Distributionally Robust and Multi-Objective Nonnegative Matrix Factorization

Vincent Y. F. Tan (NUS)

Joint work with Nicolas Gillis, Le Thi Khanh Hien and Valentin Leplat (Université de Mons)

Group Meeting (March 2020)

< ロト < 回 ト < 注 ト < 注</p>

2 Algorithms

< □ > < □ > < □ > < □ > < □ >

Algorithms 2

990

< ロ ト < 回 ト < 注 ト < 注</p>

2 Algorithms

<ロト < 回 > < 回 > < 回 >

2 Algorithms

<ロト < 回ト < 回ト < 回ト

Matrix Factorization Models

Data is usually in matrix form

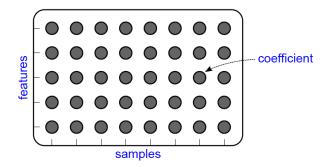


Figure reproduced from C. Févotte's slides

Vincent Tan (NUS)

Matrix Factorization Models

Data is usually in matrix form

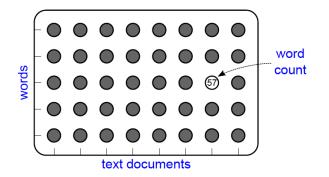


Figure reproduced from C. Févotte's slides

Vincent Tan (NUS)

Matrix Factorization Models

- Dictionary Learning
- Low-Rank Approximation
- Factor Analysis
- Latent Semantic Modelling

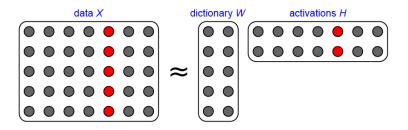


Figure reproduced from C. Févotte's slides

Vincent Tan (NUS)

Non-Negative Matrix Factorization

■ Non-Negative Matrix Factorization (NMF) is the task of approximating a given nonnegative matrix $X \in \mathbb{R}^{m \times n}_+$ such that

 $X \approx WH$

where $W \in \mathbb{R}^{m \times r}_+$ and $H \in \mathbb{R}^{r \times n}_+$ are also nonnegative matrices.

Non-Negative Matrix Factorization

■ Non-Negative Matrix Factorization (NMF) is the task of approximating a given nonnegative matrix $X \in \mathbb{R}^{m \times n}_+$ such that

 $X \approx WH$

where $W \in \mathbb{R}^{m \times r}_+$ and $H \in \mathbb{R}^{r \times n}_+$ are also nonnegative matrices.

■ Usually $r \ll \min\{m, n\}$ so there is dimensionality reduction.

Non-Negative Matrix Factorization

■ Non-Negative Matrix Factorization (NMF) is the task of approximating a given nonnegative matrix $X \in \mathbb{R}^{m \times n}_+$ such that

 $X \approx WH$

where $W \in \mathbb{R}^{m \times r}_+$ and $H \in \mathbb{R}^{r \times n}_+$ are also nonnegative matrices.

- Usually $r \ll \min\{m, n\}$ so there is dimensionality reduction.
- Each column of $X(:,j) \in \mathbb{R}^m_+$ is a data point. Reconstructed via a linear combination of *r* basis elements given by the columns of *W* while the columns of *H* provide the weights

$$X(:,j) \approx \sum_{k=1}^{r} W(:,k) H(k,j), \qquad 1 \le j \le n$$

The Objective Function to be Minimized in NMF

To ensure $X \approx WH$, we minimize an element-wise cost function

$$\min_{W,H \ge 0} \left[D(X, WH) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(X_{i,j}, (WH)_{i,j}) \right]$$

The Objective Function to be Minimized in NMF

To ensure $X \approx WH$, we minimize an element-wise cost function

$$\min_{W,H \ge 0} \left[D(X, WH) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(X_{i,j}, (WH)_{i,j}) \right]$$

■ One choice for $D(\cdot, \cdot)$ is the β -divergence

$$D_{\beta}(x,y) = \begin{cases} \frac{x}{y} - \log \frac{x}{y} - 1 & \text{for } \beta = 0, \\ x \log \frac{x}{y} - x + y & \text{for } \beta = 1, \\ \frac{1}{\beta(\beta - 1)} \left(x^{\beta} + (\beta - 1)y^{\beta} - \beta xy^{\beta - 1} \right) & \text{for } \beta \neq 0, 1. \end{cases}$$

