Information-Theoretic Limits for Streaming Communication

Vincent Y. F. Tan

Joint work with Si-Hyeon Lee and Ashish Khisti (Toronto)

National University of Singapore (NUS)

Beyond IID, 2016 (Barcelona)

Vincent Tan (NUS)

Streaming Communication

Beyond IID, 2016 1 / 43

1

DQC

э

• • • • • • • • • • • •

2 Achievability Results and Proof Sketches

∃ ► < ∃</p>

I > <
 I >
 I

2 Achievability Results and Proof Sketches

3 Achievability Extensions

- 2 Achievability Results and Proof Sketches
- 3 Achievability Extensions
- 4 Converse Result and the Proof Sketch

< 17 ▶

- 2 Achievability Results and Proof Sketches
- 3 Achievability Extensions
- 4 Converse Result and the Proof Sketch
- 5 Conclusion and an Announcement

- 2 Achievability Results and Proof Sketches
- 3 Achievability Extensions
- 4 Converse Result and the Proof Sketch
- 5 Conclusion and an Announcement

■ Consider a discrete memoryless channel $W : \mathcal{X} \rightarrow \mathcal{Y}$

- Consider a discrete memoryless channel $W: \mathcal{X} \to \mathcal{Y}$
- Fundamental problem in information theory is the interplay between n, R and ε

- Consider a discrete memoryless channel $W : \mathcal{X} \to \mathcal{Y}$
- Fundamental problem in information theory is the interplay between *n*, *R* and ε
- Shannon (1948) showed that the maximum rate of communication with ε → 0 as n → ∞ is

$$C(W) = \max_{P_X} I(X;Y) = \max_{P_X} I(P_X,W)$$

Refined Asymptotics

Regime	Large deviations	Moderate deviations	Central limit
	[Gallager '65]	[Altüg, Wagner '14]	[Strassen '62]
	[Shannon et al. '67]	[Polyanskiy, Verdú '10]	[Hayashi '09]
			[Polyanskiy et al. '10]
Code	R < C	$R = C - \rho_n$	$R \approx C - \sqrt{\frac{V}{n}}Q^{-1}(\varepsilon)$
Rate		$ ho_n ightarrow 0$ and $n ho_n^2 ightarrow \infty$,
Error	Exponential	Subexponential	Non-vanishing
Prob.	$\varepsilon \leq \exp\{-nE_r(R)\}$	$\varepsilon \approx \exp\left\{-\frac{n\rho_n^2}{2V}\right\}$	arepsilon > 0

Ð

DQC

< ロト < 回 ト < 回 ト < 三</p>

Refined Asymptotics

Regime	Large deviations	Moderate deviations	Central limit
	[Gallager '65]	[Altüg, Wagner '14]	[Strassen '62]
	[Shannon et al. '67]	[Polyanskiy, Verdú '10]	[Hayashi '09]
			[Polyanskiy et al. '10]
Code	R < C	$R = C - \rho_n$	$R = C - \frac{L}{\sqrt{n}}$
Rate		$ ho_n ightarrow 0$ and $n ho_n^2 ightarrow \infty$	L > 0
Error	Exponential	Subexponential	Non-vanishing
Prob.	$\varepsilon \leq \exp\{-nE_r(R)\}$	$\varepsilon \approx \exp\left\{-\frac{n\rho_n^2}{2V}\right\}$	$arepsilon pprox Q\left(rac{L}{\sqrt{V}} ight)$

Ð

DQC

< ロト < 回 ト < 回 ト < 三</p>

Refined Asymptotics

Regime	Large deviations	Moderate deviations	Central limit
	[Gallager '65]	[Altüg, Wagner '14]	[Strassen '62]
	[Shannon et al. '67]	[Polyanskiy, Verdú '10]	[Hayashi '09]
			[Polyanskiy et al. '10]
Code	R < C	$R = C - \rho_n$	$R = C - \frac{L}{\sqrt{n}}$
Rate		$ ho_n ightarrow 0$ and $n ho_n^2 ightarrow \infty$	L > 0
Error	Exponential	Subexponential	Non-vanishing
Prob.	$\varepsilon \leq \exp\{-nE_r(R)\}$	$\varepsilon \approx \exp\left\{-\frac{n\rho_n^2}{2V}\right\}$	$arepsilon pprox Q\left(rac{L}{\sqrt{V}} ight)$

Channel dispersion

$$V = V(W) = \min_{P_X: I(P_X, W) = C(W)} \operatorname{var}(i(X; Y))$$

Smaller dispersion is better.

DQC

∃ >

I > <
 I >
 I

Streaming Communications

Streaming Services

4 A N

An Information-Theoretic Model

э

DQC

< A

An Information-Theoretic Model

Streaming setup

Vincent Tan (NUS)

Ð

DQC

< □ > < □ > < □ > < □ > < □ >

Inherent tension in utilizing a block:

Use codeword only for fresh msg vs. also for previous msges?

-

DQC

 Inherent tension in utilizing a block: Use codeword only for fresh msg vs. also for previous msges?
 Time sharing?

< 17 ▶

Time sharing

Inherent tension in utilizing a block:

Use codeword only for fresh msg vs. also for previous msges?

- Time sharing?
 - For block fading channels with constant fading gain for each block, this attains the optimal diversity-multiplexing tradeoff [Khisti, Draper '14]

< 同 ト < ∃ ト

Time sharing

Inherent tension in utilizing a block:

Use codeword only for fresh msg vs. also for previous msges?

- Time sharing?
 - For block fading channels with constant fading gain for each block, this attains the optimal diversity-multiplexing tradeoff [Khisti, Draper '14]
 - No gain in our setup due to the memoryless nature of *W*ⁿ

< 同 ト < ∃ ト

Joint encoding

Inherent tension in utilizing a block:

Use codeword only for fresh msg vs. also for previous msges?

- Time sharing?
 - For block fading channels with constant fading gain for each block, this attains the optimal diversity-multiplexing tradeoff [Khisti, Draper '14]
 - No gain in our setup due to the memoryless nature of W^n
- Joint encoding?

< 同 ト < ∃ ト

Joint encoding

Inherent tension in utilizing a block:

Use codeword only for fresh msg vs. also for previous msges?

