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Matrix Factorization Models

Data is usually in matrix form

Figure reproduced from C. Févotte’s slides
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Matrix Factorization Models

Dictionary Learning
Low-Rank Approximation
Factor Analysis
Latent Semantic Modelling

Figure reproduced from C. Févotte’s slides
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Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) is the task of
approximating a given nonnegative matrix X ∈ Rm×n

+ such that

X ≈ WH

where W ∈ Rm×r
+ and H ∈ Rr×n

+ are also nonnegative matrices.

Usually r � min{m, n} so there is dimensionality reduction.

Each column of X(:, j) ∈ Rm
+ is a data point. Reconstructed via a

linear combination of r basis elements given by the columns of W
while the columns of H provide the weights

X(:, j) ≈
r∑

k=1

W(:, k)H(k, j), 1 ≤ j ≤ n
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The Objective Function to be Minimized in NMF

To ensure X ≈ WH, we minimize an element-wise cost function

min
W,H≥0

D(X,WH) =

m∑
i=1

n∑
j=1

D
(
Xi,j, (WH)i,j

)

One choice for D(·, ·) is the β-divergence

Dβ(x, y) =



x
y
− log

x
y
− 1 for β = 0,

x log
x
y
− x + y for β = 1,

1
β(β − 1)

(
xβ + (β − 1)yβ − βxyβ−1

)
for β 6= 0, 1.

Note that if β = 2, we have the quadratic cost D2(x, y) = 1
2(x− y)2.
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Statistical Models for NMF

If Xi,j = (WH)i,j + Gaussian noise, then

− log p(Xi,j | (WH)i,j)
c
=

1
2σ2

(
(WH)i,j − Xi,j

)2

then maximizing the log-likelihood ≡ minimizing D2 (Fro-NMF).

If Xi,j ∼ Poisson((WH)i,j), then

− log p(Xi,j | (WH)i,j) = Xi,j log
Xi,j

(WH)i,j
+ (WH)i,j

c
= D1(Xi,j, (WH)i,j),

then maximizing the log-likelihood ≡ minimizing D1 (KL-NMF).

If Xi,j = Gamma(α, (WH)i,j/α), then

− log p(Xi,j | (WH)i,j) =
Xi,j

(WH)i,j
− log

Xi,j

(WH)i,j
− 1 = D0(Xi,j, (WH)i,j).

then maximizing the log-likelihood ≡ minimizing D0 (IS-NMF).
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Applications, MO-NMF and DR-NMF

Audio signal processing: β ∈ {0, 1}

Sparse document datasets: β ∈ {1, 2}

How to choose an appropriate β when given a new task? Say we
consider β ∈ Ω where Ω ⊂ R is a finite set.

Multi-Objective NMF (MO-NMF)

min
W,H≥0

{Dβ(X,WH)}β∈Ω

which is solved for a given probability vector λ = (λβ)β∈Ω using

min
W,H≥0

Dλ
Ω(X,WH) =

∑
β∈Ω

λβDβ(X,WH)


Distributionally Robust NMF (DR-NMF)

min
W,H≥0

max
β∈Ω

Dβ(X,WH)
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Scaling of the Objective

For the family of β-divergences, it can be easily checked that

Dβ(αX, αWH) = αβDβ(X,WH).

Not desirable in practice as datasets are not properly scaled.

Compute an approximate solution

(Wβ,Hβ) ≈ arg min
W,H≥0

Dβ(X,WH), with error eβ = Dβ(X,WβHβ)

and define

D̄β(X,WH) =
Dβ(X,WH)

eβ
, so that D̄β(X,WβHβ) = 1.

Consider the optimization

min
W,H≥0

D̄λ
Ω(X,WH), where D̄λ

Ω(X,WH) =
∑
β∈Ω

λβD̄β(X,WH)
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Multiplicative Updates Algorithm

Let f : Rd → R be a differentiable function. Consider the general
optimization problem with nonnegativity constraints

min{f (x) : x ≥ 0}.

Rescaled gradient descent method (with rescaling matrix B)

x+ = x− B∇f (x)

Say that ∇f (x) = ∇+f (x)−∇−f (x) where ∇+f (x) > 0 and
∇−f (x) > 0. Taking Bii = xi/∇+f (x)i, we obtain

x+ = x− [x]

[∇+f (x)]
(∇+f (x)−∇−f (x)) = x ◦ ∇−f (x)

∇+f (x)

No tuning of step-sizes. If x ≥ 0, then x+ ≥ 0 as well.
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Application of MU Algorithm to DR-NMF

Recall that for a fixed probability vector λ, we want to solve

min
W,H≥0

D̄λ
Ω(X,WH), where D̄λ

Ω(X,WH) =
∑
β∈Ω

λβD̄β(X,WH)

Alternating minimization procedure: Min over H, then over W.

For all β,

∇HDβ(X,WH) = ∇H
+Dβ(X,WH)−∇H

−Dβ(X,WH),

where ∇H means gradient w.r.t. H.

