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Problem Setting

Consider a traditional two-user broadcast channel
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Covert Communication⇐⇒Warden should not be able to know
whether there is communication

Should not be able to distinguish between Q̂Zn (output dist.
induced by a code) and the “no-communication” output dist. Q×n

0 .
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More on Covert Communications over Noisy Channels

Innocent symb. 0 ∈ X inducing warden output dist. Q0 = PZ|X(·|0)

Symb. 1 ∈ X inducing warden output dist. Q1 = PZ|X(·|0)

Assume Q1 � Q0

Warden attempts to design optimal detector to distinguish
H0: observed distribution is Q×n

0 (no communication)
H1: observed distribution is Q̂Zn (communication active)

Optimal performance

π1|0 + π0|1 = 1− 1
2

∥∥∥Q×n
0 − Q̂Zn

∥∥∥
1
≥ 1−

√
D(Q̂Zn‖Q×n

0 )

For covert communication, we want to make D(Q̂Zn‖Q×n
0 ) small.
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Context

Growing concern for privacy and confidentiality

Renewed interest in fundamental limits of covert communications:
Secure space-time codes [Hero ’03]
Secure stegosystems [Korzhik et al. ’05]
O(
√

n) bits over n ch. uses with O(
√

n log n) key [Bash et al. ’12]
Similar to square-root law in steganography [Cachin ’04]

Several extensions and related results:
Constants in O(

√
n) term [Wang, Wornell, Zheng ’16 and Bloch ’16]

Second-order [Tahmasbi-Bloch ’16]
Error exponents [Tahmasbi-Bloch-Tan ’17]
Multi-user [Arumugam-Bloch ’16, ’17]
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Definition of a code

An (n,M1n,M2n, ε, δ)-code for the broadcast channel with a warden
PY1,Y2,Z|X consists of

Two message setsMj := {1, . . . ,Mjn} for j = 1, 2;

Two independent messages uniformly distributed over their
respective message sets, i.e., Wj ∼ Unif(Mj) for j = 1, 2;

One encoder f :M1 ×M2 → X n;

Two decoders ϕj : Yn
j →Mj for j = 1, 2;

such that the following constraints hold:

Reliability: Pr
(
∪2

j=1 {Ŵj 6= Wj}
)
≤ ε

and

Covertness: D(Q̂Zn‖Q×n
0 ) ≤ δ.
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Definition of Covert Capacity Region

(L1,L2) ∈ R2
+ is (ε, δ)-achievable if there exists a sequence of

(n,M1n,M2n, εn, δ)-codes such that

lim inf
n→∞

1√
nδ

log Mjn ≥ Lj, j = 1, 2,

lim sup
n→∞

εn ≤ ε.

The (ε, δ)-covert capacity region Lε,δ ⊂ R2
+ is the closure of all

(ε, δ)-achievable pairs of (L1,L2).

The δ-covert capacity region

Lδ :=
⋂

ε∈(0,1)

Lε,δ = lim
ε→0
Lε,δ.
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Definition of Covert Capacity

For simplicity, assume binary-input channels, i.e., X = {0, 1}

Given a DMC with a warden PY,Z|X, the covert capacity [Wang,
Wornell, Zheng ’16 and Bloch ’16] is

L∗(PY,Z|X) :=

√
2D(W(·|1)‖W(·|0))2

χ2(Q1‖Q0)

where

W(·|x) = PY|X(·|x) Qx := PZ|X(·|x), ∀ x ∈ X ,

and

χ2(Q1‖Q0) :=
∑

z

(Q1(z)− Q0(z))2

Q0(z)
.
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Assumption on the BC PY1,Y2,Z|X

Assumption

Condition 1: Fix a BC with a warden PY1,Y2,Z|X.

Let the covert capacities of PY1,Z|X and PY2,Z|X be L∗1 and L∗2 respectively.

If L∗1 ≥ L∗2 assume that

max
PX

I(X; Y1)

I(X; Y2)
≤ L∗1

L∗2
.

