≤ J∗ ≤ J (l∗) where J∗ is the optimal cost function over all partitions,
which is hard (more precisely, NP-hard) in the computational complexity sense to compute.

The message I want to get across here is that we need check that when we do K-means, the cost function
never increases. If it does, you have done something wrong, because Proposition 11.1 says that J (l+1) ≤ J (l)

for all l ∈ N. Furthermore, if it seems like you are not converging (for a finite dataset), you must surely be
doing something wrong as well because Proposition 11.1 says that we must stop; no convergence criterion is
needed (unlike gradient descent).

11.3 An Example of K-means

Consider the following unlabelled one-dimensional dataset (so that the samples are all scalar)

x1 = −2, x2 = 0, x3 = x4 = 2. (11.12)

Consider the first initialization
c
(1)
1 = −3, c

(1)
2 = 3.5 (11.13)

Then, once we run the Assignment step, we see that

k1 = k2 = 1, k3 = k4 = 2. (11.14)

This means that samples 1 and 2 are in group one and samples 3 and 4 are in group two. Thus,

c
(2)
1 = −1, c

(2)
2 = 2. (11.15)

The total cost function is
J = 12 + 12 + 02 + 02 = 2, (11.16)

which turns out to be the optimum partitioning.
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Now, instead consider the second initialization

c
(1)
1 = −3, c

(1)
2 = 2.5 (11.17)

Then, once we run the Assignment step, we see that

k1 = 1, k2 = k3 = k4 = 2. (11.18)

Thus,

c
(2)
1 = −2, c

(2)
2 = 4/3 (11.19)

The total cost function is

J ′ = 02 + (4/3)2 + 2(2− 4/3)2 = 24/9 (11.20)

which is suboptimal and there is no way of improving the cost anymore, i.e., we are stuck. The moral of the
story is that initialization is important.

11.4 The K-means++ Algorithm (Optional)

The vanilla K-means algorithm has no theoretical guarantee (apart from Proposition 11.1) and as we have
seen from Section 11.3, initialization is very important, otherwise one can get an arbitrarily bad solution. In
an amazing breakthrough, Arthur and Vassilvitskii (2007) [AV07] suggested the following slight modification
to K-means and proved an amazing guarantee. To state the algorithm called K-means++, let D(x) be
the distance from a data point x ∈ D to to the closest centroid we have already chosen, i.e., D(x) =
mink∈K ‖x− ck‖ where K denotes the set of centroids already chosen.

1a. Take one centroid c1 chosen uniformly at random from the dataset D.

1b. Take one new centroid ck choosing x ∈ D with probability D(x)2/
∑

x′∈DD(x′)2.

1c. Repeat Step 1b. until we have taken K centroids altogether.

2-4. Proceed as in the standard K-means algorithm above using the random chosen centroids in Step 1.

The intuition here is that we would like to select initial centroids that are as far as possible; this is
precisely the rule (with randomization) in Step 1b. The following result holds if we run K-means++ on any
dataset. Note that the output of K-means++ is random and so its cost function is random.

Theorem 11.2. If the set of centroids is constructed with K-means++, then the corresponding cost function
after convergence satisfies

E[J ] ≤ 8(lnK + 2) · J∗, (11.21)

where J∗ is the optimal cost function (which is NP-hard to compute).

In other words, K-means++ is O(logK)-competitive with respect to the optimal clustering resulting in
J∗ which is NP-hard to find. The punchline is that if you do not know how to initialize, use Arthur and
Vassilvitskii’s initialization strategy [AV07]! It will give you something decent. A former student of mine,
Davin Choo, who took my NUS Math Machine Learning class MA4270 in 2015/6 recently improved on this
seminal result [CGPR20]. Together with his co-authors, he showed that with εK (ε > 0 arbitrarily small)
local search steps, one obtains an O(1)-approximation to J∗. Amazing!
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11.5 Practice Problems

The problems below are mostly taken from my MA4270 exams but they have been carefully recalibrated to
be accessible to you. No computers or programming is required.