- Time sharing?
 - For block fading channels with constant fading gain for each block, this attains the optimal diversity-multiplexing tradeoff [Khisti, Draper '14]
 - No gain in our setup due to the memoryless nature of W^n
- Joint encoding?
 - Does improve

2 Achievability Results and Proof Sketches

3 Achievability Extensions

4 Converse Result and the Proof Sketch

5 Conclusion and an Announcement

Let the message size grow as

$$\log M_n = n(C - \rho_n)$$

where

$$\rho_n \ge 0, \quad \rho_n \to 0, \quad n\rho_n^2 \to \infty.$$

∃ ► < ∃</p>

< 🗇 🕨 <

Let the message size grow as

$$\log M_n = n(C - \rho_n)$$

where

$$\rho_n \ge 0, \quad \rho_n \to 0, \quad n\rho_n^2 \to \infty.$$

There exists a sequence of $(n, M_n, \varepsilon_n, T)$ -streaming codes such that

$$\overline{\lim_{n\to\infty}}\,\frac{1}{n\rho_n^2}\log\varepsilon_n\leq-\frac{T}{2V}$$

Vincent Tan (NUS)

프 () 이 프

< 17 ▶

Interpretation of Moderate Deviations Result

$$\overline{\lim_{n\to\infty}}\,\frac{1}{n\rho_n^2}\log\varepsilon_n\leq-\frac{T}{2V}$$

In block coding,

$$\lim_{n \to \infty} \frac{1}{n\rho_n^2} \log \varepsilon_n^* = -\frac{1}{2V}$$

DQC

< 17 ▶

Interpretation of Moderate Deviations Result

$$\overline{\lim_{n\to\infty}}\,\frac{1}{n\rho_n^2}\log\varepsilon_n\leq-\frac{T}{2V}$$

In block coding,

$$\lim_{n \to \infty} \frac{1}{n\rho_n^2} \log \varepsilon_n^* = -\frac{1}{2V}$$

Hence, moderate deviations constant improves (increases) by a factor of T

Interpretation of Moderate Deviations Result

$$\overline{\lim_{n\to\infty}}\,\frac{1}{n\rho_n^2}\log\varepsilon_n\leq-\frac{T}{2V}$$

In block coding,

$$\lim_{n\to\infty}\frac{1}{n\rho_n^2}\log\varepsilon_n^*=-\frac{1}{2V}$$

Hence, moderate deviations constant improves (increases) by a factor of T

Dispersion V is reduced by a factor of T

Second Main Result (Achievability)

Theorem (Lee-T.-Khisti (2015))

For any L > 0, let the message size grow as

$$\log M_n = n \left(C - \frac{L}{\sqrt{n}} \right).$$

For any L > 0, let the message size grow as

$$\log M_n = n \left(C - \frac{L}{\sqrt{n}} \right).$$

Then there exists a sequence of $(n, M_n, \varepsilon_n, T)$ -streaming codes s.t.

$$\varepsilon_n \lesssim c \cdot Q\left(\sqrt{\frac{T}{V}}L\right) \qquad c \approx 1.$$

ヨトイヨト

Image: A matrix and a matrix

For any L > 0, let the message size grow as

$$\log M_n = n \left(C - \frac{L}{\sqrt{n}} \right).$$

Then there exists a sequence of $(n, M_n, \varepsilon_n, T)$ -streaming codes s.t.

$$\varepsilon_n \lesssim c \cdot Q\left(\sqrt{\frac{T}{V}}L\right) \qquad c \approx 1.$$

In block coding,

$$\lim_{n\to\infty}\varepsilon_n^*=Q\left(\frac{L}{\sqrt{V}}\right)$$

Vincent Tan (NUS)

э

∃ ► < ∃ ►</p>

Image: A matrix and a matrix

For any L > 0, let the message size grow as

$$\log M_n = n \left(C - \frac{L}{\sqrt{n}} \right).$$

Then there exists a sequence of $(n, M_n, \varepsilon_n, T)$ -streaming codes s.t.

$$\varepsilon_n \lesssim c \cdot Q\left(\sqrt{\frac{T}{V}}L\right) \qquad c \approx 1.$$

In block coding,

$$\lim_{n\to\infty}\varepsilon_n^* = Q\left(\frac{L}{\sqrt{V}}\right)$$

Dispersion V is approx. reduced by a factor of T_{a}

Vincent Tan (NUS)

Sac

Regime	Moderate deviations	Central limit	
Operating rate	$R = C - \rho_n$	$R = C - \frac{L}{\sqrt{n}}$	
	$ ho_n ightarrow 0$ and $n ho_n^2 ightarrow \infty$	L > 0	
Error Prob.	$\varepsilon \approx \exp\left\{-\frac{Tn\rho_n^2}{2V}\right\}$	$arepsilon pprox Q\left(L\sqrt{rac{T}{V}} ight)$	
	$V \rightarrow V/T$		
Encoding	Joint encoding of previous and fresh msges		
Decoding	Sequential decoding of previous and new msges		
	Accumulation of error probabilities		
Key innovation	Non-asymptotic	Truncated memory	
	moderate deviations theorem	structure	

Ð

DQC

イロト イ団ト イヨト イヨ

Recap of Coding Scheme for Block Coding

Codebook generation: Fix dispersion-achieving P_X . For each message $g \in [1 : M]$, generate $\mathbf{x}(g)$ indep. according to P_X^n .

Recap of Coding Scheme for Block Coding

- Codebook generation: Fix dispersion-achieving P_X . For each message $g \in [1 : M]$, generate $\mathbf{x}(g)$ indep. according to P_X^n .
- Encoding: If g is the message, send $\mathbf{x}(g)$
Recap of Coding Scheme for Block Coding

- Codebook generation: Fix dispersion-achieving P_X . For each message $g \in [1 : M]$, generate $\mathbf{x}(g)$ indep. according to P_X^n .
- Encoding: If g is the message, send $\mathbf{x}(g)$
- Decoding: If there exists a unique $g \in [1 : M]$ such that

$$i(\mathbf{x}(g);\mathbf{y})>\log M,$$
 where $i(\mathbf{x};\mathbf{y})=\lograc{W^n(\mathbf{y}|\mathbf{x})}{(P_XW)^n(\mathbf{y})}$

let $\hat{G} = g$.

Recap of Coding Scheme for Block Coding

- Codebook generation: Fix dispersion-achieving P_X . For each message $g \in [1 : M]$, generate $\mathbf{x}(g)$ indep. according to P_X^n .
- Encoding: If g is the message, send $\mathbf{x}(g)$
- Decoding: If there exists a unique $g \in [1 : M]$ such that

$$i(\mathbf{x}(g); \mathbf{y}) > \log M$$
, where $i(\mathbf{x}; \mathbf{y}) = \log rac{W^n(\mathbf{y}|\mathbf{x})}{(P_X W)^n(\mathbf{y})}$

let $\hat{G} = g$.