The Objective Function to be Minimized in NMF

To ensure $X \approx WH$, we minimize an element-wise cost function

$$\min_{W,H \ge 0} \left[D(X, WH) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(X_{i,j}, (WH)_{i,j}) \right]$$

• One choice for $D(\cdot, \cdot)$ is the β -divergence

$$D_{\beta}(x,y) = \begin{cases} \frac{x}{y} - \log \frac{x}{y} - 1 & \text{for } \beta = 0, \\ x \log \frac{x}{y} - x + y & \text{for } \beta = 1, \\ \frac{1}{\beta(\beta - 1)} \left(x^{\beta} + (\beta - 1)y^{\beta} - \beta xy^{\beta - 1} \right) & \text{for } \beta \neq 0, 1. \end{cases}$$

• Note that if $\beta = 2$, we have the quadratic cost $D_2(x, y) = \frac{1}{2}(x - y)^2$.

Statistical Models for NMF

■ If $X_{i,j} = (WH)_{i,j} +$ Gaussian noise, then

$$-\log p(X_{i,j} \mid (WH)_{i,j}) \stackrel{c}{=} \frac{1}{2\sigma^2} ((WH)_{i,j} - X_{i,j})^2$$

then maximizing the log-likelihood \equiv minimizing D_2 (Fro-NMF).

Statistical Models for NMF

■ If $X_{i,j} = (WH)_{i,j} +$ Gaussian noise, then

$$-\log p(X_{i,j} \mid (WH)_{i,j}) \stackrel{c}{=} \frac{1}{2\sigma^2} ((WH)_{i,j} - X_{i,j})^2$$

then maximizing the log-likelihood \equiv minimizing D_2 (Fro-NMF).

If
$$X_{i,j} \sim \text{Poisson}((WH)_{i,j})$$
, then

$$-\log p(X_{i,j} \mid (WH)_{i,j}) = X_{i,j} \log \frac{X_{i,j}}{(WH)_{i,j}} + (WH)_{i,j} \stackrel{c}{=} D_1(X_{i,j}, (WH)_{i,j}),$$

then maximizing the log-likelihood \equiv minimizing D_1 (KL-NMF).

Statistical Models for NMF

■ If $X_{i,j} = (WH)_{i,j} +$ Gaussian noise, then

$$-\log p(X_{i,j} \mid (WH)_{i,j}) \stackrel{c}{=} \frac{1}{2\sigma^2} ((WH)_{i,j} - X_{i,j})^2$$

then maximizing the log-likelihood \equiv minimizing D_2 (Fro-NMF).

■ If
$$X_{i,j} \sim \text{Poisson}((WH)_{i,j})$$
, then

$$-\log p(X_{i,j} \mid (WH)_{i,j}) = X_{i,j} \log \frac{X_{i,j}}{(WH)_{i,j}} + (WH)_{i,j} \stackrel{c}{=} D_1(X_{i,j}, (WH)_{i,j}),$$

then maximizing the log-likelihood \equiv minimizing D_1 (KL-NMF).

If $X_{i,j} = \text{Gamma}(\alpha, (WH)_{i,j}/\alpha)$, then

$$-\log p(X_{i,j} \mid (WH)_{i,j}) = \frac{X_{i,j}}{(WH)_{i,j}} - \log \frac{X_{i,j}}{(WH)_{i,j}} - 1 = D_0(X_{i,j}, (WH)_{i,j}).$$

then maximizing the log-likelihood \equiv minimizing D_0 (IS-NMF).

• Audio signal processing: $\beta \in \{0, 1\}$

э

∃ ► < ∃ ►</p>

- **•** Audio signal processing: $\beta \in \{0, 1\}$
- Sparse document datasets: $\beta \in \{1, 2\}$

< 17 ▶

- Audio signal processing: $\beta \in \{0, 1\}$
- Sparse document datasets: $\beta \in \{1, 2\}$
- How to choose an appropriate β when given a new task? Say we consider $\beta \in \Omega$ where $\Omega \subset \mathbb{R}$ is a finite set.

