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Motivation: A Real-Life Example

Manchester Asthma and Allergy Study (MAAS)

More than n ≈ 1000 children

Number of variables d ≈ 106

Environmental, Physiological and Genetic (SNP)
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Motivation: Modeling Large Datasets I

How do we model such data to make useful inferences?

Model the relationships between variables by a sparse graph

Reduce the number of interdependencies between the variables

Airway 
Obstruction

Viral Infection

Airway 
Inflammation

Bronchial 
Hyperresponsiveness

Acquired Immune 
Response

Immune 
Response to 

Virus

Obesity

Smoking

Prematurity

Lung Function

Simpson*, VYFT* et al. “Beyond Atopy: Multiple Patterns of Sensitization in Relation to
Asthma in a Birth Cohort Study”, Am. J. Respir. Crit. Care Med. Feb 2010.
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Motivation: Modeling Large Datasets II

Reduce the dimensionality of the covariates (features) for
predicting a variable for interest (e.g., asthma)

Information-theoretic limits†?

Learning graphical models tailored specifically for hypothesis
testing

Can we learn better models in the finite-sample setting‡?

† VYFT, Johnson and Willsky, “Necessary and Sufficient Conditions for Salient Subset
Recovery,” Intl. Symp. on Info. Theory, Jul 2010.

‡ VYFT, Sanghavi, Fisher and Willsky, “Learning Graphical Models for Hypothesis Testing
and Classification,” IEEE Trans. on Signal Processing, Nov 2010.

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 7 / 52



Motivation: Modeling Large Datasets II

Reduce the dimensionality of the covariates (features) for
predicting a variable for interest (e.g., asthma)

Information-theoretic limits†?

Learning graphical models tailored specifically for hypothesis
testing

Can we learn better models in the finite-sample setting‡?

† VYFT, Johnson and Willsky, “Necessary and Sufficient Conditions for Salient Subset
Recovery,” Intl. Symp. on Info. Theory, Jul 2010.

‡ VYFT, Sanghavi, Fisher and Willsky, “Learning Graphical Models for Hypothesis Testing
and Classification,” IEEE Trans. on Signal Processing, Nov 2010.

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 7 / 52



Graphical Models: Introduction

Graph structure G = (V,E) represents a multivariate distribution of
a random vector X = (X1, . . . ,Xd) indexed by V = {1, . . . , d}

Node i ∈ V corresponds to random variable Xi

Edge set E corresponds to conditional independencies

Graphical Models: Introduction

Graph structure G = (V,E) in the multivariate distribution of random
variables, with V = {1, . . . ,m}.
Nodes i ∈ V correspond to random variable Xi.

Edges E correspond to conditional independence relationships.

V \{nbd(i) ∪ i}

i

nbd(i)

Xi ⊥⊥ XV \{nbd(i)∪i}|Xnbd(i)

A

B

S

XA ⊥⊥ XB |XS

Anima Anandkumar (UCI) Trees, Latent Trees & Beyond 11/08/2010 4 / 50
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From Conditional Independence to Gibbs Distribution

Hammersley-Clifford Theorem (1971)
Let P be the joint pmf of graphical
model Markov on G = (V,E):

P(x) =
1
Z

exp

[∑

c∈C
Ψc(xc)

]

From Conditional Independence to Gibbs Distribution

Hammersley-Clifford Theorem’71

Let P be joint pmf of model with graph
G = (V,E),

P (x) =
1

Z
exp[

∑

c∈C
Ψc(xc)].

where C is the set of maximal cliques.
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Tree-Structured Graphical Models
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X4

X1

X3 X2

P(x)=
∏

i∈V

Pi(xi)
∏

(i,j)∈E

Pi,j(xi, xj)

Pi(xi)Pj(xj)

= P1(x1)
P1,2(x1, x2)

P1(x1)

P1,3(x1, x3)

P1(x1)

P1,4(x1, x4)

P1(x1)

Tree-structured Graphical Models: Tractable Learning and Inference

Maximum-Likelihood learning of tree structure is tractable
Chow-Liu Algorithm (1968)

Inference on Trees is tractable
Sum-Product Algorithm

Which other classes of graphical models are tractable for learning?
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Main Contributions in Thesis: I