Error analysis:

 $\varepsilon \leq \Pr(\mathcal{E}_1) + \Pr(\mathcal{E}_2)$

where

$$\mathcal{E}_1 := \{i(\mathbf{X}(G); \mathbf{Y}) \le \log M\}$$

$$\mathcal{E}_2 := \{\exists \, \tilde{g} \neq G \text{ s.t. } i(\mathbf{X}(\tilde{g}); \mathbf{Y}) > \log M\}$$

Note that \mathcal{E}_1 is dominant in both regimes

Vincent Tan (NUS)

Analysis of Error Probability

Probability of error

$$\varepsilon_n \approx \Pr\left(i(\mathbf{X}(G); \mathbf{Y}) \le M\right) = \Pr\left(\sum_{l=1}^n Z_l \le \log M\right)$$

where

$$Z_l := \log \frac{W(Y_l|X_l)}{P_X W(Y_l)}, \quad l = 1, \dots, n$$

are i.i.d. random variables.

э

DQC

∃ ► 4 Ξ

Image: A marked and A marked

Analysis of Error Probability

Probability of error

$$\varepsilon_n \approx \Pr\left(i(\mathbf{X}(G); \mathbf{Y}) \le M\right) = \Pr\left(\sum_{l=1}^n Z_l \le \log M\right)$$

where

$$Z_l := \log \frac{W(Y_l|X_l)}{P_X W(Y_l)}, \quad l = 1, \dots, n$$

are i.i.d. random variables.

• Note that for all $l \in [1:n]$,

$$\mathbb{E}[Z_l] = C$$
 and $\operatorname{var}[Z_l] = V$

< 17 ▶

э

DQC

Analysis of Error Probability

Probability of error

$$\varepsilon_n \approx \Pr\left(i(\mathbf{X}(G); \mathbf{Y}) \le M\right) = \Pr\left(\sum_{l=1}^n Z_l \le \log M\right)$$

where

$$Z_l := \log \frac{W(Y_l|X_l)}{P_X W(Y_l)}, \quad l = 1, \dots, n$$

are i.i.d. random variables.

• Note that for all
$$l \in [1:n]$$
,

$$\mathbb{E}[Z_l] = C$$
 and $\operatorname{var}[Z_l] = V$

Under various regimes, analyze

$$\Pr\left(\sum_{l=1}^n Z_l \le \log M\right).$$

< 47 ▶

Sac

Analysis of Error: Moderate Deviations Regime

Theorem (Moderate Deviations Theorem (Dembo and Zeitouni))

Under regularity conditions on Z_l , and $\log M = n(C - \rho_n)$,

$$\lim_{n\to\infty}\frac{1}{n\rho_n^2}\log\Pr\left(\sum_{l=1}^n Z_l\leq\log M\right)=-\frac{1}{2V}.$$

Analysis of Error: Moderate Deviations Regime

Theorem (Moderate Deviations Theorem (Dembo and Zeitouni))

Under regularity conditions on Z_l , and $\log M = n(C - \rho_n)$,

$$\lim_{n\to\infty}\frac{1}{n\rho_n^2}\log\Pr\left(\sum_{l=1}^n Z_l\leq\log M\right)=-\frac{1}{2V}.$$

Thus, we have

$$\overline{\lim_{n o \infty}} \, rac{1}{n
ho_n^2} \log arepsilon_n \leq -rac{1}{2V}.$$

イロト イポト イヨト イヨト

Analysis of Error: Moderate Deviations Regime

Theorem (Moderate Deviations Theorem (Dembo and Zeitouni))

Under regularity conditions on Z_l , and $\log M = n(C - \rho_n)$,

$$\lim_{n\to\infty}\frac{1}{n\rho_n^2}\log\Pr\left(\sum_{l=1}^n Z_l\leq\log M\right)=-\frac{1}{2V}.$$

Thus, we have

$$\overline{\lim_{n \to \infty}} \, rac{1}{n
ho_n^2} \log arepsilon_n \leq -rac{1}{2V}.$$

However, note that the standard MD theorem is asymptotic in nature

We need a non-asymptotic version in the streaming scenario

Vincent Tan (NUS)

Analysis of Error: Central Limit Regime

Theorem (Berry-Esseen Theorem)

Under regularity conditions on Z_l , and

$$\log M = nC - \sqrt{nL},$$

we have

$$\Pr\left(\sum_{l=1}^{n} Z_l \le \log M\right) = Q\left(\frac{L}{\sqrt{V}}\right) \pm \frac{\tau}{\sqrt{n}}.$$

where τ is a constant (depending on Z_1).

크 > 《 크

< 4 →

Analysis of Error: Central Limit Regime

Theorem (Berry-Esseen Theorem)

Under regularity conditions on Z_l , and

$$\log M = nC - \sqrt{nL},$$

we have

$$\Pr\left(\sum_{l=1}^{n} Z_l \le \log M\right) = Q\left(\frac{L}{\sqrt{V}}\right) \pm \frac{\tau}{\sqrt{n}}.$$

where τ is a constant (depending on Z_1).

Thus, we have

$$\varepsilon_n \leq Q\left(\frac{L}{\sqrt{V}}\right) + O\left(\frac{1}{\sqrt{n}}\right).$$

크 > 《 크

Analysis of Error: Central Limit Regime

Theorem (Berry-Esseen Theorem)

Under regularity conditions on Z_l , and

$$\log M = nC - \sqrt{nL},$$

we have

$$\Pr\left(\sum_{l=1}^{n} Z_l \le \log M\right) = Q\left(\frac{L}{\sqrt{V}}\right) \pm \frac{\tau}{\sqrt{n}}.$$

where τ is a constant (depending on Z_1).

Thus, we have

$$\varepsilon_n \leq Q\left(\frac{L}{\sqrt{V}}\right) + O\left(\frac{1}{\sqrt{n}}\right).$$

However, note that the Berry-Esseen residual terms hurt us in the streaming setup

Vincent Tan (NUS)

• Consider block delay T = 2.

э

Sac

-

Image: A matrix

- Consider block delay T = 2.
- Codebook generation for block k: For each $g^k \in [1 : M]^k$, generate $\mathbf{x}_k(g^k)$ in an i.i.d. manner according to P_X that achieves the dispersion.

- Consider block delay T = 2.
- Codebook generation for block k: For each $g^k \in [1:M]^k$, generate $\mathbf{x}_k(g^k)$ in an i.i.d. manner according to P_X that achieves the dispersion.
- Encoding at block k: Send $\mathbf{x}_k(G_1, \cdots, G_k)$.

I > <
 I >
 I

- Consider block delay T = 2.
- Codebook generation for block k: For each $g^k \in [1:M]^k$, generate $\mathbf{x}_k(g^k)$ in an i.i.d. manner according to P_X that achieves the dispersion.
- Encoding at block k: Send $\mathbf{x}_k(G_1, \cdots, G_k)$.
- Decoding at block k + 1:
 - Target message: *G_k*
 - Due to joint encoding, G_k is in error if any of $\hat{G}_1, \dots, \hat{G}_{k-1}$ is in error.
 - Sequentially decode G_1, \cdots, G_k .

