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m Covert Communication +—= Warden should not be able to know

whether there is communication

m Should not be able to distinguish between 0. (output dist.
induced by a code) and the “no-communication” output dist. Q;".
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m Innocent symb. 0 € & inducing warden output dist. Qo = P x(-|0)
m Symb. 1 € X inducing warden output dist. Q1 = Pzx(+|0)

m Assume Q; < Qg

m Warden attempts to design optimal detector to distinguish
m Hy: observed distribution is Q" (no communication)
m H,: observed distribution is 0, (communication active)

m Optimal performance

2 1-4/D(02105")

m For covert communication, we want to make D(QZnHQg") small.
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m Growing concern for privacy and confidentiality

m Renewed interest in fundamental limits of covert communications:

m Secure space-time codes [Hero ‘03]

m Secure stegosystems [Korzhik et al. '05]

m O(y/n) bits over n ch. uses with O(y/nlogn) key [Bash et al. '12]
m Similar to square-root law in steganography [Cachin '04]
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m Renewed interest in fundamental limits of covert communications:

m Secure space-time codes [Hero ‘03]

m Secure stegosystems [Korzhik et al. '05]

m O(y/n) bits over n ch. uses with O(y/nlogn) key [Bash et al. '12]
m Similar to square-root law in steganography [Cachin '04]

m Several extensions and related results:

m Constants in O(y/n) term [Wang, Wornell, Zheng '16 and Bloch "16]
m Second-order [Tahmasbi-Bloch ’16]

m Error exponents [Tahmasbi-Bloch-Tan ’17]

m Multi-user [Arumugam-Bloch '16, '17]
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Definition of a code

An (n, M, M>,,<,d)-code for the broadcast channel with a warden
Py, v, z|x consists of

m Two message sets M; := {1,...,M;,} forj =1,2;

m Two independent messages uniformly distributed over their
respective message sets, i.e., W; ~ Unif(M;) forj = 1,2;
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Definition of a code

An (n, M, M>,,<,d)-code for the broadcast channel with a warden
Py, v, z|x consists of

m Two message sets M; := {1,...,M;,} forj =1,2;

m Two independent messages uniformly distributed over their
respective message sets, i.e., W; ~ Unif(M;) forj = 1,2;

m One encoder f : M x M, — X™;
m Two decoders ¢; : ' — M; forj=1,2;

such that the following constraints hold:
Reliability: ~ Pr (U™, {W; #W;}) <e
and

Covertness:  D(0z|Q;") < 6.
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Definition of Covert Capacity Region

m (Li,Ly) € R? is (e, 6)-achievable if there exists a sequence of
(n,My,, Ma,, €,, 5)-codes such that

ll}gg}frlogMinZLj, j=1,2,

limsupe, < €.
n—o0
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m (Li,Ly) € R? is (e, 6)-achievable if there exists a sequence of
(n,My,, Ma,, €,, 5)-codes such that

ll}gg}frlogMinZLj, j=1,2,

limsupe, < €.
n—o0

m The (¢, d)-covert capacity region L. 5 C Ri is the closure of all
(¢, d)-achievable pairs of (L;,L,).

m The J-covert capacity region

ﬂ Es,& = il_r)% Es,é-
€€(0,1)
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Definition of Covert Capacity

m For simplicity, assume binary-input channels, i.e., X = {0, 1}
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Definition of Covert Capacity

m For simplicity, assume binary-input channels, i.e., X = {0, 1}

m Given a DMC with a warden Py x, the covert capacity [Wang,
Wornell, Zheng '16 and Bloch ’16] is

) _ [2D(W(-[1)[[W(-]0))>
L (Praix) = \/ x2(01(Qo)

where
W(-[x) = Pyx(-]x) Oy = Pzx(-]x), Vxe A&,

and

(21(2) — Q(2))*

x2(Q11/Qo) == Z 0o(2)

Z
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Assumption on the BC Py, y, 7ix

Condition 1: Fix a BC with a warden Py, y, 7x-

Let the covert capacities of Py, zx and Py, x be L} and L3 respectively.