Error Exponent Analysis of Tree Structure Learning (Ch. 3 and 4)

u
u
u
u

u u u u u u

High-Dimensional Structure Learning for Forest Models (Ch. 5)

Graphical Models: Trees & Beyond

Analysis of Tree Structure Learning: Extremal Trees for Learning

Star

t tt
t t

Chain

t t t t t

Structure Learning in Graphical Models Beyond Trees

Forests Latent Trees Random Graphs

Anima Anandkumar (UCI) Trees, Latent Trees & Beyond 11/08/2010 7 / 50
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Main Contributions in Thesis: II

Learning Graphical Models for Hypothesis Testing (Ch. 6)

Devised algorithms for learning trees for hypothesis testing
12

�
�

�
��

�
�

�
��tt

tt q̃p̃

p̂DT p̂CL Tp̃

D(p̃||p̂DT) −D(q̃||p̂DT)

D(p̃||p̂CL)

Fig. 1. Illustration of Proposition 2. As defined in (8), Tp̃ is the subset of tree distributions that are marginally consistent with

p̃, the empirical distribution of the positively labeled samples. p̃ and q̃ are not trees, thus p̃, q̃ /∈ Tp̃. The generatively-learned

distribution (via Chow-Liu) p̂CL, is the projection of p̂ onto Tp̃ as given by the optimization problem in (9). The discriminatively-

learned distribution p̂DT, is the solution of (20a) which is “further” (in the KL-divergence sense) from q̃ (because of the −D(q̃||p̂)

term).

reverse is true for q̂. See Fig. 1 for an illustration of the proposition. Note that all distances are measured

using the KL-divergence. Each one of these problems can be solved by a MWST procedure with the

appropriate edge weights given in the following proposition.

Proposition 3: (Edge Weights for Discriminative Trees) Assume that p̂ and q̂ are marginally consistent

with p̃ and q̃ respectively as defined in (13). Then, for the selection of the edge set of p̂ in (20a), we can

apply a MWST procedure with the weights on each pair of nodes (i, j) ∈
(V

2

)
are given by

ψ
(+)
i,j := Ep̃i,j

[
log

p̃i,j

p̃ip̃j

]
− Eq̃i,j

[
log

p̃i,j

p̃ip̃j

]
. (21)

Proof: The proof can be found in Appendix A.

From (21), we observe that only the marginal and pairwise statistics are needed in order to compute the

edge weights. Subsequently, the MWST is used to obtain Ep̂. Then, given this optimal tree structure, the

model p̂ is the projection of p̃ onto Ep̂. A similar procedure yields q̂, with edge weights ψ(−)
i,j given by an

expression similar to (21), but with p̃ and q̃ interchanged. The algorithm is summarized in Algorithm 1.

This discriminative tree (DT) learning procedure produces at most n− 1 edges (pairwise features) in

each tree model p̂ and q̂ (some of the edge weights ψ(+)
i,j in (21) may turn out to be negative so the

algorithm may terminate early). The tree models p̂ and q̂ will then be used to construct φ̂, which is

used in the likelihood ratio test (3). Section V-B compares the classification performance of this method

with other tree-based methods such as Chow-Liu as well as TAN [13], [14]. Finally, we remark that the

proposed procedure has exactly the same complexity as learning a TAN network.

July 8, 2010 DRAFT

Information-Theoretic Limits for Salient Subset Recovery (Ch. 7)

Devised necessary and sufficient conditions for estimating of
salient set of features

We will focus on Chapters 3 - 5 here. See thesis for Chapters 6 and 7.
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4 Learning High-Dimensional Forest-Structured Models

5 Related Topics and Conclusion
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Motivation

ML learning of tree structure given i.i.d.
X d-valued samples rr

r r
@
@�
�

X4

X1

X3 X2

6

-

Pn(err)

n = # Samples

Pn(err) .= exp(−n Rate)

When does the error probability decay exponentially?

What is the exact rate of decay of the probability of error?