Exercise 11.1 (Final Exam 2017/8). We are given the following m = 4 two-dimensional data samples:

x1 =

[
2
2

]
, x2 =

[
6
8

]
, x3 =

[
8
6

]
, x4 =

[
2
4

]
.

(i) Using the K-means algorithm, cluster this dataset into two clusters. To initialize the algorithm, put
samples 1 and 2 in one cluster, and samples 3 and 4 in the other cluster. Show the steps of the
algorithm clearly, i.e., calculate the cluster centroids and the assignments of the points to the cluster
centroids. Give the value of the K-means (sum-of-squares) error function after convergence.

(ii) What is the value of the error function in the optimal solution for K = 4? No calculations needed.

Exercise 11.2 (Final Exam 2015/6). Consider a set of m = 2n + 1 of one-dimensional samples where
n ∈ N. The dataset is such that n samples coincide at x = −2, n at x = 0, and one at x = a > 0, i.e.,

D =

−2,−2, . . . ,−2︸ ︷︷ ︸
n times

, 0, 0, . . . , 0︸ ︷︷ ︸
n times

, a

 .

(In fact D is a so-called multi-set since it allows for multiple instances of the same element.)

(i) Let D1,D2 ⊂ D be a two-cluster partitioning of the dataset D so D2 = D \ D1. It is known that the
two-cluster partitioning that minimizes the sum-of-squared errors (used in the 2-means algorithm)

J(D1,D2, c1, c2) =

2∑
k=1

∑
i∈Dk

(xi − ck)2 (11.22)

groups the n samples at x = 0 with the one at x = a (i.e., D2 = {0, . . . , 0, a}) if

a2 < f(n)

where f : N→ R is a function of n. Find this function.

(ii) What happens to the clustering result if a2 > f(n)? What if a2 = f(n)?

Exercise 11.3. We are given a dataset D with a finite number of points. We initialize the K-means
clustering algorithm by first partitioning the points into K disjoint (non-overlapping) clusters D1, . . . ,DK .
New centroids are then computed using (11.5). The points are then re-assigned to different clusters resulting
in a new partition D′1, . . . ,D′K which is different from the original one D1, . . . ,DK . The process continues
ad infinitum. Will the algorithm ever revisit D1, . . . ,DK? Why or why not?

Exercise 11.4. Consider a problem in which the samples are one-dimensional.

(i) Derive an analogue of the K-means algorithm when the sum-of-squares cost function in (11.3) is
replaced by

J̃({wik}, {ck}) =

m∑
i=1

K∑
k=1

wik|xi − ck|. (11.23)

Note that the squared difference (xi − ck)2 has been replaced by the absolute difference |xi − ck|.

(ii) Find a one-dimensional dataset for which the final groups of points that are produced using the usual
K-means algorithm are different from that using the criterion in (11.23) given the same initialization.
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The final two questions are a bit challenging, but they are good mathematical character-building exercises.
The following problem is modified with permission from Prof. Jonathan Scarlett (SoC, Maths, NUS).

Exercise 11.5 (Modified from Final Exam 2018/9). Suppose that we apply the K-means clustering algorithm
with K = 2 to a one-dimensional data set with four points: x1 = 1, x2 = 2, x3 = 4, and x4 = 8. Assume
that we initialize the K = 2 centroids by choosing them to be distinct points in [1, 8].

(i) How many pairs of cluster centroids (c1, c2) can the algorithm possibly terminate with? Justify (prove)
your answer carefully.

(ii) Which are the pairs?

(iii) Why does the algorithm terminate when any such pair identified in Part (ii) is encountered?