Sac

T = 2: At the end block 3, sequentially decode G_1 and G_2 .

< A

T = 2: At the end block 3, sequentially decode G_1 and G_2 .

■ Re-decode G_1 : Choose \hat{G}'_1 as a unique $g_1 \in [1:M]$ such that

 $i([\mathbf{x}_1(g_1) \ \mathbf{x}_2(g_1, g_2) \ \mathbf{x}_3(g_1, g_2, g_3)], [\mathbf{y}_1 \ \mathbf{y}_2 \ \mathbf{y}_3]) > 3 \log M$, for some g_2, g_3

■ T = 2: At the end block 3, sequentially decode G_1 and G_2 .

■ Re-decode G_1 : Choose \hat{G}'_1 as a unique $g_1 \in [1:M]$ such that

 $i([\mathbf{x}_1(g_1) \ \mathbf{x}_2(g_1, g_2) \ \mathbf{x}_3(g_1, g_2, g_3)], [\mathbf{y}_1 \ \mathbf{y}_2 \ \mathbf{y}_3]) > 3 \log M$, for some g_2, g_3

Decode G_2 : Choose \hat{G}_2 as a unique $g_2 \in [1 : M]$ such that

 $i([\mathbf{x}_2(\hat{G}_1',g_2) \ \mathbf{x}_3(\hat{G}_1',g_2,g_3)], [\mathbf{y}_2 \ \mathbf{y}_3]) > 2\log M$ for some g_3

- T = 2: At the end block 3, sequentially decode G_1 and G_2 .
- Re-decode G_1 : Choose \hat{G}'_1 as a unique $g_1 \in [1:M]$ such that

 $i([\mathbf{x}_1(g_1) \ \mathbf{x}_2(g_1, g_2) \ \mathbf{x}_3(g_1, g_2, g_3)], [\mathbf{y}_1 \ \mathbf{y}_2 \ \mathbf{y}_3]) > 3 \log M$, for some g_2, g_3

Decode G_2 : Choose \hat{G}_2 as a unique $g_2 \in [1 : M]$ such that $i([\mathbf{x}_2(\hat{G}'_1, g_2) \ \mathbf{x}_3(\hat{G}'_1, g_2, g_3)], [\mathbf{y}_2 \ \mathbf{y}_3]) > 2 \log M$ for some g_3

■
$$\Pr(\hat{G}_2 \neq G_2) \leq \Pr((\hat{G}'_1 \neq G_1) \cup (\hat{G}_2 \neq G_2))$$

 $\approx \Pr(\sum_{l=1}^{3n} Z_l \leq 3 \log M) + \Pr(\sum_{l=1}^{2n} Z_l \leq 2 \log M)$

- T = 2: At the end block 3, sequentially decode G_1 and G_2 .
- Re-decode G_1 : Choose \hat{G}'_1 as a unique $g_1 \in [1:M]$ such that

 $i([\mathbf{x}_1(g_1) \ \mathbf{x}_2(g_1, g_2) \ \mathbf{x}_3(g_1, g_2, g_3)], [\mathbf{y}_1 \ \mathbf{y}_2 \ \mathbf{y}_3]) > 3 \log M$, for some g_2, g_3

Decode G_2 : Choose \hat{G}_2 as a unique $g_2 \in [1:M]$ such that $i([\mathbf{x}_2(\hat{G}'_1, g_2) \ \mathbf{x}_3(\hat{G}'_1, g_2, g_3)], [\mathbf{y}_2 \ \mathbf{y}_3]) > 2 \log M$ for some g_3

■
$$\Pr(\hat{G}_2 \neq G_2) \leq \Pr((\hat{G}'_1 \neq G_1) \cup (\hat{G}_2 \neq G_2))$$

 $\approx \Pr(\sum_{l=1}^{3n} Z_l \leq 3 \log M) + \Pr(\sum_{l=1}^{2n} Z_l \leq 2 \log M)$
■ For all $k \in \mathbb{N}$,
 $\Pr(\hat{G}_k \neq G_k) \leq \sum_{j=2}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \leq j \log M\right)$

• T = 2: At the end block 3, sequentially decode G_1 and G_2 .

■ Re-decode G_1 : Choose \hat{G}'_1 as a unique $g_1 \in [1:M]$ such that

 $i([\mathbf{x}_1(g_1) \ \mathbf{x}_2(g_1, g_2) \ \mathbf{x}_3(g_1, g_2, g_3)], [\mathbf{y}_1 \ \mathbf{y}_2 \ \mathbf{y}_3]) > 3 \log M$, for some g_2, g_3

Decode G_2 : Choose \hat{G}_2 as a unique $g_2 \in [1:M]$ such that $i([\mathbf{x}_2(\hat{G}'_1, g_2) \ \mathbf{x}_3(\hat{G}'_1, g_2, g_3)], [\mathbf{y}_2 \ \mathbf{y}_3]) > 2 \log M$ for some g_3

■
$$\Pr(\hat{G}_2 \neq G_2) \leq \Pr((\hat{G}'_1 \neq G_1) \cup (\hat{G}_2 \neq G_2))$$

 $\approx \Pr(\sum_{l=1}^{3n} Z_l \leq 3 \log M) + \Pr(\sum_{l=1}^{2n} Z_l \leq 2 \log M)$
■ For all $k \in \mathbb{N}$,
 $\Pr(\hat{G}_k \neq G_k) \leq \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \leq j \log M\right)$

nan

For all $k \in \mathbb{N}$,

$$\Pr(\hat{G}_k \neq G_k) \le \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \le j \log M\right)$$

3

∃ ► < ∃</p>

• For all $k \in \mathbb{N}$,

$$\Pr(\hat{G}_k \neq G_k) \le \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \le j \log M\right)$$

 However, recall that the standard moderate deviations theorem is asymptotic, i.e.,

$$\overline{\lim_{n \to \infty}} \, \frac{1}{n\rho_n^2} \log \Pr\left(\sum_{l=1}^{jn} Z_l \le j \log M\right) \le -\frac{j}{2V}$$

∃ ► 4 Ξ

• For all $k \in \mathbb{N}$,

$$\Pr(\hat{G}_k \neq G_k) \le \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \le j \log M\right)$$

 However, recall that the standard moderate deviations theorem is asymptotic, i.e.,

$$\overline{\lim_{n\to\infty}}\,\frac{1}{n\rho_n^2}\log\Pr\left(\sum_{l=1}^{jn}Z_l\leq j\log M\right)\leq -\frac{j}{2V}$$