How does the error exponent depend on the parameters and
structure of the true distribution?
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Main Contributions

Discrete case:

Provide the exact rate of decay for a given P

Rate of decay ≈ SNR for learning

Gaussian case:

Extremal structures: Star (worst) and chain (best) for learning

u
u
u
u

u u u u u u
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Related Work in Structure Learning

ML for trees: Max-weight spanning tree with mutual information
edge weights (Chow & Liu 1968)

Causal dependence trees: directed mutual information (Quinn,
Coleman & Kiyavash 2010)

Convex relaxation methods: `1 regularization

Gaussian graphical models (Meinshausen and Buehlmann 2006)

Logistic regression for Ising models (Ravikumar et al. 2010)

Learning thin junction trees through conditional mutual information
tests (Chechetka et al. 2007)

Conditional independence tests for bounded degree graphs
(Bresler et al. 2008)

We obtain and analyze error exponents for the ML learning of trees
(and extensions to forests)
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ML Learning of Trees (Chow-Liu) I

Samples xn = {x1, . . . , xn} drawn i.i.d. from P ∈ P(X d), X is finite

Solve the ML problem given the data xn

PML , argmax
Q∈Trees

1
n

n∑

k=1

log Q(xk)

Denote P̂(a) = P̂(a; xn) as the empirical distribution of xn

Reduces to a max-weight spanning tree problem (Chow-Liu 1968)

EML = argmax
EQ∈Trees

∑

e∈EQ

I(P̂e)

P̂e is the marginal of the empirical on e = (i, j)

I(P̂e) is the mutual information of the empirical P̂e

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 17 / 52



ML Learning of Trees (Chow-Liu) I

Samples xn = {x1, . . . , xn} drawn i.i.d. from P ∈ P(X d), X is finite

Solve the ML problem given the data xn

PML , argmax
Q∈Trees

1
n

n∑

k=1

log Q(xk)

Denote P̂(a) = P̂(a; xn) as the empirical distribution of xn

Reduces to a max-weight spanning tree problem (Chow-Liu 1968)

EML = argmax
EQ∈Trees

∑

e∈EQ

I(P̂e)

P̂e is the marginal of the empirical on e = (i, j)

I(P̂e) is the mutual information of the empirical P̂e

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 17 / 52



ML Learning of Trees (Chow-Liu) I

Samples xn = {x1, . . . , xn} drawn i.i.d. from P ∈ P(X d), X is finite

Solve the ML problem given the data xn

PML , argmax
Q∈Trees

1
n

n∑

k=1

log Q(xk)

Denote P̂(a) = P̂(a; xn) as the empirical distribution of xn

Reduces to a max-weight spanning tree problem (Chow-Liu 1968)

EML = argmax
EQ∈Trees

∑

e∈EQ

I(P̂e)

P̂e is the marginal of the empirical on e = (i, j)

I(P̂e) is the mutual information of the empirical P̂e

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 17 / 52



ML Learning of Trees (Chow-Liu) I

Samples xn = {x1, . . . , xn} drawn i.i.d. from P ∈ P(X d), X is finite

Solve the ML problem given the data xn

PML , argmax
Q∈Trees

1
n

n∑

k=1

log Q(xk)

Denote P̂(a) = P̂(a; xn) as the empirical distribution of xn

Reduces to a max-weight spanning tree problem (Chow-Liu 1968)

EML = argmax
EQ∈Trees

∑

e∈EQ

I(P̂e)

P̂e is the marginal of the empirical on e = (i, j)

I(P̂e) is the mutual information of the empirical P̂e

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 17 / 52



ML Learning of Trees (Chow-Liu) II
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Problem Statement

Define PML to be ML tree-structured distribution with edge set EML

and the error event is {EML 6= EP}
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u

u u
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X4

X1

X3 X2

5 6

4

Find the error exponent KP:

KP , lim
n→∞

−1
n

log Pn (EML 6= EP) Pn (EML 6= EP)
.
= exp(−nKP)

Naïvely, what could we do to compute KP?
I-projections onto all trees?
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The Crossover Rate I

Correct Structure

True MI I(Pe) 6 5 4 3 2 1
Emp MI I(P̂e) 6.2 5.6 4.5 2.8 2.2 1.1 s

s
s s
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@@�

��6.2 5.6
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Structure Unaffected
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The Crossover Rate I

w w w we e′

Given two node pairs e, e′ ∈
(V

2

)
with joint distribution Pe,e′ ∈ P(X 4), s.t.

I(Pe) > I(Pe′).