Exercise 11.6 (Final Exam 2016/7). Suppose a set of m distinct samples D = {x1, . . . ,xm} is partitioned
into K disjoint (non-overlapping) clusters D1, . . . ,DK . The sum-of-squared errors criterion used in K-means
is the following expression:

J(D1, . . . ,DK , c1, . . . , cK) =
K∑
k=1:
Dk 6=∅

∑
i∈Dk

‖xi − ck‖2. (11.24)

Observe that the outer sum involves summing only over the nonempty subsets. Here, as usual, ck is the
average of the points in Dk; see (11.5). Assume that m ≥ K. Prove that there are no empty subsets in a
partition that minimizes J as defined in (11.24). You may want to do this by contradiction.
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Chapter 12

Deep Neural Networks and
Backpropagation

In this final chapter (how sad!), we provide a brief description of deep neural networks in the form of
feedforward neural networks and multi-layer perceptrons. Before we get started though, we remind the
reader of Jacobians and the matrix version of the chain rule. We provide a toy example to show the
utility of nonlinearities in neural networks. We also describe the backpropagation algorithm for multi-
layer perceptrons in detail. Finally, we provide a few practice problems for you to familiaize yourself with
the concepts. The exposition here is based partly on slides by Shubhendu Trivedi & Risi Kondor of the
University of Chicago. Section 12.5 is based on notes by Prof. Adrian Roellin of NUS’ Department of
Statistics and Applied Probability (DSAP). For more information on this fascinating topic, please refer to
Bishop’s books [Bis98, Bis08] and Goodfellow, Bengio, and Courville’s book [GBC16].

12.1 Preliminaries

For a multivariate function with multiple outputs f : Rn → Rm, we use Df : Rn → Rm×n to denote its
Jacobian matrix, the m× n matrix of all its first-order partial derivatives. That is, for every x ∈ Rn,

Df(x) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 . (12.1)

Note that the entries are functions of x. When we want to emphasize that the Jacobian is taken with respect
to a certain parameter θ (keeping other parameters fixed), we denote it as Dθf .

When we talk about the backpropagation algorithm to train neural networks in Section 12.5, we will
have to use the matrix version of the chain rule, which you may not seen before. We restate it here for
ease of reference. Suppose we have functions f : Rn → Rm and g : Rm → Rk such that the range of f is
the domain of g. We are then allowed to construct a new function h : Rn → Rk prescribed by the recipe
h(x) = (g ◦ f)(x) = g(f(x)) for each x ∈ Rn. The function h is known as the composition of g and f . The
Jacobian of h (evaluated at x) is

Dh(x) =
(
Dg(f(x))

)
· (Df(x)), (12.2)

where · means usual matrix multiplication. Note that this makes sense as for each x, Df(x) is a matrix
of size m × n and Dg(f(x)) is a matrix of size k × m so the matrices involved in the product in (12.2)
are compatible. The matrix chain rule involving Jacobians is completely analogous to the usual chain rule
h′(x) = g′(f(x))f ′(x) for h = g ◦ f .
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Figure 12.1: A feedforward network

Figure 12.2: Architecture for the XOR example

12.2 Feedforward Networks With Multiple Neurons

As we have seen throughout the course, the overarching goal in machine learning is to approximate some
unknown and ideal function f∗ : Rd → Y ⊂ R using training samples. For example, if Y = {−1,+1}, then
we want to construction an ideal classifier y = f∗(x) that takes in an example x and outputs a label y. In
a feedforward neural network, our functions are parametrized as y = f(x;θ) and we would like to learn θ
to get a good approximation to f∗ from a bunch of training examples D = {(xi, yi)}mi=1. The reason why
we use the term “feedforward” is because usually the target function f is a composition of many different
functions

f(x) = f (3)(f (2)(f (1)(x)))). (12.3)

See Fig. 12.1. Here, f (1) represents the operation undertaken by the first layer; f (2) represents the operation
undertaken by the second layer and so on. The choices of f (i) are usually inspired by neuroscience and are
colloquially called neurons. We will see how to construct f (i) carefully in the following. In particular, we
argue through an example that incorporating nonlinearities within f (i) is beneficial.