Otherwise, if L∗1 ≤ L∗2 assume that

max
PX

I(X; Y2)

I(X; Y1)
≤ L∗2

L∗1
.
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Discussion of Condition 1

Easy to check for binary-input BCs:

D(W1‖W0)

D(V1‖V0)
≤ min

γ∈[0,1]

D(Wγ‖W0)

D(Vγ‖V0)
, Wγ(y) =

∑
x∈X

Pγ(x)W(y|x).

Let W = PY1|X = BSC(p) and V = PY2|X =

[
1− q0 q0

q1 1− q1

]

q0

q
1

p = 0.01

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q0

q
1

p = 0.20

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Shaded area =⇒
Condition 1

√
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Main Result

Theorem (Tan-Lee (2018))

Assume Condition 1 holds for PY1,Y2,Z|X. For any δ > 0 and
PYj|X(·|1)� PYj|X(·|0) for j = 1, 2,

Lδ =

{
(L1,L2) ∈ R2

+ :
L1

L∗1
+

L2

L∗2
≤ 1
}
.

L1-

6
L2

L∗1

L∗2 H
HHH

HHH
HHH

Lδ
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Effect of Key Size

Theorem (Tan-Lee (2018))

Under Condition 1, the tuple (L1,L2,Lkey) is achievable if and only if

L1

L∗1
+

L2

L∗2
≤ 1

and

Lkey ≥
(

L1

L∗1
+

L2

L∗2

)
L∗Z − L1 − L2,

where
L∗Z = L∗(PZ,Z|X)

is the self-covert capacity of the channel X → Z.

If we operate on the boundary of the keyless covert capacity region,

L∗key = L∗Z − L1 − L2.
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Time-Division is Optimal over Some BCs

L1-

6
L2

L∗1

L∗2 HHH
HHH

HHHH
Lδ

Use an optimal code for X → Y1 for ρn channel uses. If δ′ < δ,

log M1n ∼=
√
ρnδ′L∗1

Use another optimal code for X → Y2 over (1− ρ)n uses. Then,

log M2n ∼=
√

(1− ρ)n(δ − δ′)L∗2

Choose δ′ = (1− ρ)δ achieves the point (ρL∗1, (1− ρ)L∗2).
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Time-Division is Optimal for Some BCs: Why?

Covert communication implies that Xn must have low weight of
order Θ( 1√

n) [Wang, Wornell, Zheng ’16 and Bloch ’16], i.e.,

|{i ∈ [n] : Xi = 1}| = Θ(
√

n)

Hence throughput log Mn is of the order Θ(
√

n)

For illustration purposes, consider a BS-BC PY1,Y2|X is such that
PYj|X for j = 1, 2 are BSCs.

Same intuition for Gaussian broadcast channels

But use Entropy Power Inequality instead of Mrs. Gerber’s Lemma.
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Time-Division is Optimal for Some BCs: Why?

Superposition coding: Cloud center un
2(w2) carries message w2;

Satellite codeword xn(w1,w2) = un
1(w1)⊕ un

2(w2) carries (w1,w2)

xn(w1,w2)

un
2(w2)

| |

un
1(w1)

⊕

| |

⊕

Since xn(w1,w2) has low weight (say αn) and un
1(w1) and un

2(w2) are
randomly chosen, locations of 1’s in un

1(w1) and un
2(w2) are not

likely to overlap.

Assume weight of un
1(w1) is ραn and that of un

2(w2) is (1− ρ)αn
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Time-Division is Optimal for Some BCs: Why?

Consider BSBCs

Y1 = X ⊕ N1, Y2 = X ⊕ N2, Nj ∼ Bern(pj), p2 ≥ p1

Put

wt(un
1(w1)) = ραnn, and wt(un

2(w2)) = (1− ρ)αnn,

the superposition coding inner bound with X = U1 ⊕ U2 reads
(U2 − X − Y1 − Y2)

R1 ≤ I(X; Y1|U2) = I(U1; Y1 ⊕ N1) ≈ ραnL∗1
R2 ≤ I(U2; Y2) = I(U2; U2 ⊕ Ñ2) ≈ (1− ρ)αnL∗2