Consider the crossover event of the empirical MI

{I(P̂e) ≤ I(P̂e′)}

Def: Crossover Rate

Je,e′ , lim
n→∞

−1
n

log Pn
(

I(P̂e) ≤ I(P̂e′)
)
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The Crossover Rate II

w w w we e′ I(Pe) > I(Pe′) {I(P̂e) ≤ I(P̂e′)}

Proposition
The crossover rate for empirical mutual informations is

Je,e′ = min
Q∈P(X 4)

{
D(Q ||Pe,e′) : I(Qe′) = I(Qe)

}

P(X 4) vPe,e′

{I(Qe)= I(Qe′)}v
Q∗e,e′

D(Q∗e,e′ ||Pe,e′)

I-projection (Csiszár)

Sanov’s Theorem

Exact but not intuitive

Non-Convex
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Error Exponent for Structure Learning I

How to calculate the error exponent KP with the crossover rates Je,e′?

Easy only in some very special cases

“Star” graph with
I(Qa) > I(Qb) > 0

There is a unique crossover
rate

The unique crossover rate is
the error exponent w

w
w

w
w
w

w
w
w

@
@
@
@
@
@
@
@
@
@

�
�
�

�
�
�

�
�
�

�

Qa

Qb

w w

KP = min
R∈P(X 4)

{
D(R ||Qa,b) : I(Re) = I(Re′)

}
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Error Exponent for Structure Learning II

A large deviation is done in the least unlikely of all unlikely ways.

– “Large deviations” by F. Den Hollander

u
u

u

u u

u

u

u

u
u

u u
u

u
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�
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@
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@
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@

�
�
�
�

TP ∈ T

e′ /∈ EP

v
v

v v
v

@
@
@@

�
�
��

Path(e′; EP)

dominates
v v T ′P 6= TP

Theorem (Error Exponent)

KP = min
e′ /∈EP

(
min

e∈Path(e′;EP)
Je,e′

)
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Error Exponent for Structure Learning III

Pn (EML 6= EP)
.
= exp

[
−n min

e′ /∈EP

(
min

e∈Path(e′;EP)
Je,e′

)]

We have a finite-sample result too! See thesis

Proposition
The following statements are equivalent:

(a) The error probability decays exponentially, i.e., KP > 0

(b) TP is a connected tree, i.e., not a proper forest

6

-

Pn(err)

n = # Samples
s
s

s s
@
@@�

��

KP>0 s
s

s s
@
@@

KP =0
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Approximating The Crossover Rate I

Def: Very-noisy learning condition on Pe,e′

Pe ≈ Pe′

I(Pe) ≈ I(Pe′) w

w w

�
�
�
�
�
�

Pe

Pe′

Euclidean Information Theory [Borade & Zheng ’08]:

P ≈ Q ⇒ D(P ||Q) ≈ 1
2

∑

a

(P(a)− Q(a))2

P(a)

Def: Given a Pe = Pi,j the information density is

Se(Xi; Xj) , log
Pi,j(Xi,Xj)

Pi(Xi)Pj(Xj)
, E[Se] = I(Pe).
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Approximating The Crossover Rate II

Convexifying the optimization problem by linearizing constraints

vPe,e′

{I(Qe)= I(Qe′)}v
Q∗e,e′

D(Q∗e,e′ ||Pe,e′)

v

v

Pe,e′

Q∗e,e′ Q(Pe,e′)

1
2‖Q∗e,e′−Pe,e′‖2

Pe,e′

Theorem (Euclidean Approximation of Crossover Rate)

J̃e,e′ =
(I(Pe′)− I(Pe))

2

2 Var(Se′ − Se)
=

(E[Se′ − Se])
2

2 Var(Se′ − Se)
=

1
2

SNR
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The Crossover Rate

How good is the approximation? We consider a binary model

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.005

0.01

0.015

0.02

0.025

I(P
e
)−I(P

e′)

R
at

e 
J e,

e′

 

 
True Rate
Approx Rate
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Remarks for Learning Discrete Trees

Characterized precisely the error exponent for structure learning

Pn (EML 6= EP)
.
= exp(−nKP)

Analysis tools include the method of types (large-deviations) and
simple properties of trees

Analyzed the very-noisy learning regime (Euclidean Information
Theory) where learning is error-prone

Extensions to learning the tree projection for non-trees have also
been studied.