If L7 > L; assume that

IX: 1) _ L

max € =
L,

Px [(X, Yz)

Otherwise, if L} < L% assume that

I(X; 5
max (& Ya) L3
Py I(X;Yy) — L}
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Discussion of Condition 1

m Easy to check for binary-input BCs:

D(W1HW0)< . D(W, W) ZP

< min , W(ylx).
DViIVo) = 238 DV, Vo) )

xeX
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Discussion of Condition 1

m Easy to check for binary-input BCs:
DWi|[Wo) _ .~ D(W,|Wo)

o o . S MmN — P y|x
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Main Result

Theorem (Tan-Lee (2018))

Assume Condition 1 holds for Py, y, zx. Forany é > 0 and

L L
=L, L) eRE . — + =<1,
Ls {( 1,L2) ot S }

Vincent Tan (NUS) Covert Broadcast Communication ITW 2018 10/22



Main Result

Theorem (Tan-Lee (2018))

Assume Condition 1 holds for Py, y, zx. Forany é > 0 and

Ly L

Ls=<(L,[)eR: : = + =<
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Effect of Key Size

Theorem (Tan-Lee (2018))

Under Condition 1, the tuple (L1, L,, Liey) is achievable if and only if

L L,
+ =<1
Ly Ly
and
Le> (BN g
key = LT L; 7 1 29
where

Ly = L*(Pzzx)
is the self-covert capacity of the channel X — Z.
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Effect of Key Size

Theorem (Tan-Lee (2018))

Under Condition 1, the tuple (L1, L,, Liey) is achievable if and only if

L L,
—+ =<1
Ly Ly
and
Le> (BN g
key = LT L; 7 1 29
where

Ly = L*(Pzzx)
is the self-covert capacity of the channel X — Z.

If we operate on the boundary of the keyless covert capacity region,
Liey =Ly — L — L.
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Time-Division is Optimal over Some BCs

Ly

A

L

Ls

|=L1
Ly

m Use an optimal code for X — Y; for pn channel uses. If ¢’ < 9,

log My, =2 \/pnd'L}
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m Use an optimal code for X — Y; for pn channel uses. If ¢’ < 9,
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Time-Division is Optimal over Some BCs

Ly

A

L

Ls

|=L1
Ly

m Use an optimal code for X — Y; for pn channel uses. If ¢’ < 9,
log My, = +/pnd’'L}
m Use another optimal code for X — Y, over (1 — p)n uses. Then,

log My, = /(1 — p)n(6 — &)L

m Choose ¢’ = (1 — p)d achieves the point (pL7, (1 — p)L3).
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Time-Division is Optimal for Some BCs: Why?

m Covert communication implies that X" must have low weight of
order @(ﬁ) [Wang, Wornell, Zheng ’16 and Bloch ’'16], i.e.,

{i € [n] : Xi = 1} = ©(V/n)
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Time-Division is Optimal for Some BCs: Why?

m Covert communication implies that X" must have low weight of
order @(ﬁ) [Wang, Wornell, Zheng ’16 and Bloch ’'16], i.e.,

{i € [n] : Xi = 1} = ©(V/n)

m Hence throughput log M, is of the order ©(/n)

m For illustration purposes, consider a BS-BC Py, y,|x is such that
Py,x forj=1,2 are BSCs.

m Same intuition for Gaussian broadcast channels

m But use Entropy Power Inequality instead of Mrs. Gerber’'s Lemma.
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Time-Division is Optimal for Some BCs: Why?

m Superposition coding: Cloud center u3(w,) carries message w»;
Satellite codeword x" (w1, w2) = uff(w1) @ uj(w>) carries (wi, w)
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m Since x"(wy, w2) has low weight (say «,,) and u}(w;) and u}(w») are
randomly chosen, locations of 1's in /| (w;) and u}(w») are not
likely to overlap.
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Time-Division is Optimal for Some BCs: Why?

m Superposition coding: Cloud center u3(w,) carries message w»;
Satellite codeword x" (w1, w2) = uff(w1) @ uj(w>) carries (wi, w)

le\HHIHHHHHI
sz\HIHHHHHHI]
XWIWzI\HIHIHHHHI]

m Since x"(wy, w2) has low weight (say «,,) and u}(w;) and u}(w») are
randomly chosen, locations of 1's in /| (w;) and u}(w») are not
likely to overlap.

