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Abstract—The problem of separately encoding and subse-
quently transmitting correlated sources over a discrete mem-
oryless multiple-access channel is revisited. In particular, we
examine the sufficient conditions on the source and the channel
under which there exists a n-length block code satisfying the
condition that the error probability of reconstructing the discrete
memoryless multiple source is no larger than some fixed constant
ε > 0, or in short, ε-lossless transmission. We modify the
decoding rule of Cover-El Gamal-Salehi and analyze the error
probability using Gaussian approximations to derive a second-
order generalization their sufficient condition for the ε-lossless
transmission of the correlated sources.

Index Terms—Correlated sources, Multiple-access channel,
Gaussian approximations, Second-order coding rates, Dispersion

I. INTRODUCTION

In this paper, we revisit and present a Gaussian
approximation-based analysis of one of the most fundamental
problems in network information theory—that of transmitting
correlated (discrete memoryless multiple) sources over a dis-
crete memoryless multiple-access channel (MAC) [1], [2]. The
correlated information source is modeled as the realization of
two (or more) random variables S and T jointly distributed
independently and identically as pS,T . Using a length-n block
code, the sources are separately encoded as Xn

1 and Xn
2

respectively and these representations are then transmitted
across n uses of a discrete memoryless multiple access channel
W (y|x1, x2). By using a separation strategy involving Slepian-
Wolf compression [3] followed by encoding the compressed
bits using a multiple-access channel code [4], [5], we observe
that if there exists a pQ(q), pX1|Q(x1|q) and pX2|Q(x2|q) such
that the following conditions hold:

H(S|T ) < I(X1;Y |X2, Q)

H(T |S) < I(X2;Y |X1, Q)

H(S, T ) < I(X1, X2;Y |Q), (1)

then the probability of decoding error tends to zero as the
blocklength tends to infinity, i.e.,

lim
n→∞

P
[
(Ŝn, T̂n) 6= (Sn, Tn)

]
= 0. (2)

Cover, El Gamal and Salehi [1] proved that, unlike the point-
to-point setting, such a separation strategy is suboptimal. They
proceeded to exploit the common information between S and

T to obtain a better achievable condition. By defining K as
the common part of S and T (in the sense of Gács and
Körner [6]), they showed that if there exists distributions
pC(c), pX1|S,C(x1|s, c) and pX2|T,C(x2|t, c) such that

H(S|T ) < I(X1;Y |X2, T, C)

H(T |S) < I(X2;Y |X1, S, C)

H(T, S|K) < I(X1, X2;Y |K,C)

H(S, T ) < I(X1, X2;Y ) (3)

then the probability of error tends to zero as the blocklength
tends to infinity. The independent auxiliary random variable
C represents the common part of the sources K. Ahlswede
and Han [2] simplified the proof of the achievability of (3),
and we will adopt their proof strategy. It is known (see [7])
that the condition in (3) is suboptimal. The best known outer
bound is by Kang and Ulukus [8] but this paper only focuses
on generalizing the achievability result in (3).

In this paper, we are interested in deriving a sufficient
condition on the source (S, T ) and the channel W (analogous
to (3)) such that for sufficiently large blocklengths n, the error
probability in reconstructing the source is no larger than some
ε > 0, i.e., instead of (2), we have the constraint

P
[
(Ŝn, T̂n) 6= (Sn, Tn)

]
≤ ε. (4)

This analysis brings us a step closer to understanding the
non-asymptotic fundamental limits for transmitting correlated
sources over a MAC. The sufficient condition (see (5) below)
is termed a second-order (or dispersion-type) condition which
is in line with the recent works on second-order coding
rates [9] and finite blocklength analysis [10]. In our context,
a sufficiently large n and an ε ∈ (0, 1) are fixed and we ask
what are the conditions on the source (S, T ) and the channel
W such that there exists a code for which (4) holds.