- Audio signal processing: $\beta \in \{0, 1\}$
- Sparse document datasets: $\beta \in \{1, 2\}$
- How to choose an appropriate β when given a new task? Say we consider $\beta \in \Omega$ where $\Omega \subset \mathbb{R}$ is a finite set.
- Multi-Objective NMF (MO-NMF)

 $\min_{W,H\geq 0} \left\{ D_{\beta}(X,WH) \right\}_{\beta\in\Omega}$

which is solved for a given probability vector $\lambda = (\lambda_{\beta})_{\beta \in \Omega}$ using

$$\min_{W,H\geq 0} \left[D_{\Omega}^{\lambda}(X,WH) = \sum_{\beta\in \Omega} \lambda_{\beta} D_{\beta}(X,WH) \right]$$

- Audio signal processing: $\beta \in \{0, 1\}$
- Sparse document datasets: $\beta \in \{1, 2\}$
- How to choose an appropriate β when given a new task? Say we consider $\beta \in \Omega$ where $\Omega \subset \mathbb{R}$ is a finite set.
- Multi-Objective NMF (MO-NMF)

 $\min_{W,H\geq 0} \left\{ D_{\beta}(X,WH) \right\}_{\beta\in\Omega}$

which is solved for a given probability vector $\lambda = (\lambda_{\beta})_{\beta \in \Omega}$ using

$$\min_{W,H\geq 0}\left[D_{\Omega}^{\lambda}(X,WH)=\sum_{eta\in\Omega}\lambda_{eta}D_{eta}(X,WH)
ight]$$

Distributionally Robust NMF (DR-NMF)

 $\min_{W,H \ge 0} \max_{\beta \in \Omega} D_{\beta}(X,WH)$

Vincent Tan (NUS)

For the family of β -divergences, it can be easily checked that

 $D_{\beta}(\alpha X, \alpha WH) = \alpha^{\beta} D_{\beta}(X, WH).$

590

-

For the family of β -divergences, it can be easily checked that $D_{\beta}(\alpha X, \alpha WH) = \alpha^{\beta} D_{\beta}(X, WH).$

■ Not desirable in practice as datasets are not properly scaled.

For the family of β -divergences, it can be easily checked that $D_{\beta}(\alpha X, \alpha WH) = \alpha^{\beta} D_{\beta}(X, WH).$

Not desirable in practice as datasets are not properly scaled.

Compute an approximate solution

 $(W_{\beta}, H_{\beta}) \approx \underset{W,H \ge 0}{\operatorname{arg\,min}} D_{\beta}(X, WH), \text{ with error } e_{\beta} = D_{\beta}(X, W_{\beta}H_{\beta})$

and define

$$ar{D}_eta(X,WH) = rac{D_eta(X,WH)}{e_eta}, ext{ so that } ar{D}_eta(X,W_eta H_eta) = 1.$$

イロト イポト イヨト イヨト

For the family of β -divergences, it can be easily checked that $D_{\beta}(\alpha X, \alpha WH) = \alpha^{\beta} D_{\beta}(X, WH).$

■ Not desirable in practice as datasets are not properly scaled.

Compute an approximate solution

 $(W_{\beta}, H_{\beta}) \approx \underset{W,H \ge 0}{\operatorname{arg\,min}} D_{\beta}(X, WH), \text{ with error } e_{\beta} = D_{\beta}(X, W_{\beta}H_{\beta})$

and define

$$ar{D}_eta(X,WH) = rac{D_eta(X,WH)}{e_eta}, ext{ so that } ar{D}_eta(X,W_eta H_eta) = 1.$$

Consider the optimization

$$\min_{W,H\geq 0} \bar{D}_{\Omega}^{\lambda}(X,WH), \quad \text{where} \quad \bar{D}_{\Omega}^{\lambda}(X,WH) = \sum_{\beta\in\Omega} \lambda_{\beta} \bar{D}_{\beta}(X,WH)$$

2 Algorithms

E

< □ > < □ > < □ > < □ > < □ >

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Consider the general optimization problem with nonnegativity constraints

 $\min\{f(x) : x \ge 0\}.$

ヨトイヨト

4 6 1 1 4

■ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Consider the general optimization problem with nonnegativity constraints

 $\min\{f(x) : x \ge 0\}.$

Rescaled gradient descent method (with rescaling matrix B)

$$x^+ = x - \mathbf{B}\nabla f(x)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

■ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Consider the general optimization problem with nonnegativity constraints

$$\min\{f(x) : x \ge 0\}.$$

Rescaled gradient descent method (with rescaling matrix B)

$$x^+ = x - B\nabla f(x)$$

Say that $\nabla f(x) = \nabla_+ f(x) - \nabla_- f(x)$ where $\nabla_+ f(x) > 0$ and $\nabla_- f(x) > 0$.