12.3 The XOR Example Revisited

In this section, we provide a simple toy example to demonstrate the power of using nonlinearities in a
multi-layer network. Consider learning the XOR function which is given by the following training dataset

x1 =
[
−1 −1

]>
, y1 = −1,

x2 =
[
−1 +1

]>
, y2 = +1,

x3 =
[
+1 −1

]>
, y3 = +1,

x4 =
[
+1 +1

]>
, y4 = −1. (12.4)

We have already seen (in Section 6.4) that we can use polynomial kernels (of order 2) to find a decision
boundary or surface that classifies these points with zero training error. Here, we consider another approach
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based on feedforward networks. Consider the squared loss function

J(θ) =

4∑
i=1

(
f∗(xi)− f(xi;θ)

)2
. (12.5)

We need to choose a particular form for the parametric function f(x;θ). We have already seen that if
f(x; w, b) = x>w + b, i.e., f is an affine function (with parameters θ = (w, b)), this will not work as the
dataset is not linearly separable. Let’s look at another architecture given by Fig. 12.2. In particular, choose

f (1)(x; W, c) = h = (h1, h2) (12.6)

giving the outputs for the hidden layer and

y = f (2)(h; w, b). (12.7)

Thus the complete model is given by

y = f(x; W, c,w, b) = f (2)(f (1)(x)) (12.8)

with parameters collated in θ = (W, c,w, b). So what should the function f (1) be? We will see that
some nonlinearity is required to drive the training error to zero. Let’s consider f (1) to be a composition
of an affine function and a nonlinear activation function. We set the nonlinear activation function to be
σ(z) = max{0, z}. This is commonly known as the Rectified Linear Unit or ReLU. Thus, f (1) takes the form
f (1)(x) = σ(W>x + c) and the complete network model is thus given by

y = f(x; W, c,w, b) = w>σ(W>x + c) + b. (12.9)

The activation function in (12.9) is applied element-wise. Consider the following choices of the parameters:

W =

[
1 1
1 1

]
, c =

[
1 −1

]
, w =

[
2
−6

]
, b = −1. (12.10)

The design matrix based on the data points in (12.4) (no offset) is

X =


−1 −1
−1 +1
+1 −1
+1 +1

 . (12.11)

Let us compute the intermediate operations in (12.9). We have

K := XW +


c
c
c
c

 =


−1 −3
1 −1
1 −1
3 1

 and H = σ(K) = max{K, 0} =


0 0
1 0
1 0
3 1

 . (12.12)

Each row corresponds to the output of the first layer for each sample, for which there are 4 of them. Now
we compute our predictions at the second layer as

Hw +


b
b
b
b

 =


−1
+1
+1
−1

 . (12.13)

Observe that the network has predicted the labels of the four samples exactly. Hence, the cost function J(θ)
(defined in (12.5)) with parameters θ equal to those in (12.10), equals to 0. Voila! We have achieved zero
training error with a two-layer neural network with the ReLU activation function. Note the importance of
the nonlinearity in the network; this nonlinearity is induced by σ. Finally, we remark that the choice of
parameters in (12.10) to achieve the desired result in (12.13) is not unique.
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12.4 On Universality and Depth

As mentioned, the first and second layers of the feedforward network admit the following expressions:

h(1) = f (1)(W1x + b1), (12.14)

h(2) = f (2)(W2h
(1) + b2). (12.15)

How to we decide on the depth and width of neural networks? How many layers suffice? What is the quality
of the approximation of functions within a certain class if we use a certain number of layers and a certain
number of nodes per layer. The answers to these questions constitute a very active area of research. Let us
describe two results qualitatively.

A seminal theoretical result by Cybenko [Cyb89] states that a 2-layer neural network with linear output
with some squashing nonlinearity in hidden units can approximate any continuous function over compact
domain to arbitrary accuracy (given enough hidden units!). The implication of this is that regardless of
function we are trying to learn, we know a large MLP can represent this function. But it is not guaranteed
that our training algorithm will be able to learn that function It also gives no guidance on how large the
network will be (exponential size in worst case).