A. Our Main Contribution

Our main result in this paper can be roughly summarized
as follows: Let the set SV(ε) ⊂ R6 (to be defined later) play
the role of the Q−1( · ) function for a zero-mean Gaussian
with covariance matrix V [11]. We show, by using the proof
techniques in [1], [2] and [12] but with a different decoder,
that if there exists distributions pC(c), pX1|S,C(x1|s, c) and



pX2|S,T (x2|t, c) such that

I−H ∈ SV(ε)√
n

+
log n

n
16 (5)

as n grows, then (4) holds. Here, 1d is the vector of length d
consisting of ones. We briefly describe the terms in (5): The
vectors I,H ∈ R6

+ are the mutual information and entropy
vectors (analogous to those in (3) but there are two extra
elements). These are functions of the distributions pC(c),
pX1|S,C(x1|s, c) and pX2|S,T (x2|t, c). The matrix V (to be
defined later) is termed the information dispersion matrix of
the source and channel and is a generalization of the dispersion
matrices derived in [11]. Note that the result in (5) generalizes
the asymptotic results in [1], [2], [12] because as n→∞, we
recover the first-order condition in (3) for every ε > 0.

An interesting interpretation of (5) is as follows: If n is
small, then the mutual information quantities in (3) have to be
significantly larger than the corresponding entropy quantities.
Conversely, for large n, the mutual information quantities
can be rather close to the corresponding entropy quantities.
Our result differs from the first-order result in (3) in that
there are two extra constraints on the mutual informations
and entropies, namely that I(X1, C;Y |X2, T )−H(S|T ) and
I(X2, C;Y |X1, S)−H(T |S) have to be sufficiently positive
at blocklength n (also relative to the other constraints). It is
not clear that these constraints can be subsumed by other ones
because the second-order terms governed by SV(ε)/

√
n come

into play at a finite blocklength n.

B. Related Work

This work is an extension of the work by Tan and Kosut [11]
where second-order coding rates for Slepian-Wolf coding [3]
and the discrete memoryless MAC [4], [5] were examined in
detail. Clearly, if there is a non-empty intersection between
the (n, εs)-Slepian-Wolf and (n, εc)-MAC regions and the
error probabilities satisfy εs + εc − εsεc ≤ ε, then (4) is
satisfied. Instead of separation, we study a joint source-channel
coding scheme (JSCC) in this paper. The work by Tan and
Kosut [11] builds on a line of work on dispersion analysis for
channel coding that was studied extensively by Hayashi [9]
and Polyanskiy et al. [10]. In the latter, the authors introduced
new channel coding rate bounds and used these bounds to
strengthen the results in Strassen’s seminal work [13]. In
addition, finite blocklength analysis has also been applied to
lossy source coding [14], [15] and point-to-point JSCC [16],
[17] just to name a few. The general version of the point-to-
point-JSCC problem was studied by Han [18, Chapter 5] and
extended by Campo et al. [19]. Iwata and Oohama [12] studied
the multi-sender-single-receiver version of the JSCC problem
using information spectrum methods [18]. We will also use
some information spectrum ideas in our proofs.

C. Structure of Paper

This paper is structured as follows: In Section II, we state
the definition of the problem. In Section III, we state our main
result by first generalizing the main result of Ahlswede and

Han [2] then specializing it to S, T and their common part K
to obtain the generalization of (3). In Section IV, we present
the proofs of our main theorems. In Section V, we conclude
our discussion and suggest avenues for further research.

II. DEFINITIONS

In this section, we present some definitions for the prob-
lem of transmitting a correlated source over a MAC. Re-
call that we wish to send a discrete memoryless multiple
source (S, T ) ∼ pS,T (s, t) over a discrete memoryless MAC
(X1,X2,W (y|x1, x2),Y).

Definition 1. A (|S|n, |T |n, n, ε) joint source-channel code
for transmitting the correlated source (S, T ) over the discrete
memoryless MAC (X1,X2,W (y|x1, x2),Y) consists of

1) Two encoders: Encoder 1 assigns a sequence φ1n(sn) ∈
Xn1 to every source sequence sn ∈ Sn. Encoder 2
assigns a sequence φ2n(tn) ∈ Xn2 to every source
sequence tn ∈ T n.

2) A decoder ψn that assigns an estimate (ŝn, t̂n) ∈ Sn ×
T n to each sequence (channel output) yn ∈ Yn

such that the error probability satisfies (4).

Definition 2. We say that the source (S, T ) can be
(n, ε)-transmissible over the discrete memoryless MAC
(X1,X2,W (y|x1, x2),Y) if there exists a (|S|n, |T |n, n, ε)
joint source-channel code.

Given a vector µ ∈ Rd and a positive definite matrix
Σ ∈ Sd+, we use the notation N (µ,Σ) to denote a multivari-
ate Gaussian probability density function with mean µ and
covariance matrix Σ.