Cannot "exchange limits"

• For all $k \in \mathbb{N}$,

$$\Pr(\hat{G}_k \neq G_k) \le \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \le j \log M\right)$$

 However, recall that the standard moderate deviations theorem is asymptotic, i.e.,

$$\overline{\lim_{n\to\infty}} \frac{1}{n\rho_n^2} \log \Pr\left(\sum_{l=1}^{jn} Z_l \le j \log M\right) \le -\frac{j}{2V}$$

- Cannot "exchange limits"
- Need to develop a non-asymptotic upper bound for moderate deviations theorem [Altüg and Wagner (2014)]

Vincent Tan (NUS)

Lemma

Under regularity conditions on Z_l , for any positive ρ_n satisfying $\rho_n \to 0$ and $n\rho_n^2 \to \infty$,

$$\Pr\left(\frac{1}{n}\sum_{l=1}^{n}Z_{l}\geq\rho_{n}\right)\leq\exp\left\{-n\left(\frac{\rho_{n}^{2}}{2\sigma^{2}}-\frac{\rho_{n}^{3}}{6\sigma^{6}}K\right)\right\}$$

where K is a constant that only depends on Z_1 .

Lemma

Under regularity conditions on Z_l , for any positive ρ_n satisfying $\rho_n \to 0$ and $n\rho_n^2 \to \infty$,

$$\Pr\left(\frac{1}{n}\sum_{l=1}^{n}Z_{l}\geq\rho_{n}\right)\leq\exp\left\{-n\left(\frac{\rho_{n}^{2}}{2\sigma^{2}}-\frac{\rho_{n}^{3}}{6\sigma^{6}}K\right)\right\}$$

where K is a constant that only depends on Z_1 .

Using the lemma, we conclude that for all $k \in \mathbb{N}$,

$$\overline{\lim_{n\to\infty}}\,\frac{1}{n\rho_n^2}\log\left[\overline{\lim_{n\to\infty}}\,\frac{1}{N}\sum_{k=1}^N\Pr(\hat{G}_k\neq G_k)\right]\leq -\frac{T}{2V}.$$

[Streaming Analysis] Central limit regime

For all $k \in \mathbb{N}$,

$$\Pr(\hat{G}_k \neq G_k) \le \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \le j \log M\right)$$
$$= \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \le j(nR - L\sqrt{n})\right)$$

• Compared to the block coding case, $n \rightarrow jn$, $L \rightarrow \sqrt{j}L$.

Vincent Tan (NUS)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

[Streaming Analysis] Central limit regime

For all $k \in \mathbb{N}$,

$$\Pr(\hat{G}_k \neq G_k) \le \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \le j \log M\right)$$

 $= \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \le j(nR - L\sqrt{n})\right)$
 $\le \sum_{j=T}^{\infty} \left(\mathcal{Q}\left(rac{\sqrt{j}L}{\sqrt{V}}\right) + rac{ au}{\sqrt{jn}}
ight)$

■ Compared to the block coding case, $n \rightarrow jn$, $L \rightarrow \sqrt{jL}$.

Vincent Tan (NUS)

3

[Streaming Analysis] Central limit regime

For all $k \in \mathbb{N}$,

$$\begin{aligned} \Pr(\hat{G}_k \neq G_k) &\leq \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \leq j \log M\right) \\ &= \sum_{j=T}^{\infty} \Pr\left(\sum_{l=1}^{jn} Z_l \leq j(nR - L\sqrt{n})\right) \\ &\leq \sum_{j=T}^{\infty} \left(\mathcal{Q}\left(\frac{\sqrt{jL}}{\sqrt{V}}\right) + \frac{\tau}{\sqrt{jn}}\right) \\ &= \sum_{j=T}^{\infty} \mathcal{Q}\left(\frac{\sqrt{jL}}{\sqrt{V}}\right) + \sum_{j=T}^{\infty} \frac{\tau}{\sqrt{jn}} \\ &\leq c \cdot \mathcal{Q}\left(\frac{\sqrt{TL}}{\sqrt{V}}\right) + \sum_{j=T}^{\infty} \frac{\tau}{\sqrt{jn}}, \end{aligned}$$

where $c \approx 1$ for a wide range of channel parameters.

- Compared to the block coding case, $n \rightarrow jn$, $L \rightarrow \sqrt{j}L$.
- The remainder terms from the Berry-Esseen theorem diverge!

Vincent Tan (NUS)

[Streaming Analysis] Truncated Memory

- A, B: Max/Min memories
 - Decode all msgs in the previous group and all previous msgs in the current group
 - Example of *A* = 9, *B* = 4, *T* = 2 To decode *G*₁₇ at the end of block 18, decodes *G*₇, ..., *G*₁₇ by considering codewords in blocks 10, ..., 18.
 - Judiciously choose *A* and *B* as functions of *n* to balance
 - Rate penalty $(\frac{B}{A}\downarrow)$

- Contributions to error probability Remainder terms (A ↓)
 - Previous group $(B \uparrow)$

[Streaming Analysis] Truncated Memory

- A,B: Max/Min memories
 - Decode all msgs in the previous group and all previous msgs in the current group
 - Example of *A* = 9, *B* = 4, *T* = 2 To decode *G*₁₇ at the end of block 18, decodes *G*₇, ..., *G*₁₇ by considering codewords in blocks 10, ..., 18.
 - Judiciously choose *A* and *B* as functions of *n* to balance
 - Rate penalty $(\frac{B}{A}\downarrow)$

- Contributions to error probability Remainder terms (A ↓)
 - Previous group $(B \uparrow)$

[Streaming Analysis] Truncated Memory

- A, B: Max/Min memories
- Decode all msgs in the previous group and all previous msgs in the current group
- Example of A = 9, B = 4, T = 2To decode G_{17} at the end of block 18, decodes G_7, \cdots, G_{17} by considering codewords in blocks 10, ..., 18.
- Judiciously choose A and B as functions of n to balance
 - **Rate penalty** $\left(\frac{B}{4}\downarrow\right)$

- Contributions to error probability Remainder terms ($A \downarrow$)
 - Previous group $(B \uparrow)$

1 Background and Streaming Setup

2 Achievability Results and Proof Sketches

3 Achievability Extensions

4 Converse Result and the Proof Sketch

5 Conclusion and an Announcement

Extension 1: Erasure Option

■ An (n, M, ε, ε', T)-streaming code with an erasure option is the same as the usual streaming code except that

∃ ► 4 Ξ

Extension 1: Erasure Option

An $(n, M, \varepsilon, \varepsilon', T)$ -streaming code with an erasure option is the same as the usual streaming code except that