Montúfar et al. [MPCB14] showed that the number of linear regions carved out by a deep rectifier network

with d inputs, depth l and n units per hidden layer is O
((
n
d

)d(l−1)
nd
)

. This is exponential in depth. They

thus showed functions representable with a deep rectifier network can require an exponential number of
hidden units with a shallow network. Research in this area is also growing exponentially by the day.

12.5 Backpropagation to Train Feedforward Networks

This part of the lecture notes is based on handwritten notes by Prof. Adrian Roellin of NUS DSAP. I sincerely
thank Prof. Roellin for allowing me to reproduce his clear derivations.

12.5.1 Training a Single-Layer Feedforward Network

Now, we discuss how to train a feedforward network. Once again, we have a set of training data D :=
{(xi,yi)}mi=1 and each xi ∈ Rd and yi can be a vector, say in Rc×1; this is akin to multi-class classification
where we have multiple outputs. But here, we focus on multiple regression. We have a certain per-sample
loss function Loss(y,y′), e.g., Loss(y,y′) = ‖y − y′‖2. Our aim is to minimize the total loss

J(θ) =

m∑
i=1

Loss(f(xi;θ),yi) (12.16)

Let’s first consider a single-layer feedforward network where neuron indexed by j ∈ {1, . . . , c} has output

σ
(∑d

i=1 wj,ixi + bj
)
, Here W = [wj,i] ∈ Rc×d is the weight matrix, b = (b1, b2, . . . , bc) ∈ Rc×1 is the bias

vector and σ : R→ R is a nonlinear activation function (e.g., the ReLU). Thus, the overall prediction from
this single layer is

f(x;θ) = σ(Wx + b) ∈ Rc×1, (12.17)

where θ = (W,b) and we let q ∈ N the dimension of θ. Verify that q = c(d + 1). In order to implement
stochastic gradient descent,1 we need to calculate

∇J(θ; i) = Dθ

(
Loss(f(xi;θ),yi)

)
, (12.18)

1Stochastic gradient descent is just like gradient descent we have learned in Chapter 8 except that we move in the direction
of a gradient vector evaluated at a single data point in (12.16), namely ∇J(θ; i) in (12.18). Such a gradient is unbiased but
has high variance (why?). Nevertheless, since only one data point is involved, as opposed to all m � 1, the computational
complexity is manageable. There are other optimization algorithms that are more advanced than stochastic gradient descent.
One such variant is the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm which is used to optimize the
MLPClassifier in scikit-learn in Python. An improvement of the limited memory BFGS algorithm can be found here [ZHT18].
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where Dθ is the Jacobian operator and we are evaluating it at the i-th sample. By the chain rule as stated
in in (12.2), this becomes

∇J(θ; i) = Dy

(
Loss(f(xi;θ),yi)

)
·Dθ

(
f(xi;θ)

)
. (12.19)

Note that Dy

(
Loss(f(xi;θ),yi)

)
∈ R1×c and Dθ

(
f(xi;θ)

)
∈ Rc×q. If Loss(y,y′) = ‖y − y′‖2, the squared

l2 loss, the Jacobian can be calculated to be

Dy

(
Loss(f(xi;θ),yi)

)
= 2

[
f1(xi,θ)− yi1 . . . fc(xi,θ)− yic

]
∈ R1×c. (12.20)

Now we deal with the second term using the chain rule as stated in in (12.2) as follows:

Dθ

(
f(xi;θ)

)
= Dθ

(
σ(Wxi + b)

)
(12.21)

= Dx

(
σ(Wxi + b)

)
·Dθ

(
Wxi + b

)
. (12.22)

We again note that Dx

(
σ(Wxi + b)

)
∈ Rc×c and Dθ

(
Wxi + b

)
∈ Rc×q. Now we have

Dx

(
σ(Wxi + b)

)
=


σ′
(
(Wxi + b)1

)
0 . . . 0

0 σ′
(
(Wxi + b)2

)
. . . 0

...
...