Definition 3. Define the set [11]

SV(ε) :=
{
z ∈ Rd : P[Z ≤ z] ≥ 1− ε

}
(6)

where Z ∼ N (0,V) and for two vectors a,b ∈ Rd, a ≤ b
means that aj ≤ bj for all 1 ≤ j ≤ d.

The set SV(ε) is analogous to the inverse Q-function
for univariate Gaussians. Indeed, observe that if d = 1,
Sσ2(ε) = [σQ−1(ε),∞). The set SV(ε) characterizes the
family of z’s that are points of sufficiently “high probability”
in Rd. Our characterization of (n, ε)-transmissibility will be
in terms of the set SV(ε) for an appropriate (information
dispersion) matrix V.

III. MAIN RESULTS

A. (n, ε)-Transmissibility for an Auxiliary System

While we would like to directly characterize the (n, ε)-
transmissibility for the joint source (S, T ), it is perhaps more
straightforward and intuitive to adopt the Ahlswede-Han ap-
proach [2] to solve a different but related and simpler problem
first. Loosely speaking, this problem decouples the effect of
the common part from the actual sources, thus simplifying the
proof of the original problem. Here, we have a discrete mem-
oryless multiple source (S1, S2, S3) ∼ pS1,S2,S3 and a MAC
W (y|x1, x2). We would like to design two encoders observing



(Sn1 , S
n
2 ) and (Sn2 , S

n
3 ) and a decoder which observes the

output of the MAC and estimates the three sources. That is the
first encoder is φ1n : Sn1×Sn2 → Xn1 , the second encoder is φ2n :
Sn2 ×Sn3 → Xn2 and the decoder is ψn : Yn → Sn1 ×Sn2 ×Sn3 .
The error probability P[(Ŝn1 , Ŝ

n
2 , Ŝ

n
3 ) 6= (Sn1 , S

n
2 , S

n
3 )] is to

be no larger than ε for sufficiently large blocklength n. We
define (n, ε)-transmissibility of the joint source (S1, S2, S3)
analogously to Definitions 1 and 2.

For solving this related problem, consider a test channel
involving three input auxiliary random variables U1, U2, and
U3 taking values on finite sets U1,U2 and U3 respectively.
Consider functions f1 : U1×U2 → X1 and f2 : U2×U3 → X2.
Now define the test channel W̃ : U1 × U2 × U3 → Y as

W̃ (y|u1, u2, u3) := W (y|f1(u1, u2), f2(u2, u3)). (7)

The random variables (S1, S2, S3, U1, U2, U3) are distributed
as pS1,S2,S3

pU1|S1
pU2|S2

pU3|S3
. Further, (7) says that the two

inputs to the MAC are X1 = f1(U1, U2) and X2 = f2(U2, U3)
respectively. To state the next theorem concisely, we introduce
the notation SA to mean the set of random variables indexed
by the finite set A. So, for example, S{1,2} = (S1, S2). Also
given a family of subsets F , we use the compact notation
[vA : A ∈ F ] to mean the vector indexed by the elements
vA arranged in some consistent order. We have the following
analogue of Theorem 1 in [2].

Theorem 1 ((n, ε)-Transmissibility for the joint source
(S1, S2, S3)). Let [3] := {1, 2, 3} and Ac := [3] \
A. If for sufficiently large n, there exists distributions
pU1|S1

, pU2|S2
, pU3|S3

and functions f1 and f2 such that

[I(UA;Y |UAc , SAc)−H(SA|SAc) : ∅ 6= A ⊂ [3]]

∈
SV(U1,U2,U3)(ε)√

n
+

log n

n
17, (8)

where the information dispersion matrix V(U1, U2, U3) is the
covariance of the random vector[

log
pY |UA,UAc ,SAc (Y |UA, UAc , SAc)

pY |UAc ,SAc (Y |UAc , SAc)

− log
1

pSA|SAc (SA|SAc)
: ∅ 6= A ⊂ [3]

]
, (9)

then the source (S1, S2, S3) is (n, ε)-transmissible over W .