m Assume weight of u}(w1) is pa, and that of u5(w,) is (1 — p)a,
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Time-Division is Optimal for Some BCs: Why?

m Consider BSBCs
Yi =X® Ny, Yo =X®N,, Nj~Bem(p;), p2>pi
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Time-Division is Optimal for Some BCs: Why?

m Consider BSBCs
Y =X&@ N, Y2=X®N,, N;~Bem(p), p22>pi

m Put
wt(u](w1)) = payn, and wt(uy(wa)) = (1 — p)ayn,

the superposition coding inner bound with X = U, & U, reads
(U, —X—Y,—Y»)

R <I(X;Y1|Uy) =1(Uy; Y1 & Ny) = payLy
Ry < I(Up; Ys) = I(Uy; Uy ® Np) = (1 — p)a,Ls
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m Consider BSBCs
Y =X&@ N, Y2=X®N,, N;~Bem(p), p22>pi

m Put
wt(u](w1)) = payn, and wt(uy(wa)) = (1 — p)ayn,
the superposition coding inner bound with X = U, & U, reads
(U, —X—Y,—Y»)
R <I(X;Y1|Uy) =1(Uy; Y1 & Ny) = payLy
Ry < I(Up; Ys) = I(Uy; Uy ® Np) = (1 — p)a,Ls

m Hence, we can write
R R>

L L

é Qp

Vincent Tan (NUS) Covert Broadcast Communication ITW 2018 15/22



El Gamal’'s Converse for More Capable BCs
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El Gamal’'s Converse for More Capable BCs

Lemma (El Gamal (1979))

Every (n,M,,M,,,c,)-code for any BC satisfies

(logM1,)(1 —¢g,) — 1 < ZI(UU; Y1)

i=1

(log Ma)(1 —£4) — 1 < > I(Usn; Yar)

i=1
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El Gamal’'s Converse for More Capable BCs

Lemma (El Gamal (1979))

Every (n,M,,M,,,c,)-code for any BC satisfies

(logM1,)(1 —¢g,) — 1 < ZI(UU; Y1)

i=1
n
(log Man)(1 — £4) — 1 <Y " I(Un; Yai)
i=1
n
(log M1y, + log May)(1 —€,) —2 < Z [(Xi; Y1:|Uzi) + 1(Uni; Yai)]

p=ll

(log M1, + log Moy )(1 — €) — 2 < Y [I(Uni; Y1) + I(Xi; Yai| Uni)],

i=1
where U,; and Uy; satisfy (Ui;, Uzi) — Xi — (Y1i, Yai).
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Converse Proof: Upper Bound on A-Sum Rate

m Assume L} > L; (wlog) and let

—LT>1.

A=
L,
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Converse Proof: Upper Bound on A-Sum Rate

m Assume L} > L; (wlog) and let

—LT>1.

A=
L,

m Combining previous inequalities and using a standard
time-sharing random variable, we obtain

1
- [log M1, + Alog Mo, — (1 4+ )] < n[}a;(xl(x; Y1|U) + M(U; Y5)
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Converse Proof: Upper Bound on A-Sum Rate

m Assume L} > L; (wlog) and let

—LT>1.

A=
L,

m Combining previous inequalities and using a standard
time-sharing random variable, we obtain

1
—[log M1, + Aog Mo, — (1 + A)] < max [(X; Y1|U) + M(U; 12)
n kX
m Problem: Maximization of I(X;Y,|U) + M(U; Y») over all (U,X)
requires tools specific to the broadcast channel

m For the BS-BC, Mrs. Gerber's Lemma [Wyner-Ziv (1973)] helps to
simplify
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Converse Proof: Concave Envelopes

m Remove U’s by exploiting tools from convex analysis
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Converse Proof: Concave Envelopes

m Remove U’s by exploiting tools from convex analysis
m Note that U — X — Y, forms a Markov chain so
maxI(X;Y1|U) + M(U; Ya)
Py x
= I}JlaXI(X; Yi|U) + NI(X;Y2) — [(X; Y2|U)]
U,x