イロト イポト イヨト イヨト

■ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Consider the general optimization problem with nonnegativity constraints

$$\min\{f(x) : x \ge 0\}.$$

Rescaled gradient descent method (with rescaling matrix B)

$$x^+ = x - B\nabla f(x)$$

Say that $\nabla f(x) = \nabla_+ f(x) - \nabla_- f(x)$ where $\nabla_+ f(x) > 0$ and $\nabla_- f(x) > 0$. Taking $B_{ii} = x_i / \nabla_+ f(x)_i$, we obtain

$$x^{+} = x - \frac{[x]}{[\nabla_{+}f(x)]}(\nabla_{+}f(x) - \nabla_{-}f(x)) = x \circ \frac{\nabla_{-}f(x)}{\nabla_{+}f(x)}$$

くほとく ヨト く ヨトー

■ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Consider the general optimization problem with nonnegativity constraints

$$\min\{f(x) : x \ge 0\}.$$

Rescaled gradient descent method (with rescaling matrix B)

$$x^+ = x - B\nabla f(x)$$

Say that $\nabla f(x) = \nabla_+ f(x) - \nabla_- f(x)$ where $\nabla_+ f(x) > 0$ and $\nabla_- f(x) > 0$. Taking $B_{ii} = x_i / \nabla_+ f(x)_i$, we obtain

$$x^{+} = x - \frac{[x]}{[\nabla_{+}f(x)]}(\nabla_{+}f(x) - \nabla_{-}f(x)) = x \circ \frac{\nabla_{-}f(x)}{\nabla_{+}f(x)}$$

■ No tuning of step-sizes. If $x \ge 0$, then $x^+ \ge 0$ as well.

Application of MU Algorithm to DR-NMF

\blacksquare Recall that for a fixed probability vector λ , we want to solve

$$\min_{W,H\geq 0} \bar{D}^{\lambda}_{\Omega}(X,WH), \quad \text{where} \quad \bar{D}^{\lambda}_{\Omega}(X,WH) = \sum_{\beta\in\Omega} \lambda_{\beta} \bar{D}_{\beta}(X,WH)$$

イロト イポト イヨト イヨト

Application of MU Algorithm to DR-NMF

\blacksquare Recall that for a fixed probability vector λ , we want to solve

$$\min_{W,H\geq 0} \bar{D}^{\lambda}_{\Omega}(X,WH), \quad \text{where} \quad \bar{D}^{\lambda}_{\Omega}(X,WH) = \sum_{\beta\in\Omega} \lambda_{\beta} \bar{D}_{\beta}(X,WH)$$

■ Alternating minimization procedure: Min over *H*, then over *W*.

Application of MU Algorithm to DR-NMF

Recall that for a fixed probability vector λ , we want to solve

 $\min_{W,H\geq 0} \bar{D}^{\lambda}_{\Omega}(X,WH), \quad \text{where} \quad \bar{D}^{\lambda}_{\Omega}(X,WH) = \sum_{\beta\in\Omega} \lambda_{\beta} \bar{D}_{\beta}(X,WH)$

■ Alternating minimization procedure: Min over *H*, then over *W*.

• For all β ,

$$\nabla^{H} D_{\beta}(X, WH) = \nabla^{H}_{+} D_{\beta}(X, WH) - \nabla^{H}_{-} D_{\beta}(X, WH),$$

where ∇^H means gradient w.r.t. *H*.

Application of MU Algorithm to DR-NMF

Recall that for a fixed probability vector λ , we want to solve

 $\min_{W,H\geq 0} \bar{D}^{\lambda}_{\Omega}(X,WH), \quad \text{where} \quad \bar{D}^{\lambda}_{\Omega}(X,WH) = \sum_{\beta\in\Omega} \lambda_{\beta} \bar{D}_{\beta}(X,WH)$

■ Alternating minimization procedure: Min over *H*, then over *W*.