This result is proved in Section IV. Essentially, we adopt
the coding scheme for Theorem 1 in [1] but we modify
the decoding rule so as to obtain the second-order term
SV(U1,U2,U3)(ε)/

√
n ⊂ R7 in (8). Intuitively, if ε < 1/2, the

second-order term is a subset of vectors in R7 with positive
entries. This means that the “separation” between the mutual
information quantities I(UA;Y |UAc , SAc) and the entropy
quantities H(SA|SAc) has to be sufficiently large for (n, ε)-
transmissibility of the source (S1, S2, S3). We observe that
the rate at which the difference of the mutual information
and entropy vectors can converge to zero is Θ(1/

√
n), which

is in line with the central limit theorem (more precisely the
multidimensional Berry-Essèen theorem [20]).

Observe that the exact shape of the region depends on the
covariance of the difference between the information density
vector and the entropy density vector given in (9). This is
different from the recent works on finite blocklength (or
dispersion) analysis on (point-to-point) lossy joint source-
channel coding [16], [17] where the second-order dispersion
term is in fact a sum of two standard deviations—that of the D-
tilted information of the source [14], [17] and the information
density of the channel. Intuitively, this results from the fact
that the source is independent of the channel noise and hence
the variance of the sum is equal to the sum of the variances.
However, our coding scheme and analysis of error probability
used to prove Theorem 1 and Theorem 2 (below) closely
parallel the original ones in [1], [2] for the joint source-channel
coding problem over a MAC. Hence, we observe that our
equivalent dispersion matrix V(U1, U2, U3) is the covariance
of the difference between the information density vector and
the entropy density vector.

We remark that Theorem 1 can be strengthened slightly
by employing a time-sharing procedure for the MAC part.
This would yield a similar result but instead of the mutual
information quantities in (8), we have I(UA;Y |UAc , SAc , Q)
where Q is a finite alphabet time-sharing random variable. The
covariance matrix V(U1, U2, U3) in (9) will then be replaced
by a conditional covariance matrix involving the auxiliary
random variable Q, i.e., the information dispersion is now
V(U1, U2, U3|Q) :=

∑
q pQ(q)V(U1, U2, U3|Q = q). This is

detailed in the achievability proof for the finite blocklength
rate region for the discrete memoryless MAC derived recently
by Huang and Moulin [21].

B. Specialization of Auxiliary System to Derive a Sufficient
Condition for (n, ε)-Transmissibility of Sources over a MAC

Now, we specialize Theorem 1 to derive a sufficient con-
dition for (n, ε)-transmissibility of the source (S, T ) over the
MAC W . We use the following identifications:

S1 := S, S2 := K, S3 := T, (10)

where K is the common part of S and T [6]. This new
system is equivalent to the one considered by Cover-El Gamal-
Salehi [1] for the problem of transmitting a source (S, T )
almost losslessly over a MAC W . The specialization can be
stated as follows:

Theorem 2 ((n, ε)-Transmissibility for the joint source (S, T )
with common part K). If for sufficiently large n, there ex-
ists distributions pC(c), pX1|S,C(x1|s, c) and pX2|T,C(x2|t, c)
such that 

I(X1;Y |X2, T, C)−H(S|T )
I(X2;Y |X1, S, C)−H(T |S)
I(X1, C;Y |X2, T )−H(S|T )
I(X2, C;Y |X1, S)−H(T |S)
I(X1, X2;Y |K,C)−H(T, S|K)

I(X1, X2;Y )−H(S, T )


∈

SV(C,X1,X2)(ε)√
n

+
log n

n
16, (11)



where the information dispersion matrix V(C,X1, X2) is the
covariance of the random vector

log
pY |X1,X2,T,C

(Y |X1,X2,T,C)

pY |X2,T,C
(Y |X2,T,C) − log 1

pS|T (S|T )

log
pY |X1,X2,S,C

(Y |X1,X2,S,C)

pY |X1,S,C
(Y |X1,S,C) − log 1

pT |S(T |S)

log
pY |X1,X2,T,C

(T |X1,X2,T,C)

pY |X2,T
(Y |X2,T ) − log 1

pS|T (S|T )

log
pY |X1,X2,S,C

(T |X1,X2,S,C)

pY |X1,S
(Y |X1,S)

− log 1
pT |S(T |S)

log
pY |X1,X2,K,C

(Y |X1,X2,K,C)

pY |K,C(Y |K,C) − log 1
pS,T |K(S,T |K)

log
pY |X1,X2

(Y |X1,X2)

pY (Y ) − log 1
pS,T (S,T )


, (12)

then the source (S, T ) is (n, ε)-transmissible over W .