. . .
...

0 . . . 0 σ′
(
(Wxi + b)c

)
 ∈ Rc×c. (12.23)

Note that for the ReLU activation function, σ′(z) = 1 if z ≥ 0 and 0 otherwise.2 Vectorizing the weight
matrix as W = (w1,1, . . . , w1,d, w2,1, . . . , w2,d, . . . , wc,1, . . . , wc,d) ∈ Rcd, we obtain

DW

(
Wxi + b

)
=


xi,1 . . . xi,d 0 . . . 0 . . . 0 . . . 0
0 . . . 0 xi,1 . . . xi,d . . . 0 . . . 0
...

...
...

...
...

...
. . .

...
...

...
0 . . . 0 0 . . . 0 . . . xi,1 . . . xi,d

 ∈ Rc×cd (12.24)

and
Db

(
Wxi + b

)
= Ic ∈ Rc×c, (12.25)

where Ic is the c× c identity matrix. Hence,

Dθ

(
Wxi + b

)
= [DW

(
Wxi + b

)
, Db

(
Wxi + b

)
] ∈ Rc×(d+1)c = Rc×q. (12.26)

In summary, we can compute the sample-wise gradient explicitly

∇J(θ; i) = Dy

(
Loss(f(xi;θ),yi)

)
·Dx

(
σ(Wxi + b)

)
·Dθ

(
Wxi + b

)
∈ R1×q. (12.27)

This gradient can then be used within a gradient descent or stochastic gradient descent framework to optimize
the training loss in (12.16).

12.5.2 Training a Multi-Layer Feedforward Network

Now, we derive the equations to train a multi-layer feedforward network, also known as a multi-layer per-
ceptron (MLP). See Fig. 12.3. We denote the number of layers or depth as l, the dimension of the input
feature vectors as d0, the length of the vectors at each hidden layer as dk where 1 ≤ k ≤ l. Note first that
the total number of parameters is (d0 + 1)d1 + (d1 + 1)d2 + . . .+ (dl−1 + 1)dl ≈ ld2 if dk ≈ d for all 1 ≤ k ≤ l.
Note that

zk+1 = σ(Wk+1zk + bk+1). (12.28)

2Here, we have been a bit casual with what happens at z = 0 because σ( · ) = max{ · , 0} is not differentiable at 0 so σ′( · )
does not really make sense at 0.
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Figure 12.3: Multi-Layer Feedforward Network
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Figure 12.4: Backpropagation

First, let us calculate ∇J(θ, i), the gradient with respect to a single sample indexed by i. By repeated
applications of the chain rule in (12.2), we obtain

DWk
[J(θ, i)] = Dy(Loss(zl,yi)) ·Dx(Wlzl−1 + bl) ·Dz(Wlzl−1 + bl)

·Dx(Wl−1zl−2 + bl−1) ·Dz(Wl−1zl−2 + bl−1)

...

·Dx(Wkzk−1 + bk) ·DWk
(Wkzk−1 + bk), (12.29)

where the individual Jacobians areDy(Loss(zl,yi)) ∈ R1×dl , Dx(Wkzk−1+bk) ∈ Rdk×dk , Dz(Wlzl−1+bl) ∈
Rdl×dl−1 , and DWk

(Wkzk−1 + bk) ∈ Rdk×(dkdk−1).
Equipped with DWk

[J(θ, i)], we now implement backpropagation. See Fig. 12.4 for the notations. Our
aim is to minimize the output (denoted here as xl) over θ = (θ1, . . . ,θl) where θk (for 1 ≤ k ≤ l) denotes
the parameter vector at the k-th layer. In the forward pass, we recursively evaluate

fk(xk−1,θk), Dxk−1
[fk(xk−1,θk)] , and Dθk

[fk(xk−1,θk)] . (12.30)