1 the decoding functions

$$\psi_k: \mathcal{Y}^{(k+T-1)n} \to \mathcal{G} \cup \{\mathbf{0}\}$$

where 0 denotes the erasure option

∃ ► 4 Ξ
Extension 1: Erasure Option

An $(n, M, \varepsilon, \varepsilon', T)$ -streaming code with an erasure option is the same as the usual streaming code except that

1 the decoding functions

$$\psi_k: \mathcal{Y}^{(k+T-1)n} \to \mathcal{G} \cup \{\mathbf{0}\}$$

where 0 denotes the erasure option

2 the total error probability does not exceed ε , i.e.,

$$\limsup_{N\to\infty}\sum_{k=1}^N\frac{\Pr(\hat{G}_k\neq G_k)}{N}\leq \varepsilon.$$

Extension 1: Erasure Option

An $(n, M, \varepsilon, \varepsilon', T)$ -streaming code with an erasure option is the same as the usual streaming code except that

1 the decoding functions

$$\psi_k: \mathcal{Y}^{(k+T-1)n} \to \mathcal{G} \cup \{\mathbf{0}\}$$

where 0 denotes the erasure option

2 the total error probability does not exceed ε , i.e.,

$$\limsup_{N \to \infty} \sum_{k=1}^{N} \frac{\Pr(\hat{G}_k \neq G_k)}{N} \le \varepsilon$$

3 the erasure error probability does not exceed ε' , i.e.,

$$\limsup_{N\to\infty}\sum_{k=1}^N\frac{\Pr(\hat{G}_k\neq G_k,\hat{G}_k\neq 0)}{N}\leq \varepsilon'.$$

■ Seek upper bounds on ε and ε' when M is the moderate deviations regime.

Vincent Tan (NUS)

Illustration of the Erasure Option

Decoding with an erasure option

Ð

DQC

Result for Erasure Option

Theorem

Let the message size grow as

$$\log M_n = n(C - \rho_n)$$

where

$$\rho_n \ge 0, \quad \rho_n \to 0, \quad n\rho_n^2 \to \infty.$$

Result for Erasure Option

Theorem

Let the message size grow as

$$\log M_n = n(C - \rho_n)$$

where

$$\rho_n \ge 0, \quad \rho_n \to 0, \quad n\rho_n^2 \to \infty.$$

There exists a sequence of $(n, M_n, \varepsilon_n, \varepsilon'_n, T)$ -streaming codes with the erasure option such that

$$\frac{\overline{\lim}}{n \to \infty} \frac{1}{n \rho_n^2} \log \varepsilon_n \le -\frac{T(1-\gamma)^2}{2V}$$
$$\overline{\lim}_{n \to \infty} \frac{1}{n \rho_n} \log \varepsilon'_n \le -T\gamma$$

for any $0 < \gamma < 1$.

Vincent Tan (NUS)

The undetected error probability is

$$\varepsilon_n \le \exp\left\{-n\rho_n^2 \cdot \frac{T(1-\gamma)^2}{2V} + o(n\rho_n^2)\right\}$$

and the total error probability is

$$\varepsilon'_n \le \exp\left\{-n\rho_n \cdot T\gamma + o(n\rho_n)\right\}$$

The undetected error probability is

$$\varepsilon_n \le \exp\left\{-n\rho_n^2 \cdot \frac{T(1-\gamma)^2}{2V} + o(n\rho_n^2)\right\}$$

and the total error probability is

$$\varepsilon'_n \leq \exp\left\{-n\rho_n \cdot T\gamma + o(n\rho_n)\right\}$$

 Total error probability is much larger than undetected error probability

The undetected error probability is

$$\varepsilon_n \le \exp\left\{-n\rho_n^2 \cdot \frac{T(1-\gamma)^2}{2V} + o(n\rho_n^2)\right\}$$

and the total error probability is

$$\varepsilon'_n \leq \exp\left\{-n\rho_n \cdot T\gamma + o(n\rho_n)\right\}$$

- Total error probability is much larger than undetected error probability
- When T = 1, this reduces to Theorem 1 in Hayashi-T. (Dec. 2015)

The undetected error probability is

$$\varepsilon_n \le \exp\left\{-n\rho_n^2 \cdot \frac{T(1-\gamma)^2}{2V} + o(n\rho_n^2)\right\}$$

and the total error probability is

$$\varepsilon'_n \leq \exp\left\{-n\rho_n \cdot T\gamma + o(n\rho_n)\right\}$$

- Total error probability is much larger than undetected error probability
- When T = 1, this reduces to Theorem 1 in Hayashi-T. (Dec. 2015)
- With T > 1, streaming boosts both exponents by a factor of T

■ An (n, M, ε, T)-streaming code with an average delay constraint is the same as the usual streaming code except that

∃ ► 4 Ξ

< 47 ▶

- An (n, M, ε, T)-streaming code with an average delay constraint is the same as the usual streaming code except that
 - 1 the sequence of decoding functions

$$\psi_k:\mathcal{Y}^{kn}
ightarrow(\mathcal{G}\cup\{0\})^k$$

∃ ► < ∃</p>

■ An (n, M, ε, T)-streaming code with an average delay constraint is the same as the usual streaming code except that

1 the sequence of decoding functions

$$\psi_k:\mathcal{Y}^{kn} o(\mathcal{G}\cup\{0\})^k$$

2 the average error probability is upper bounded as

$$\lim_{N\to\infty}\frac{1}{N}\sum_{k=1}^{N}\Pr(\hat{G}_{k+D_k+1}\neq G_k)\leq\varepsilon$$

where $D_k := \min\{d \in \mathbb{N} : \hat{G}_{k+d-1,k} \neq 0\}$ denotes the random decoding delay of the *k*-th message and

< ロト < 同ト < ヨト < ヨト

■ An (n, M, ε, T)-streaming code with an average delay constraint is the same as the usual streaming code except that

1 the sequence of decoding functions

$$\psi_k: \mathcal{Y}^{kn} \to (\mathcal{G} \cup \{0\})^k$$

2 the average error probability is upper bounded as

$$\lim_{N\to\infty}\frac{1}{N}\sum_{k=1}^{N}\Pr(\hat{G}_{k+D_k+1}\neq G_k)\leq\varepsilon$$

where $D_k := \min\{d \in \mathbb{N} : \hat{G}_{k+d-1,k} \neq 0\}$ denotes the random decoding delay of the *k*-th message and