After some tedious calculation,

∇H
+Dβ(X,WH) = WT(WH)◦(β−1) and

∇H
−Dβ(X,WH) = WT

(
(WH)◦(β−2) ◦ X

)
,
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Application of MU Algorithm to DR-NMF

Update H as follows:

H+ = H ◦

[∑
β∈Ω λβ

(
∇H
−D̄β(X,WH)

)][∑
β∈Ω λβ

(
∇H

+D̄β(X,WH)
)] .

Sometimes this may not result in a decrease in the objective, so
we set γ = 1 and H+

1 = H+ and successively find γ such that while

D̄λ
Ω(X,WH+

γ ) > D̄λ
Ω(X,WH)

we reduce
γ =

γ

2
and set

H+
γ = (1− γ)H + γH+.
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Algorithm for DR-NMF

For fixed λ, we have an MU algorithm to solve

min
W,H≥0

D̄λ
Ω(X,WH), where D̄λ

Ω(X,WH) =
∑
β∈Ω

λβD̄β(X,WH)

But we want to solve for W,H ≥ 0 that minimizes

max
β∈Ω

D̄β(X,WH) = max
λ≥0:‖λ‖1=1

∑
β∈Ω

λβD̄β(X,WH).

So we want to solve

min
W,H≥0

max
λ≥0:‖λ‖1=1

∑
β∈Ω

λβD̄β(X,WH)

which is a min-max optimization problem.

There are dual subgradient methods to solve this with
convergence guarantees, but we found them to be slow.
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Aggressive, Heuristic Algorithm for DR-NMF

Initialize λβ = 1/|Ω| for all β ∈ Ω.

For each k = 1, 2, . . ., we obtain H(k+1) using the MU algorithm
with W = W(k) and λ = λ(k).

We obtain W(k+1) using the MU algorithm with H = H(k+1) and
λ = λ(k).

Let β∗ ∈ arg maxβ∈Ω D̄β(X,W(k+1)H(k+1)) and

(λ
(k)
∗ )β =

{
1 if β = β∗,
0 if β 6= β∗.

Update

λ(k+1) = λ(k) + ρk︸︷︷︸
:=1/k

λ
(k)
∗ , then normalize λ(k+1) ← λ(k+1)

‖λ(k+1)‖1
.
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Remarks on our Algorithm for DR-NMF

Updates for W and H are meant to approximately minimize

(W,H) 7→ D̄λ(k)

Ω (X,WH)

For the update of λ, notice that for all β ∈ Ω

D̄β∗(X,W(k+1)H(k+1)) ≥ D̄β(X,W(k+1)H(k+1)),

and since λ 7→ D̄λ
β is linear, we have

λ
(k)
∗ = arg max

{
D̄λ
β(X,W(k+1)H(k+1)) : λ ≥ 0, ‖λ‖1 = 1

}
.

The β∗-divergence is given the most importance at the next
iteration

Forcing all β-divergences to decrease as well.
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Comparison to Dual-Subgradient-Based Algorithm

200 400 600 800 1000
1

1.01
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1.04

1.05

Evolution of the scaled β-divergences

Aggressive heuristic =⇒ maxβ∈Ω D̄β(X,W(k)H(k)) ≤ 1 + ε faster.
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Sparse Document Data Sets

For sparse data sets, one often chooses β ∈ Ω = {1, 2}

For sparse word-count datasets, Poisson noise is the most
appropriate

But say we don’t know this, we can compare DR-NMF, KL-NMF
and Fro-NMF

Use these NMF methods for clustering (topic modeling)

Clustering accuracy

accuracy({C̃i}r
i=1) := min

π:[r]→[r]

1
m

r∑
i=1

|Ci ∩ C̃π(i)|
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Sparse Document Data Sets

Clustering accuracies of various methods
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Dense Time-Frequency Matrices of Audio Signals

Use the data set piano_Mary

Musical score of “Mary had a little lamb”. The notes are activated as
follows: E4, D4, C4, D4, E4, E4, E4.

Considered no added noise and adding Poisson noise to the
music piece

Tested in DR-NMF (with Ω = {0, 1}), IS-NMF (β = 0) and KL-NMF
(β = 1)
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No Added Noise

Evolution of scaled β-divergences

DR-NMF is able to compute a model with low IS- and KL-error

KL-NMF has IS-error 9 times that of IS-NMF
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Added Poisson Noise

Comparative study of NMF with IS- and KL-divergences, and DR-NMF with
Ω = {0, 1} and Poisson noise.

Rows of H recovered successfully.

C4 is activated once, D4 twice and E4 four times.
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Conclusion and Future Work

Proposed a Multi-Objective and Distributionally Robust variant of
NMF

Works exceedingly well in practice (audio, document data sets)
without knowledge of β

Prove convergence guarantees for our algorithm (there are
convergence guarantees for the slow dual subgradient method)

Full paper here (https://arxiv.org/abs/1901.10757).
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