Note that in (12), we have written the information densities
in a somewhat redundant fashion. For example due to the
Markov condition Y − (X1, X2) − (C, S, T ), the numera-
tor in the first conditional information density is in fact
pY |X1,X2,T,C(y|x1, x2, t, c) = W (y|x1, x2) and similarly for
the numerators of all the other three conditional information
densities. However, for clarity, we choose to write the infor-
mation densities as in (12) so that the reader observes the
similarities between the second-order information dispersion
term and the first-order term in (11).

The interpretation of Theorem 2 is similar to that of
Theorem 1. It quantifies the difference between the mutual
information quantities and the entropies such that (S, T ) (with
common part K) is (n, ε)-transmissible over the MAC W .
Note that unlike in Ahlswede and Han’s work, we cannot
eliminate the third and fourth constraints in (12). This is
because the first and second constraints do not imply the
third and fourth respectively (unlike the first-order result) since
the covariances and the blocklength n characterize the (n, ε)-
transmissibility of the source.

IV. PROOFS

A. Proof of Theorem 1

Assume that the random variables (S1, S2, S3) and the
channel W satisfy the sufficient conditions of Theorem 1.
We demonstrate that there exists a code for the (n, ε)-
transmissibility of the correlated sources over the MAC W .
We follow the code construction in [2] and apply Gaussian
approximations to the general information spectrum analysis
presented by Iwata and Oohama in [12].

We will first consider a simpler setup where we encode the
three sources Sj , j ∈ [3] separately using encoders φ̃jn : Snj →
Unj , j ∈ [3]. The single decoder is ψ̃n : Yn → Sn1 ×Sn2 ×Sn3 .
At the end of the proof, we convert this problem to the one
in Theorem 1. Fix the distributions pUj |Sj , j ∈ [3]. Also fix
functions f1 : U1 × U2 → X1 and f2 : U2 × U3 → X2.
Codebook Generation: For j ∈ [3] and to every sequence snj ∈
Snj , randomly and independently generate unj (snj ) ∈ Unj from
the product distribution

∏n
i=1 pUj |Sj (uj |sj).

Encoding: Given snj , encoder j transmits the sequence unj (snj ).

Decoding: Define the set

T
(n)
δn

(A) :=

{
(sn1 , s

n
2 , s

n
3 , u

n
1 , u

n
2 , u

n
3 , y

n) :

1

n
log

pY n|UnA,UnAc ,SnAc (yn|unA(snA), unAc(s
n
Ac), s

n
Ac)

pY n|UnA,UnAc (yn|unA(snA), unAc(s
n
Ac))

− 1

n
log

1

pSnA|SnAc (snA|snAc)
≥ δn

}
, (13)

as well as the set

T
(n)
δn

:=
⋂

∅6=A⊂[3]

T
(n)
δn

(A). (14)

Intuitively, the set T
(n)
δn

takes the role of the typical set [7]
but instead of having probability tending to one as n grows,
we show that P((Sn[3], U

n
[3](S

n
[3]), Y

n) ∈ T
(n)
δn

) ≈ 1 − ε. See
the steps leading to (27).

Given yn, the decoder searches for the unique triple of
sequences (ŝn1 , ŝ

n
2 , ŝ

n
3 ) such that

(ŝn1 , ŝ
n
2 , ŝ

n
3 , u

n
1 (ŝn1 ), un2 (ŝn2 ), un3 (ŝn3 ), yn) ∈ T

(n)
δn

. (15)

If there is no such unique triple, declare a decoding error. Note
that this decoder is different from the jointly typical decoder
in [1] and [2]. Choose the sequence

δn :=
log n

2n
. (16)

Analysis of Error Probability: We now show that for the
random code constructed above and the decoding scheme with
δn = logn

2n , the error probability (averaged over the random
code ensemble) is no larger than ε. Assuming that Sn1 , S

n
2 , S

n
3

are sent to the encoder, the error events are

E0 := {(Sn1 , Sn2 , Sn3 ,
Un1 (Sn1 ), Un2 (Sn2 ), Un3 (Sn3 ), Y n) /∈ T

(n)
δn
} (17)

EA := {∃ s̃nA 6= SnA : (s̃nA, S
n
Ac ,

UnA(s̃nA), UnAc(S
n
Ac), Y

n) ∈ T
(n)
δn
}, (18)

for all subsets ∅ 6= A ⊂ [3]. Clearly,

P
[
(Ŝn1 , Ŝ

n
2 , Ŝ

n
3 ) 6= (Sn1 , S

n
2 , S

n
3 )
]
≤ P(E0) +

∑
∅6=A⊂[3]

P(EA).