3 the average delay satisfies

$$\overline{\lim_{N\to\infty}}\sum_{k=1}^N \frac{\mathbb{E}[D_k]}{N} \leq T.$$

イロト イポト イヨト イヨト

Result for Decoding with Variable Delay

Theorem

Let the message size grow as

$$\log M_n = n(C - \rho_n)$$

where

$$\rho_n \ge 0, \quad \rho_n \to 0, \quad n\rho_n^2 \to \infty.$$

3

Sac

< (17) × <

∃ ► < ∃</p>

Result for Decoding with Variable Delay

Theorem

Let the message size grow as

$$\log M_n = n(C - \rho_n)$$

where

$$\rho_n \ge 0, \quad \rho_n \to 0, \quad n\rho_n^2 \to \infty.$$

There exists a sequence of $(n, M_n, \varepsilon_n, T_n)$ -streaming codes with average delay constraint such that

$$\lim_{n \to \infty} T_n = T$$
$$\overline{\lim_{n \to \infty} \frac{1}{n\rho_n} \log \varepsilon_n} \le -T$$

Vincent Tan (NUS)

・ 同 ト ・ ヨ ト ・ ヨ ト

For block coding with one-bit feedback (ARQ), Forney (1968) showed that the reliability function can be significantly improved

- For block coding with one-bit feedback (ARQ), Forney (1968) showed that the reliability function can be significantly improved
- Without variable delay,

 $\varepsilon_n \leq \exp(-\Theta(n\rho_n^2))$

- For block coding with one-bit feedback (ARQ), Forney (1968) showed that the reliability function can be significantly improved
- Without variable delay,

$$\varepsilon_n \leq \exp(-\Theta(n\rho_n^2))$$

With variable delay

$$\varepsilon_n \leq \exp(-n\rho_n T + o(n\rho_n))$$

- For block coding with one-bit feedback (ARQ), Forney (1968) showed that the reliability function can be significantly improved
- Without variable delay,

$$\varepsilon_n \leq \exp(-\Theta(n\rho_n^2))$$

With variable delay

$$\varepsilon_n \leq \exp(-n\rho_n T + o(n\rho_n))$$

A significant gain in the can be achieved in the moderate deviations regime with streaming and variable delay without feedback

1 Background and Streaming Setup

- 2 Achievability Results and Proof Sketches
- 3 Achievability Extensions
- 4 Converse Result and the Proof Sketch

5 Conclusion and an Announcement

To derive lower bounds to error probability, we consider a slightly different setup.

∃ ► 4 Ξ

I > <
 I >
 I

- To derive lower bounds to error probability, we consider a slightly different setup.
- An $(n, M, \varepsilon, T, S)$ -streaming code consists of
 - **1** a sequence of messages $\{G_k\}_{k=1}^{S}$ each uniformly distributed over $\mathcal{G} = [1:M]$
 - 2 a sequence of encoding functions

$$\phi_k : \mathcal{G}^{\min\{k,S\}} \to \mathcal{X}^n \quad \text{for} \quad k \in [1:S+T-1]$$

3 a sequence of decoding functions

$$\psi_k: \mathcal{Y}^{(k+T-1)n} \to \mathcal{G}, \text{ for } k \in [1:S]$$

s.t. the maximum error probability over all S msgs satisfies

$$\max_{k\in[1:S]}\Pr(\hat{G}_k\neq G_k)\leq\varepsilon.$$

T = 2 and S = 5. A total of five msges (S = 5) are sequentially encoded and are sequentially decoded after the delay of two blocks (T = 2).

DQC

∃ ► < ∃</p>

I > <
 I >
 I

T = 2 and S = 5. A total of five msges (S = 5) are sequentially encoded and are sequentially decoded after the delay of two blocks (T = 2).

Fundamental limit on error probability

 $\varepsilon^*(n, M, T, S) := \min\{\varepsilon : \exists an (n, M, \varepsilon, T, S) \text{-streaming code}\}$

Vincent Tan (NUS)

Sac

The 16 at 16

Theorem (Lee-T.-Khisti (2016))

For an output symmetric DMC with V > 0, consider sequences M_n and S_n such that

$$\log M_n = n(C - n^{-t}), \quad with \quad 0 < t < 1/3,$$

and

$$S_n = \omega(n^t) \cap \exp(o(n^{1-2t})).$$

・ 同 ト ・ ヨ ト ・ ヨ

590

Theorem (Lee-T.-Khisti (2016))

For an output symmetric DMC with V > 0, consider sequences M_n and S_n such that

$$\log M_n = n(C - n^{-t}), \quad with \quad 0 < t < 1/3,$$

and

Тł

$$S_n = \omega(n^t) \cap \exp(o(n^{1-2t})).$$
 Here, $\lim_{n \to \infty} \frac{1}{n^{1-2t}} \log \varepsilon^*(n, M_n, T, S_n) = -\frac{T}{2V}$

∃ ► < ∃</p>

< 47 ▶

Theorem (Lee-T.-Khisti (2016))

For an output symmetric DMC with V > 0, consider sequences M_n and S_n such that

$$\log M_n = n(C - n^{-t}), \quad with \quad 0 < t < 1/3,$$

and

T

$$S_n = \omega(n^t) \cap \exp(o(n^{1-2t})).$$
 then
$$\lim_{n\to\infty} \frac{1}{n^{1-2t}}\log \varepsilon^*(n,M_n,T,S_n) = -\frac{T}{2V}$$

Matches previous moderate deviations achievability result

∃ ► < ∃ ►</p>

< 🗇 🕨 🔸

$$\lim_{n\to\infty}\frac{1}{n^{1-2t}}\log\varepsilon^*(n,M_n,T,S_n)=-\frac{T}{2V}$$

Ð

DQC

I > <
 I >
 I

$$\lim_{n\to\infty}\frac{1}{n^{1-2t}}\log\varepsilon^*(n,M_n,T,S_n)=-\frac{T}{2V}$$

Need to restrict to output symmetric channels because

$$E^+(R;W) = E_{sp}(R;W)$$

for output symmetric channels, where

$$E^{+}(R;W) := \min_{V:C(V) \le R} \max_{P} D(V||W|P)$$
(Haroutunian)
$$E_{sp}(R;W) := \max_{P} \min_{V:I(P,V) \le R} D(V||W|P)$$
(Sphere Packing)

$$\lim_{n\to\infty}\frac{1}{n^{1-2t}}\log\varepsilon^*(n,M_n,T,S_n)=-\frac{T}{2V}$$

Need to restrict to output symmetric channels because

$$E^+(R;W) = E_{sp}(R;W)$$

for output symmetric channels, where

$$E^{+}(R;W) := \min_{V:C(V) \le R} \max_{P} D(V||W|P)$$
(Haroutunian)
$$E_{sp}(R;W) := \max_{P} \min_{V:I(P,V) \le R} D(V||W|P)$$
(Sphere Packing)