• For all β ,

$$\nabla^{H} D_{\beta}(X, WH) = \nabla^{H}_{+} D_{\beta}(X, WH) - \nabla^{H}_{-} D_{\beta}(X, WH),$$

where ∇^H means gradient w.r.t. *H*.

After some tedious calculation,

$$\nabla^{H}_{+}D_{\beta}(X, WH) = W^{T}(WH)^{\circ(\beta-1)} \text{ and }$$
$$\nabla^{H}_{-}D_{\beta}(X, WH) = W^{T}\left((WH)^{\circ(\beta-2)} \circ X\right),$$

Application of MU Algorithm to DR-NMF

■ Update *H* as follows:

$$H^{+} = H \circ \frac{\left[\sum_{\beta \in \Omega} \lambda_{\beta} \left(\nabla^{H}_{-} \bar{D}_{\beta}(X, WH) \right) \right]}{\left[\sum_{\beta \in \Omega} \lambda_{\beta} \left(\nabla^{H}_{+} \bar{D}_{\beta}(X, WH) \right) \right]}.$$

3

590

イロト イポト イヨト イヨト

Application of MU Algorithm to DR-NMF

■ Update *H* as follows:

$$H^{+} = H \circ \frac{\left[\sum_{\beta \in \Omega} \lambda_{\beta} \left(\nabla^{H}_{-} \bar{D}_{\beta}(X, WH) \right) \right]}{\left[\sum_{\beta \in \Omega} \lambda_{\beta} \left(\nabla^{H}_{+} \bar{D}_{\beta}(X, WH) \right) \right]}.$$

Sometimes this may not result in a decrease in the objective, so we set γ = 1 and H₁⁺ = H⁺ and successively find γ such that while

$$\bar{D}^{\lambda}_{\Omega}(X, WH^+_{\gamma}) > \bar{D}^{\lambda}_{\Omega}(X, WH)$$

we reduce

$$\gamma = \frac{\gamma}{2}$$

and set

$$H_{\gamma}^{+} = (1 - \gamma)H + \gamma H^{+}.$$

For fixed λ , we have an MU algorithm to solve

 $\min_{W,H\geq 0}\bar{D}_{\Omega}^{\lambda}(X,WH), \quad \text{where} \quad \bar{D}_{\Omega}^{\lambda}(X,WH) = \sum_{\beta\in\Omega}\lambda_{\beta}\bar{D}_{\beta}(X,WH)$

3

イロト イポト イヨト イヨト

For fixed λ , we have an MU algorithm to solve

 $\min_{W,H\geq 0}\bar{D}_{\Omega}^{\lambda}(X,W\!H), \quad \text{where} \quad \bar{D}_{\Omega}^{\lambda}(X,W\!H) = \sum_{\beta\in\Omega}\lambda_{\beta}\bar{D}_{\beta}(X,W\!H)$

But we want to solve for $W, H \ge 0$ that minimizes

$$\max_{\beta \in \Omega} \bar{D}_{\beta}(X, WH) = \max_{\lambda \ge 0: \|\lambda\|_1 = 1} \sum_{\beta \in \Omega} \lambda_{\beta} \bar{D}_{\beta}(X, WH).$$

3

イロト イポト イヨト イヨト

For fixed λ , we have an MU algorithm to solve

 $\min_{W,H\geq 0}\bar{D}_{\Omega}^{\lambda}(X,W\!H), \quad \text{where} \quad \bar{D}_{\Omega}^{\lambda}(X,W\!H) = \sum_{\beta\in\Omega}\lambda_{\beta}\bar{D}_{\beta}(X,W\!H)$

But we want to solve for $W, H \ge 0$ that minimizes

$$\max_{eta\in\Omega}ar{D}_eta(X,W\!H) = \max_{\lambda\geq 0: \|\lambda\|_1=1}\sum_{eta\in\Omega}\lambda_etaar{D}_eta(X,W\!H).$$

So we want to solve

$$\min_{W,H\geq 0} \max_{\lambda\geq 0: \|\lambda\|_1=1} \sum_{\beta\in \Omega} \lambda_\beta \bar{D}_\beta(X, WH)$$

which is a min-max optimization problem.