(19)
We bound these error events separately. We will prove that
P(E0) ≈ 1−ε and P(EA) ≤ 1√

n
. First, consider the probability

of the complement of E0

P(Ec0) = P
[
(Sn[3], U

n
[3](S

n
[3]), Y

n) ∈ T
(n)
δn

]
. (20)

Since the source is independent and identically distributed
(i.i.d.), the generation of the Unj -codewords is conditionally
i.i.d. given the sources Snj and the channel is memoryless, we
see that the probability in (20) can be expressed as

P(Ec0) = P

[
1

n

n∑
k=1

(ik − hk) ≥ δn17

]
(21)



where ik and hk are random vectors of information densities
and entropy densities of the form in (13) evaluated at the k-
th sample (S1k, S2k, S3k, U1k(S1k), U2k(S2k), U3k(S3k), Yk).
The mean of ik (resp. hk) is the vector of mutual information
(resp. entropy) quantities in (8). For notational convenience,
denote the mutual information (resp. entropy) vector as I ∈
R7

+ (resp. H ∈ R7
+). Subtracting these means in (21), we

obtain

P(Ec0) = P

[
1

n

n∑
k=1

jk ≥ H− I + δn17

]
, (22)

where the random vector jk := ik−hk−(I−H). Multiplying
throughout by −

√
n and using the definition of δn in (16), we

get

P(Ec0) = P

[
1√
n

n∑
k=1

−jk ≤
√
n(I−H)− log n

2
√
n

17

]
. (23)

Now, note that the random vectors −jk, k ∈ {1, . . . , n}, are
i.i.d., zero-mean and have covariance matrix V(U1, U2, U3) ∈
S7+. We can thus apply the multidimensional Berry-Essèen
theorem [20] to get the following bound:

P(Ec0) ≥ P
[
Z ≤

√
n(I−H)− log n

2
√
n

17

]
−O

(
1√
n

)
, (24)

where Z ∼ N (0,V(U1, U2, U3)) Note that the random vector
−j1 is distributed in the same way as that in (9). In (24),
we have assumed that the covariance matrix V(U1, U2, U3) is
non-singular and the third moment of the random vector −j1 is
finite. The first assumption here can be dispensed with with an
appropriate change of basis to a lower dimensional subspace
(see [11] for details). The second assumption holds because
all alphabets are finite. Since the sources (S1, S2, S3) and the
channel W satisfy the sufficient condition of Theorem 1, i.e.,
that

P
[
Z ≤

√
n(I−H)− log n√

n
17

]
≥ 1− ε (25)

by the definition of the set SV(U1,U2,U3)(ε), by Taylor expan-
sion of (24), we conclude that as n grows,

P(Ec0) ≥ 1− ε+O

(
log n√
n

)
, (26)

or equivalently that

P(E0) ≤ ε−O
(

log n√
n

)
. (27)

We now bound P(EA). Note from the definition of T
(n)
δn

in (14) that
T

(n)
δn
⊂ T

(n)
δn

(A) (28)

for every subset A. By monotonicity of measure, it suffices to
consider the upper bound

P(EA) ≤ P
[
∃ s̃nA 6= SnA : (s̃nA, S

n
Ac ,

UnA(s̃nA), UnAc(S
n
Ac), Y

n) ∈ T
(n)
δn

(A)
]
. (29)

Now, we upper bound the RHS of (29) by conditioning on
the events {SnA = snA} for all snA ∈ SnA and applying the
union-of-events bound:

P(EA) ≤
∑
snA

pSnA(snA)
∑

s̃nA 6=snA

P
[
(s̃nA, S

n
Ac ,

UnA(s̃nA), UnAc(S
n
Ac), Y

n) ∈ T
(n)
δn
|SnA = snA

]
(30)