VYFT, A. Anandkumar, L. Tong, A. S. Willsky “A Large-Deviation Analysis of the
Maximum-Likelihood Learning of Markov Tree Structures,” ISIT 2009, submitted to IEEE Trans.
on Information Theory, revised in Oct 2010.
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Analyzed the very-noisy learning regime (Euclidean Information
Theory) where learning is error-prone

Extensions to learning the tree projection for non-trees have also
been studied.

VYFT, A. Anandkumar, L. Tong, A. S. Willsky “A Large-Deviation Analysis of the
Maximum-Likelihood Learning of Markov Tree Structures,” ISIT 2009, submitted to IEEE Trans.
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Outline

1 Motivation, Background and Main Contributions

2 Learning Discrete Trees Models: Error Exponent Analysis

3 Learning Gaussian Trees Models: Extremal Structures

4 Learning High-Dimensional Forest-Structured Models

5 Related Topics and Conclusion
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Setup

Jointly Gaussian distribution in very-noisy learning regime

p(x) ∝ exp
(
−1

2
xTΣ−1x

)
, x ∈ Rd.

Zero-mean, unit variances

Keep correlations coefficients on edges fixed – specifies the
Gaussian graphical model by Markovianity

ρi is the correlation coefficient
on edge ei for i = 1, . . . , d − 1

w

w w

w
ρ1

ρ2

ρ3

ρ1 ρ2 ρ3

Compare the error exponent associated to different structures
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The Gaussian Case: Extremal Tree Structures

Theorem (Extremal Structures)
Under the very-noisy assumption,

Star graphs are hardest to learn (smallest approx error exponent)

Markov chains are easiest to learn (largest approx error exponent)

w
w
w
w

w
ρ3

ρ1

ρ2ρ4

Star

w w w w wρπ(1) ρπ(2) ρπ(3) ρπ(4)

Chain
π: Permutation

6

-

Pn(err)

n = # Samples

Chain

Star Any other tree
�
�	
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Numerical Simulations

Chain, Star and Hybrid for d = 10

ρi = 0.1× i i ∈ [1 : 9]
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Proof Idea and Intuition

Correlation decay
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Concluding Remarks for Learning Gaussian Trees

Gaussianity allows us to perform further analysis to find the
extremal structures for learning

Allows to derive a data-processing inequality for crossover rates

Universal result – not (strongly) dependent on choice of
correlations

ρ = {ρ1, . . . , ρd−1}

VYFT, A. Anandkumar, A. S. Willsky “Learning Gaussian Tree Models: Analysis of Error
Exponents and Extremal Structures”, Allerton 2009, IEEE Trans. on Signal Processing, May
2010.
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Motivation: Prevent Overfitting

Chow-Liu algorithm tells us how to learn trees

Suppose we are in the high-dimensional setting where

Samples n� Variables d

learning forest-structured graphical models may reduce overfitting
vis-à-vis trees [Liu, Lafferty and Wasserman, 2010]

Extend Liu et al.’s work for discrete models and improve
convergence results

Strategy: Remove “weak” edges

t
t

t t
@
@
@�

�
�

X4

X1

X3 X2

⇒ Reduce Num Params ⇒ t
t t

t
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@
@�

�
�

X4

X1

X3 X2
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Main Contributions

Propose CLThres, a thresholding algorithm, for consistently
learning forest-structured models

Prove convergence rates (“moderate deviations”) for a fixed
discrete graphical model P ∈ P(X d)

Prove achievable scaling laws on (n, d, k) (k is the num edges) for
consistent recovery in high-dimensions. Roughly speaking,

n & log1+δ(d − k)

is achievable
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Main Difficulty

Unknown minimum mutual information Imin in the forest model

Markov order estimation [Merhav, Gutman, Ziv 1989]

If known, can easily use a threshold, i.e,

if I(P̂i,j) < Imin, remove (i, j)

How to deal with classic tradeoff between over- and
underestimation errors?
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The CLThres Algorithm

Compute the set of empirical mutual information I(P̂i,j) for all
(i, j) ∈ V × V

Max-weight spanning tree

Êd−1 := argmax
E:Tree

∑

(i,j)∈E

I(P̂i,j)