In the backward pass, we recursively update the θk’s with some learning rate λ > 0:

• Update θl as follows:
θl ←− θl − λDθl

[fl(xl−1,θl)]
>
, (12.31)
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where Dθl
[fl(xl−1,θl)]

> ∈ Rdl×dim(θl);

• Pass zl = Dxl−1
[fl(xl−1,θl)] ∈ Rdl×dl−1 to the previous layer;

• Update θl−1 as follows:

θl−1 ←− θl−1 − λ
(
zl ·Dθl−1

[fl−1(xl−2,θl−1)]
)>
, (12.32)

where zl ∈ Rdl×dl−1 and Dθl−1
[fl−1(xl−2,θl−1)] ∈ Rdl−1×dim(θl);

• Pass zl−1 = zl ·Dxl−2
[fl−1(xl−2,θl−1)] ∈ Rdl−1×dl−2 to the previous layer;

• Repeat until
θ1 ←− θ1 − λ (z2 ·Dθ1 [f1(x0,θ1)])

>
. (12.33)

Because we start by updating θl all the way back to θ1 (from the right to the left of Fig. 12.4), this is known
as backpropagation.

Observe that if we use the sigmoid σ(a) = 1/(1 + exp(−a)) as the activation function there will be a
problem in (12.23) and (12.31)–(12.33) because its gradient is very small for |a| large (graph the sigmoid
function to understand why). Hence, after many backpropagation steps, small values outside the “active”
range of σ (i.e., the actives range is when |a| small) will accumulate so that the gradient for weights in earlier
layers vanishes (the vanishing gradients problem). This is partly ameliorated by the ReLU (σ(a) = max{a, 0})
or the leaky ReLU (σ(a) = a for a ≥ 0 and σ(a) = 0.01a for a < 0), hence their popularity in recent years.

12.6 Practice Problems

No computers and programming are required to do these problems.

Exercise 12.1. Let f : R2 → R3 and g : R3 → R be defined as

f(x) =

 x1

x2

x1x2

 , and g(u, v, w) = ew sin(u) cos(v). (12.34)

Define the vector-input, scalar-output function h(x) = (g ◦ f)(x). Use the matrix version of the chain rule
to find Dh(x) for each x ∈ R2.

The following problem is taken from Bishop’s book [Bis08, Exercise 5.1].

Exercise 12.2. Consider any l-layer network with activation functions given by the sigmoid

σ(a) =
1

1 + exp(−a)
. (12.35)

Given any inputs, prove that there exists an equivalent network, which computes exactly the same outputs,
but with activation functions given by the hypertangent

tanh(a) =
exp(a)− exp(−a)

exp(a) + exp(−a)
. (12.36)

Exercise 12.3. This problem reinforces concepts learned in Section 12.3. We would like to design a multi-
layer perceptron (MLP) with 2 layers whose inputs are three binary-valued (i.e., 0 or 1) variables x1, x2 and
x3. The first layer has two hidden nodes h1 and h2. So the MLP looks like that in Fig. 12.2 except that there
are three (instead of two) inputs. The MLP should output 1 if exactly one of the three inputs is equal 1, and
outputs 0 otherwise. All of the units use the following hard threshold activation function:

σ(a) =

{
1 a ≥ 0
0 a < 0

. (12.37)
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Note that there is one weight matrix W ∈ R2×3 and one bias (row) vector c ∈ R1×2 that connects the input
and the first layer. There is another weight matrix w ∈ R1×2 and one bias scalar b ∈ R that connects the first
layer and and the second layer. Specify feasible weights (W,w) and biases (c, b) to implement this function.

Exercise 12.4. Consider an MLP with 2 layers. The input variables are continuous, the first layer uses a
hard threshold holding function as defined in (12.37). The second layer uses the sigmoid as defined in (12.35)
and the loss function to be minimized is the squared l2 loss. Discuss what will go wrong if you train this
network using the backpropagation algorithm described in Section 12.5.2.
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