Now, note that conditioned on SnA = snA [7, pp. 341],

(SnAc , U
n
A(s̃nA), UnAc(S

n
Ac), Y

n)|{SnA = snA}
∼ pSnAc ,UnAc ,Y n|SnA(snAc , u

n
Ac , y

n|snA)pUnA|SnA(unA|s̃nA) (31)

Also, note that when (sn1 , s
n
2 , s

n
3 , u

n
1 , u

n
2 , u

n
3 , y

n) ∈ T
(n)
δn

(A),
the sequences satisfy

pSnAc ,UnAc ,Y n(snAc , u
n
Ac , y

n)pUnA|SnA(unA|snA)

≤ pY n|UnA,UnAc ,SnAc (yn|unA, unAc , snAc)pUnAc |SnAc (unAc |snAc)
pUnA,SnA(unA, s

n
A)pSnAc |SnA(snAc |snA) exp(−nδn). (32)

This relation can be easily verified by repeatedly applying
Bayes’ rule to (13). As such, we have the following standard
change of measure (Chernoff bound) argument used in infor-
mation spectrum analysis [18]:

P(EA) ≤
∑

(s̃nA,s
n
Ac ,u

n
A,u

n
Ac ,y

n)∈T
(n)
δn

(A)

pSnAc ,UnAc ,Y n(snAc , u
n
Ac , y

n)pUnA|SnA(unA|s̃nA) (33)

≤
∑

(s̃nA,s
n
Ac ,u

n
A,u

n
Ac ,y

n)∈T
(n)
δn

(A)

pY n|UnA,UnAc ,SnAc (yn|unA, unAc , snAc)pUnAc |SnAc (unAc |snAc)
pUnA,SnA(unA, s

n
A)pSnAc |SnA(snAc |snA) exp(−nδn) (34)

≤ exp(−nδn), (35)

where (33) follows by inserting (31) into (30) and marginal-
izing over snA and (34) follows from (32). From the definition
of δn in (16), we can assert that

P(EA) ≤ exp

(
−n · log n

2n

)
=

1√
n
. (36)

The above analysis clearly applies to all events EA. Combining
this with (27), we see that the overall probability of error
in (19) can be upper bounded as

P(E) ≤ ε−O
(

log n√
n

)
, (37)

as n grows. This proves the existence of a length-n code whose
probability of error is no larger than ε (if n is sufficiently
large).

To complete the proof of Theorem 1, we just simply
define the functions φ1n(sn1 , s

n
2 ) := f1(φ̃1n(sn1 ), φ̃2n(sn2 )) and

φ2n(sn2 , s
n
3 ) := f2(φ̃2n(sn2 ), φ̃3n(sn3 )). Clearly, encoders φ1n, φ

2
n

and decoder ψn yield the same probability as the code given
by (φ̃1n, φ̃

2
n, φ̃

3
n, ψ̃n).



B. Proof of Theorem 2

Theorem 2 follows by specializing Theorem 1 by the iden-
tifications in (10) identifying U2 to be the auxiliary random
variable representing the common part C. Then, we have the
condition

I−H ∈ SV(ε)√
n

+
log n

n
17 (38)

where I ∈ R7
+ and H ∈ R7

+ are the mutual information and
entropy vectors as per equations (2.8)-(2.14) in [2]. Since
we do not have to recover K = S2 in our setting, the
third constraint in (38) is redundant. Also note that because
H(K|S, T ) = 0. Thus, the seven-dimensional region collapses
to a six-dimensional region. By using the standard Markov re-
lations, we see, in the same way as in [2], that the information
and entropy densities in Theorem 2 are the same as those in
Theorem 1.

V. CONCLUSIONS AND FURTHER WORK

In this work, we used Gaussian approximation-based analy-
sis techniques to derive sufficient conditions (achievability re-
sults) for transmitting a correlated discrete memoryless source
over a MAC. Theorem 2 provides a sufficient condition and
the condition is based on the so-called information dispersion
matrix, which is the covariance matrix of the difference
between an information density vector and an entropy density
vector. Different from the result of Cover-El Gamal-Salehi [1],
there are six constraints on the differences between the mutual
information and entropy quantities, whereas in [1] there are
only four constraints.

There are at least two directions for further research: Firstly,
we would like to understand whether a second-order coding
result analogous to [16], [17] can be derived using different
coding schemes. Secondly, we would like to derive a converse
result for the problem perhaps based on the result in [8].
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