For fixed λ , we have an MU algorithm to solve

 $\min_{W,H\geq 0}\bar{D}_{\Omega}^{\lambda}(X,W\!H), \quad \text{where} \quad \bar{D}_{\Omega}^{\lambda}(X,W\!H) = \sum_{\beta\in\Omega}\lambda_{\beta}\bar{D}_{\beta}(X,W\!H)$

But we want to solve for $W, H \ge 0$ that minimizes

$$\max_{eta\in\Omega}ar{D}_eta(X,W\!H) = \max_{\lambda\geq 0: \|\lambda\|_1=1}\sum_{eta\in\Omega}\lambda_etaar{D}_eta(X,W\!H).$$

So we want to solve

$$\min_{W,H\geq 0} \max_{\lambda\geq 0: \|\lambda\|_1=1} \sum_{\beta\in \Omega} \lambda_\beta \bar{D}_\beta(X,WH)$$

which is a min-max optimization problem.

There are dual subgradient methods to solve this with convergence guarantees, but we found them to be slow.

Vincent Tan (NUS)

Distributionally Robust NMF

Initialize $\lambda_{\beta} = 1/|\Omega|$ for all $\beta \in \Omega$.

3

590

イロト イポト イヨト イヨト

Initialize
$$\lambda_{\beta} = 1/|\Omega|$$
 for all $\beta \in \Omega$.

For each k = 1, 2, ..., we obtain $H^{(k+1)}$ using the MU algorithm with $W = W^{(k)}$ and $\lambda = \lambda^{(k)}$.

イロト イポト イヨト イヨト

Initialize
$$\lambda_{\beta} = 1/|\Omega|$$
 for all $\beta \in \Omega$.

- For each k = 1, 2, ..., we obtain $H^{(k+1)}$ using the MU algorithm with $W = W^{(k)}$ and $\lambda = \lambda^{(k)}$.
- We obtain $W^{(k+1)}$ using the MU algorithm with $H = H^{(k+1)}$ and $\lambda = \lambda^{(k)}$.

Initialize
$$\lambda_{\beta} = 1/|\Omega|$$
 for all $\beta \in \Omega$.

For each k = 1, 2, ..., we obtain $H^{(k+1)}$ using the MU algorithm with $W = W^{(k)}$ and $\lambda = \lambda^{(k)}$.

• We obtain $W^{(k+1)}$ using the MU algorithm with $H = H^{(k+1)}$ and $\lambda = \lambda^{(k)}$.

• Let $\beta^* \in \arg \max_{\beta \in \Omega} \overline{D}_{\beta}(X, W^{(k+1)}H^{(k+1)})$ and

$$(\lambda_*^{(k)})_{\beta} = \begin{cases} 1 & \text{if } \beta = \beta^*, \\ 0 & \text{if } \beta \neq \beta^*. \end{cases}$$

Update

$$\lambda^{(k+1)} = \lambda^{(k)} + \underbrace{\rho_k}_{:=1/k} \lambda^{(k)}_*, \quad \text{then normalize} \quad \lambda^{(k+1)} \leftarrow \frac{\lambda^{(k+1)}}{\|\lambda^{(k+1)}\|_1}.$$

■ Updates for W and H are meant to approximately minimize

$$(W,H)\mapsto ar{D}_{\Omega}^{\lambda^{(k)}}(X,WH)$$

■ Updates for W and H are meant to approximately minimize

$$(W,H)\mapsto ar{D}_{\Omega}^{\lambda^{(k)}}(X,WH)$$

• For the update of λ , notice that for all $\beta \in \Omega$

$$\bar{D}_{\beta^*}(X, W^{(k+1)}H^{(k+1)}) \ge \bar{D}_{\beta}(X, W^{(k+1)}H^{(k+1)}),$$

and since $\lambda\mapsto \bar{D}^\lambda_\beta$ is linear, we have

$$\lambda_*^{(k)} = \arg \max \left\{ \bar{D}_{\beta}^{\lambda}(X, W^{(k+1)}H^{(k+1)}) : \lambda \ge 0, \|\lambda\|_1 = 1 \right\}.$$