Estimate number of edges given threshold εn

k̂n :=
∣∣∣
{

(i, j) ∈ Êd−1 : I(P̂i,j) ≥ εn

}∣∣∣

Output the forest with the top k̂n edges

Computational Complexity = O((n + log d)d2)
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(i, j) ∈ Êd−1 : I(P̂i,j) ≥ εn

}∣∣∣

Output the forest with the top k̂n edges

Computational Complexity = O((n + log d)d2)

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 40 / 52



The CLThres Algorithm

Compute the set of empirical mutual information I(P̂i,j) for all
(i, j) ∈ V × V

Max-weight spanning tree
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A Convergence Result for CLThres

Assume that P ∈ P(X d) is a fixed forest-structured graphical model

d does not grow with n

Theorem (“Moderate Deviations”)
Assume that the sequence {εn}∞n=1 satisfies

lim
n→∞

εn = 0, lim
n→∞

nεn

log n
=∞, (εn := n−1/2 works)

Then

lim sup
n→∞

1
nεn

logP(Êk̂n
6= EP) ≤ −1, ⇒ P(Êk̂n

6= EP) ≈ exp(−nεn)

Also have a “liminf” lower bound
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6= EP) ≤ −1, ⇒ P(Êk̂n
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Remarks: A Convergence Result for CLThres

The Chow-Liu phase is consistent with exponential rate of
convergence

The sequence can be taken to be εn := n−β for β ∈ (0, 1)

For all n sufficiently large,

εn < Imin

implies no underestimation asymptotically

Note that for two independent random variables Xi and Xj with
product pmf Qi × Qj,

std(I(P̂i,j)) = Θ(1/n)

Since the sequence εn = ω(log n/n) decays slower than std(I(P̂i,j)),
no overestimation asymptotically

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 42 / 52



Remarks: A Convergence Result for CLThres

The Chow-Liu phase is consistent with exponential rate of
convergence

The sequence can be taken to be εn := n−β for β ∈ (0, 1)

For all n sufficiently large,

εn < Imin

implies no underestimation asymptotically

Note that for two independent random variables Xi and Xj with
product pmf Qi × Qj,

std(I(P̂i,j)) = Θ(1/n)

Since the sequence εn = ω(log n/n) decays slower than std(I(P̂i,j)),
no overestimation asymptotically

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 42 / 52



Remarks: A Convergence Result for CLThres

The Chow-Liu phase is consistent with exponential rate of
convergence

The sequence can be taken to be εn := n−β for β ∈ (0, 1)

For all n sufficiently large,

εn < Imin

implies no underestimation asymptotically

Note that for two independent random variables Xi and Xj with
product pmf Qi × Qj,

std(I(P̂i,j)) = Θ(1/n)

Since the sequence εn = ω(log n/n) decays slower than std(I(P̂i,j)),
no overestimation asymptotically

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 42 / 52



Remarks: A Convergence Result for CLThres

The Chow-Liu phase is consistent with exponential rate of
convergence

The sequence can be taken to be εn := n−β for β ∈ (0, 1)

For all n sufficiently large,

εn < Imin

implies no underestimation asymptotically

Note that for two independent random variables Xi and Xj with
product pmf Qi × Qj,

std(I(P̂i,j)) = Θ(1/n)

Since the sequence εn = ω(log n/n) decays slower than std(I(P̂i,j)),
no overestimation asymptotically

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 42 / 52



Pruning Away Weak Empirical Mutual Informations

-

6

n

R

Imin (unknown)

I(P̂i,j)≈ 1
n

εn = ω( log n
n ) ∩ o(1)

Asymptotically, εn will be smaller than Imin and larger than I(P̂i,j) with
high probability

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 43 / 52



Pruning Away Weak Empirical Mutual Informations

-

6

n

R

Imin (unknown)

I(P̂i,j)≈ 1
n

εn = ω( log n
n ) ∩ o(1)

Asymptotically, εn will be smaller than Imin and larger than I(P̂i,j) with
high probability

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 43 / 52



Pruning Away Weak Empirical Mutual Informations

-

6

n

R

Imin (unknown)

I(P̂i,j)≈ 1
n

εn = ω( log n
n ) ∩ o(1)

Asymptotically, εn will be smaller than Imin and larger than I(P̂i,j) with
high probability