= max M(X;Y2) + max[[(X; Y1|U) — M(X; Y»|U)]
X

Py|x
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Converse Proof: Concave Envelopes

m Remove U’s by exploiting tools from convex analysis
m Note that U — X — Y, forms a Markov chain so
maxI(X;Y1|U) + M(U; Ya)
Py x
= rlrjlaxl(X; Yi|U) + NI(X;Y2) — [(X; Y2|U)]
U,x

= max M(X;Y2) + max[[(X; Y1|U) — M(X; Y»|U)]
X

Py|x
m Now,

max[I(X; Y1 |U) — M(X; Y»|U)] = C[I(Px, W) — M(Px, V)]

Py\x

where W = Py, x and V = Py, x and the concave envelope is
defined as

Clf](x) := inf{g(x) : g > f, g is concave}
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Converse Proof: Concave Envelopes

m The usual superposition coding region is

C= |J {(Ri,R)eRL | R <IX;Y1|U),Ry < I(U; Y2) }

Px,Py|x
m Using the concave envelope representation, we have

C=(){(Ri,R) €R% | Ri+AR; < maxp, M(X; Y2)+Tx(X) }
A>1

where T)\(X) := C[I[(X; Y1) — M(X; Y2)].
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A>1
where T\ (X) := C[I(X;Y;) — M(X; Y2)].
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Converse Proof: A Tiny Bit of Analysis

m Converse bound becomes

log My, + Alog M», <

~
~

max A+ 1(Py, V) +C[I(Px, W) = X I(Px, V)]
n X
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Converse Proof: A Tiny Bit of Analysis

m Converse bound becomes

logMi, + A logMgn
n

Pax)\ I(Px, V) 4+ C[I(Px,W) — X-I(Px, V)]

Max over Px = [1 — ay, o] is over binary dist. with small mass at 1

Using Condition 1, we have I(Px, W) — X\ - I(Px,V) < 0 for all Px

C[1(Px, W) — X-1(Px, V)] <0 for all Py.

Left with 1(Py, V) & a,D(V(-|1)||V(:|0)), which is related to L.

Finally, recalling that A = L} /L3,

L—l—L* L L* TNy . L1+L2 <1
1 L* z%L* 2 — FDb L* L*— :
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Conclusion and Open Problems

Ly

A

L

Ls
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Conclusion and Open Problems

Ly

A

L

Ls
> L
Ly

m Concave envelope representation of bounds on capacity region
with auxiliary RVs is very useful
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Conclusion and Open Problems
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m Concave envelope representation of bounds on capacity region
with auxiliary RVs is very useful

m What can we say about BCs which don’t satisfy Condition 1?
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Conclusion and Open Problems

Ly

A

L

Ls

|=L1
Ly

m Concave envelope representation of bounds on capacity region
with auxiliary RVs is very useful
m What can we say about BCs which don’t satisfy Condition 1?

m More than 2 legitimate receivers?
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Multiple Postdoc Positions in IT and ML at NUS

stdoctoral positions available at the National University of Singapore

JUMP TO OTHER IT SOCIETY WEBSITES: Jump o chid site

The Department of Electrical and Computer Engineering (ECE) at the National University of Singapore is offering

positions for postdoctoral fellows who will work in information theory, machine learning and their intersection.
Recent News

The Department of Electrical and Computer Engineering (ECE) at the National University of Singapore (NUS) is of-
Postdoctoral positions fering positions for postdoctoral fellows who will work closely with Dr. Vin at the intersection of informa-
ilable at the National tion theary, statistical signal processing, and machine learning. Some sampl etop\cs include:
available at the Nationa " Fundamental performance limits (and algorithms) for dictionary learning (e.g., matrix factorization},
University of Singapore ranking, and deep learning architectures;

Upcoming Events + Learning in the presence of privacy constraints;
+ Learning in the large alphabet regime;

Subscribe to - Learning of graphical models and other statistical models.
announcements
N - ‘Working in traditional topics in Shannon's information theory of interest to the Pl will also be highly encouraged.
Instruchu_ns_ and Guidelines Some sample topics include:
for Submitting Content - Multi-user information theory;

- Strong converse and second-order asymptotics;

Post an announcement
+ Error exponent analysis and the method of types;

Post an event + Information-theoretic security;
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