■ Updates for W and H are meant to approximately minimize

$$(W,H)\mapsto ar{D}_{\Omega}^{\lambda^{(k)}}(X,WH)$$

• For the update of λ , notice that for all $\beta \in \Omega$

$$\bar{D}_{\beta^*}(X, W^{(k+1)}H^{(k+1)}) \ge \bar{D}_{\beta}(X, W^{(k+1)}H^{(k+1)}),$$

and since $\lambda \mapsto \bar{D}^{\lambda}_{\beta}$ is linear, we have

$$\lambda_*^{(k)} = \arg \max \left\{ \bar{D}_{\beta}^{\lambda}(X, W^{(k+1)}H^{(k+1)}) : \lambda \ge 0, \|\lambda\|_1 = 1 \right\}.$$

The β*-divergence is given the most importance at the next iteration

■ Updates for W and H are meant to approximately minimize

$$(W,H)\mapsto ar{D}_{\Omega}^{\lambda^{(k)}}(X,WH)$$

• For the update of λ , notice that for all $\beta \in \Omega$

$$\bar{D}_{\beta^*}(X, W^{(k+1)}H^{(k+1)}) \ge \bar{D}_{\beta}(X, W^{(k+1)}H^{(k+1)}),$$

and since $\lambda \mapsto \bar{D}^{\lambda}_{\beta}$ is linear, we have

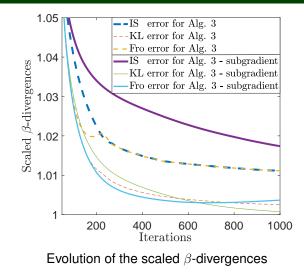
$$\lambda_*^{(k)} = \arg \max \left\{ \bar{D}_{\beta}^{\lambda}(X, W^{(k+1)}H^{(k+1)}) : \lambda \ge 0, \|\lambda\|_1 = 1 \right\}.$$

The β*-divergence is given the most importance at the next iteration

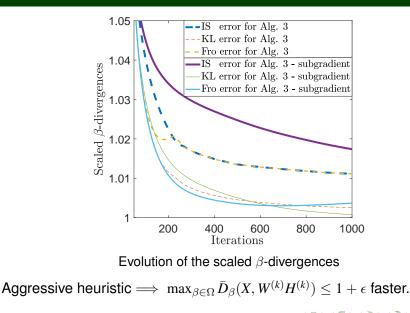
Forcing all β -divergences to decrease as well.

Vincent Tan (NUS)

Comparison to Dual-Subgradient-Based Algorithm



Comparison to Dual-Subgradient-Based Algorithm



1 Motivation and Problem Setup

2 Algorithms

E

イロト イポト イヨト イヨト

For sparse data sets, one often chooses $\beta \in \Omega = \{1, 2\}$

< 6 b

- \blacksquare For sparse data sets, one often chooses $\beta\in\Omega=\{1,2\}$
- For sparse word-count datasets, Poisson noise is the most appropriate

- \blacksquare For sparse data sets, one often chooses $\beta \in \Omega = \{1,2\}$
- For sparse word-count datasets, Poisson noise is the most appropriate
- But say we don't know this, we can compare DR-NMF, KL-NMF and Fro-NMF

- For sparse data sets, one often chooses $\beta \in \Omega = \{1, 2\}$
- For sparse word-count datasets, Poisson noise is the most appropriate
- But say we don't know this, we can compare DR-NMF, KL-NMF and Fro-NMF
- Use these NMF methods for clustering (topic modeling)

- For sparse data sets, one often chooses $\beta \in \Omega = \{1, 2\}$
- For sparse word-count datasets, Poisson noise is the most appropriate
- But say we don't know this, we can compare DR-NMF, KL-NMF and Fro-NMF
- Use these NMF methods for clustering (topic modeling)
- Clustering accuracy

$$\operatorname{accuracy}(\{\tilde{C}_i\}_{i=1}^r) := \min_{\pi: [r] \to [r]} \frac{1}{m} \sum_{i=1}^r |C_i \cap \tilde{C}_{\pi(i)}|$$

data set	number	Clustering accuracy (%)		
	of classes	KL-NMF	Fro-NMF	
NG20	20	50.15	17.78	27.60
NG3SIM	3	<u>59.07</u>	34.29	68.05
classic	4	65.53	49.21	58.98
ohscal	10	41.54	35.71	40.23
k1b	6	54.40	73.50	62.35
hitech	6	41.03	48.28	41.68
reviews	5	78.10	45.24	75.33
sports	7	53.48	49.24	62.60
la1	6	70.69	45.47	66.67
la12	6	71.24	47.91	67.75
la2	6	70.34	51.58	68.62
tr11	9	52.90	46.38	46.62
tr23	6	30.39	39.71	34.80
tr41	10	60.25	35.31	49.20
tr45	10	56.67	38.12	31.59
Average		57.05	43.85	53.47