Hence, we can write
R1

L∗1
+

R2

L∗2
/ αn
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El Gamal’s Converse for More Capable BCs

Lemma (El Gamal (1979))

Every (n,M1n,M2n, εn)-code for any BC satisfies

(log M1n)(1− εn)− 1 ≤
n∑

i=1

I(U1i; Y1i)

(log M2n)(1− εn)− 1 ≤
n∑

i=1

I(U2i; Y2i)

(log M1n + log M2n)(1− εn)− 2 ≤
n∑

i=1

[
I(Xi; Y1i|U2i) + I(U2i; Y2i)

]
(log M1n + log M2n)(1− εn)− 2 ≤

n∑
i=1

[
I(U1i; Y1i) + I(Xi; Y2i|U1i)

]
,

where U1i and U2i satisfy (U1i,U2i)− Xi − (Y1i,Y2i).
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Converse Proof: Upper Bound on λ-Sum Rate

Assume L∗1 ≥ L∗2 (wlog) and let

λ =
L∗1
L∗2
≥ 1.

Combining previous inequalities and using a standard
time-sharing random variable, we obtain

1
n

[
log M1n + λ log M2n − (1 + λ)

]
≤ max

U,X
I(X; Y1|U) + λI(U; Y2)

Problem: Maximization of I(X; Y1|U) + λI(U; Y2) over all (U,X)
requires tools specific to the broadcast channel

For the BS-BC, Mrs. Gerber’s Lemma [Wyner-Ziv (1973)] helps to
simplify
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Converse Proof: Concave Envelopes

Remove U’s by exploiting tools from convex analysis

Note that U − X − Y2 forms a Markov chain so

max
PU,X

I(X; Y1|U) + λI(U; Y2)

= max
PU,X

I(X; Y1|U) + λ[I(X; Y2)− I(X; Y2|U)]

= max
PX

λI(X; Y2) + max
PU|X

[I(X; Y1|U)− λI(X; Y2|U)]

Now,

max
PU|X

[I(X; Y1|U)− λI(X; Y2|U)] = C[I(PX,W)− λI(PX,V)]

where W = PY1|X and V = PY2|X and the concave envelope is
defined as

C[f ](x) := inf{g(x) : g ≥ f , g is concave}
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Converse Proof: Concave Envelopes

The usual superposition coding region is

C =
⋃

PX ,PU|X

{
(R1,R2) ∈ R2

+ | R1 ≤ I(X; Y1|U),R2 ≤ I(U; Y2)
}

Using the concave envelope representation, we have

C =
⋂
λ≥1

{
(R1,R2) ∈ R2

+ | R1+λR2 ≤ maxPX λI(X; Y2)+Tλ(X)
}

where Tλ(X) := C[I(X; Y1)− λI(X; Y2)].
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Converse Proof: A Tiny Bit of Analysis

Converse bound becomes

log M1n + λ log M2n

n
/ max

PX
λ · I(PX,V) + C

[
I(PX,W)− λ · I(PX,V)

]

Max over PX = [1− αn, αn] is over binary dist. with small mass at 1

Using Condition 1, we have I(PX,W)− λ · I(PX,V) ≤ 0 for all PX

C
[
I(PX,W)− λ · I(PX,V)

]
≤ 0 for all PX.

Left with I(PX,V) ≈ αnD(V(·|1)‖V(·|0)), which is related to L∗2.

Finally, recalling that λ = L∗1/L∗2,

L1 +
L∗1
L∗2
· L2 /

L∗1
L∗2
· L∗2 = L∗1, =⇒ L1

L∗1
+

L2

L∗2
≤ 1.
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Finally, recalling that λ = L∗1/L∗2,

L1 +
L∗1
L∗2
· L2 /

L∗1
L∗2
· L∗2 = L∗1, =⇒ L1

L∗1
+

L2

L∗2
≤ 1.
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Conclusion and Open Problems

L1-

6
L2

L∗1

L∗2 HHH
HHH

HHHH
Lδ

Concave envelope representation of bounds on capacity region
with auxiliary RVs is very useful

What can we say about BCs which don’t satisfy Condition 1?

More than 2 legitimate receivers?
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