Vincent Tan (MIT) Large-Deviations for Learning Trees Thesis Defense 43 / 52



Proof Idea

Based fully on the method of types

Estimate Chow-Liu learning error

Estimate underestimation error

P(k̂n < k)
.
= exp(−nLP)

Estimate overestimation error

Decays subexponentially but faster than any polynomial:

P(k̂n > k) ≈ exp(−nεn)

Upper bound has no dependence on P (there exists a duality gap)

Additional Technique: Euclidean Information Theory
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High-Dimensional Learning

Consider a sequence of structure learning problems indexed by
number of samples n

For each particular problem, we have data xn = {xi}n
i=1

Each sample xi ∈ X d is drawn independently from a
forest-structured model with d nodes and k edges

Sequence of tuples {(n, dn, kn)}∞n=1

Assumptions

(A1) Iinf := inf
d∈N

min
(i,j)∈EP

I(Pi,j) > 0

(A2) κ := inf
d∈N

min
(xi,xj)∈X 2

Pi,j(xi, xj) > 0
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An Achievable Scaling Law for CLThres

Theorem (Sufficient Conditions)
Assume (A1) and (A2). Fix δ > 0. There exists constants C1,C2 > 0
such that if

n > max
{

C1 log d,C2 log k,

(2 log(d − k))1+δ
}

the error probability of structure learning

P(error)→ 0

as (n, dn, kn)→∞
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Remarks on the Achievable Scaling Law for CLThres

If the model parameters (n, d, k) grow with n but if

d subexponential
k subexponential

d − k subexponential

structure recovery is asymptotically possible

d can grow much faster than n

Proof uses:
1 Previous fixed d result
2 Exponents in the limsup upper bound do not vanish with increasing

problem size as (n, dn, kn)→∞
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A Simple Strong Converse Result

Proposition (A Necessary Condition)
Assume forests with d nodes are chosen uniformly at random. Fix
η > 0. Then if

n <
(1− η) log d

log |X |
the error probability of structure learning

P(error)→ 1

as (n, dn)→∞ (independent of kn)

Ω(log d) is necessary for successful recovery

This lower bound is independent of parameters

The dependence on num of edges kn can be made more explicit

Close to the sufficient condition
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Concluding Remarks for Learning Forests

Proposed a simple extension of Chow-Liu’s MWST algorithm to
learn forests consistently

Error rates in the form of a “moderate deviations” result

Scaling laws on (n, d, k) for structural consistency in high
dimensions

Extensions:

Risk consistency has also been analyzed (See thesis for details)

R(P∗) = Op

(
d log d
n1−γ

)

Need to find the right balance between over- and underestimation
for the finite sample case

VYFT, A. Anandkumar and A. S. Willsky “Learning High-Dimensional Markov Forest
Distributions: Analysis of Error Rates”, Allerton 10, Submitted to JMLR.
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Outline

1 Motivation, Background and Main Contributions

2 Learning Discrete Trees Models: Error Exponent Analysis

3 Learning Gaussian Trees Models: Extremal Structures

4 Learning High-Dimensional Forest-Structured Models

5 Related Topics and Conclusion
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Beyond Trees

Structure Learning in Graphical Models Beyond Trees

Techniques extend
to learning other
classes of graphical
models

Graphical Models: Trees & Beyond

Analysis of Tree Structure Learning: Extremal Trees for Learning

Star

t tt
t t

Chain

t t t t t

Structure Learning in Graphical Models Beyond Trees

Forests Latent Trees Random Graphs

Anima Anandkumar (UCI) Trees, Latent Trees & Beyond 11/08/2010 7 / 50Learn latent trees, where only a subset of nodes are observed

If the original graph is drawn from the Erdős-Rényi ensemble
G(n, c

n), we can also provide guarantees for structure learning

Utilize the fact that the model is locally tree-like
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Conclusions

Graphical models provide a powerful and parsimonious
representation of high-dimensional data

(Ch. 3) Provided large-deviation analysis of ML learning of
tree-structured distributions

(Ch. 4) Identified extremal structures for tree-structured Gaussian
graphical models

(Ch. 5) Extended analysis to forest-structured graphical models

Derived scaling laws on num variables, num edges and num
samples for consistent learning in high-dimensions

(Ch. 6) Also proposed algorithms for learning tree models for
hypothesis testing
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