Clustering accuracies of various methods

Dense Time-Frequency Matrices of Audio Signals

Use the data set piano_Mary

Musical score of "Mary had a little lamb". The notes are activated as follows: E_4 , D_4 , C_4 , D_4 , E_4 , E_4 , E_4 .

Dense Time-Frequency Matrices of Audio Signals

Use the data set piano_Mary

Musical score of "Mary had a little lamb". The notes are activated as follows: E_4 , D_4 , C_4 , D_4 , E_4 , E_4 , E_4 .

 Considered no added noise and adding Poisson noise to the music piece

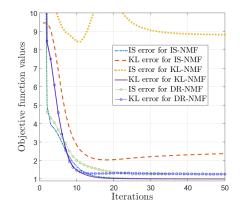
Dense Time-Frequency Matrices of Audio Signals

Use the data set piano_Mary

Musical score of "Mary had a little lamb". The notes are activated as follows: E_4 , D_4 , C_4 , D_4 , E_4 , E_4 , E_4 .

- Considered no added noise and adding Poisson noise to the music piece
- Tested in DR-NMF (with $\Omega = \{0, 1\}$), IS-NMF ($\beta = 0$) and KL-NMF ($\beta = 1$)

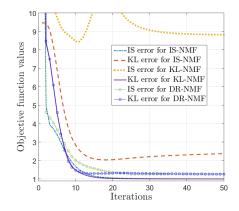
No Added Noise



Evolution of scaled β -divergences

<ロト < 回 > < 回 > < 回 > < 回 >

No Added Noise

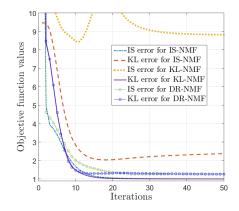


Evolution of scaled β -divergences

DR-NMF is able to compute a model with low IS- and KL-error

< □ > < □ > < □ > < □ > < □ > < □ >

No Added Noise



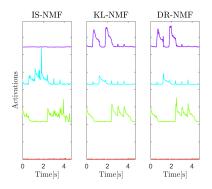
Evolution of scaled β -divergences

DR-NMF is able to compute a model with low IS- and KL-error

KL-NMF has IS-error 9 times that of IS-NMF

Vincent Tan (NUS)

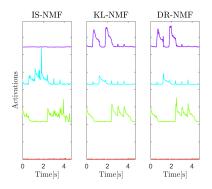
Added Poisson Noise



Comparative study of NMF with IS- and KL-divergences, and DR-NMF with $\Omega = \{0, 1\}$ and Poisson noise.

990

Added Poisson Noise



Comparative study of NMF with IS- and KL-divergences, and DR-NMF with $\Omega=\{0,1\}$ and Poisson noise.

- Rows of H recovered successfully.
- \blacksquare *C*⁴ is activated once, *D*⁴ twice and *E*⁴ four times.

Outline

1 Motivation and Problem Setup

2 Algorithms

3 Experiments

E

<ロト < 回ト < 回ト < 回ト

 Proposed a Multi-Objective and Distributionally Robust variant of NMF

I > <
 I >
 I

- Proposed a Multi-Objective and Distributionally Robust variant of NMF
- Works exceedingly well in practice (audio, document data sets) without knowledge of β

- Proposed a Multi-Objective and Distributionally Robust variant of NMF
- Works exceedingly well in practice (audio, document data sets) without knowledge of β
- Prove convergence guarantees for our algorithm (there are convergence guarantees for the slow dual subgradient method)

- Proposed a Multi-Objective and Distributionally Robust variant of NMF
- Works exceedingly well in practice (audio, document data sets) without knowledge of β
- Prove convergence guarantees for our algorithm (there are convergence guarantees for the slow dual subgradient method)
- Full paper here (https://arxiv.org/abs/1901.10757).