■ Range 0 < t < 1/3 is more restrictive than the usual 0 < t < 1/2

$$\lim_{n\to\infty}\frac{1}{n^{1-2t}}\log\varepsilon^*(n,M_n,T,S_n)=-\frac{T}{2V}$$

Need to restrict to output symmetric channels because

$$E^+(R;W) = E_{sp}(R;W)$$

for output symmetric channels, where

$$E^{+}(R;W) := \min_{V:C(V) \le R} \max_{P} D(V||W|P)$$
(Haroutunian)
$$E_{sp}(R;W) := \max_{P} \min_{V:I(P,V) \le R} D(V||W|P)$$
(Sphere Packing)

■ Range 0 < t < 1/3 is more restrictive than the usual 0 < t < 1/2

■ Range of $S_n = \omega(n^t) \cap \exp(o(n^{1-2t}))$ is rather extensive

$$\lim_{n\to\infty}\frac{1}{n^{1-2t}}\log\varepsilon^*(n,M_n,T,S_n)\geq -\frac{T}{2V}$$

 Ð

DQC

$$\lim_{n\to\infty}\frac{1}{n^{1-2t}}\log\varepsilon^*(n,M_n,T,S_n)\geq-\frac{T}{2V}$$

Step 1: Assume a feedforward decoder (genie-aided decoder)

< 17 ▶

DQC

$$\lim_{n\to\infty}\frac{1}{n^{1-2t}}\log\varepsilon^*(n,M_n,T,S_n)\geq-\frac{T}{2V}$$

- Step 1: Assume a feedforward decoder (genie-aided decoder)
- Step 2: Lower bound maximal error probability over a certain number of messages S_n^* using an auxiliary channel V_n^*

$$\lim_{n\to\infty}\frac{1}{n^{1-2t}}\log\varepsilon^*(n,M_n,T,S_n)\geq-\frac{T}{2V}$$

- Step 1: Assume a feedforward decoder (genie-aided decoder)
- Step 2: Lower bound maximal error probability over a certain number of messages S_n^* using an auxiliary channel V_n^*
- Step 3: Lower bound error probability of the maximal error message under true channel W using a change-of-measure idea due to Sahai (2008)

Step 1 of the Converse Part

Definition

A feedforward decoder consists of a sequence of decoding function $\psi_k^f: \mathcal{G}^{k-1} \times \mathcal{Y}^{(k+T-1)n} \to \mathcal{G}$ for $k \in [1:S_n]$, i.e.,

$$\psi_k^f(\mathbf{G}^{k-1}, \mathbf{Y}^{k+T-1}) = \hat{G}_k$$

3

イロト イポト イヨト イヨト
Definition

A feedforward decoder consists of a sequence of decoding function $\psi_k^f: \mathcal{G}^{k-1} \times \mathcal{Y}^{(k+T-1)n} \to \mathcal{G}$ for $k \in [1:S_n]$, i.e.,

$$\psi_k^f(\mathbf{G}^{k-1}, \mathbf{Y}^{k+T-1}) = \hat{G}_k$$

Suffices for a feedforward decoder to consider decoding functions that utilize the channel output sequences only in recent T blocks.

3

イロト イポト イヨト イヨト

Definition

A feedforward decoder consists of a sequence of decoding function $\psi_k^f: \mathcal{G}^{k-1} \times \mathcal{Y}^{(k+T-1)n} \to \mathcal{G}$ for $k \in [1:S_n]$, i.e.,

$$\psi_k^f(\mathbf{G}^{k-1}, \mathbf{Y}^{k+T-1}) = \hat{G}_k$$

Suffices for a feedforward decoder to consider decoding functions that utilize the channel output sequences only in recent T blocks.

Lemma

For a feedforward decoder, there exists a sequence of decoding functions $\psi_k^* : \mathcal{G}^{k-1} \times \mathcal{Y}^{Tn} \to \mathcal{G}$ for $k \in [1 : S_n]$, *i.e.*,

 $\psi_k^*(G^{k-1}, \mathbf{Y}_k^{k+T-1}) = \hat{G}_k$ and satisfies $\Pr(G_k \neq \psi_k^*(G^{k-1}, \mathbf{Y}_k^{k+T-1})) \leq \Pr(G_k \neq \psi_k^f(G^{k-1}, \mathbf{Y}^{k+T-1}))$

Let V_n^* be an auxiliary channel defined as

$$V_n^* := \min_{V:C(V) \le R_n - \delta_n} \max_P D(V || W | P)$$

for appropriately chosen $R_n = C - n^{-t}$ and $\delta_n = o(n^{-t})$.

Image: A matrix and a matrix

э

Let V_n^* be an auxiliary channel defined as

$$V_n^* := \min_{V:C(V) \le R_n - \delta_n} \max_P D(V || W | P)$$

for appropriately chosen $R_n = C - n^{-t}$ and $\delta_n = o(n^{-t})$. Then there exists $\delta'_n \approx \delta_n$ s.t. if ψ_k^* is applied to V_n^*

$$\max_{k\in[1:S_n]} \Pr\left(\hat{G}_k \neq G_k\right) \geq \delta'_n.$$

э

< 17 ▶

Let V_n^* be an auxiliary channel defined as

$$V_n^* := \min_{V:C(V) \le R_n - \delta_n} \max_P D(V || W | P)$$

for appropriately chosen $R_n = C - n^{-t}$ and $\delta_n = o(n^{-t})$. Then there exists $\delta'_n \approx \delta_n$ s.t. if ψ_k^* is applied to V_n^*

$$\max_{k\in[1:S_n]} \Pr\left(\hat{G}_k \neq G_k\right) \geq \delta'_n.$$

Thus \exists at least a fraction of $\delta'_n/2$ messages s.t.

 $(V_n^*)^{T_n}$ ({bad channel outputs }| cwd given message) $\geq \frac{\delta'_n}{2}$

Step 3 of the Converse Part

Lemma

If for some $x^{Tn} \in \mathcal{X}^{Tn}$ with type $\hat{P}_{x^{Tn}}$,

$$(V_n^*)^{Tn}(\mathcal{A}|x^{Tn}) \geq rac{\delta_n'}{2}, \quad \textit{for some} \quad \mathcal{A} \subset \mathcal{Y}^{Tn},$$

and 0 < t < 1/3,

Ξ.

イロト イポト イヨト イヨト

Step 3 of the Converse Part

Lemma

If for some $x^{Tn} \in \mathcal{X}^{Tn}$ with type $\hat{P}_{x^{Tn}}$,

$$(V_n^*)^{Tn}(\mathcal{A}|x^{Tn}) \geq rac{\delta_n'}{2}, \quad \textit{for some} \quad \mathcal{A} \subset \mathcal{Y}^{Tn},$$

and 0 < t < 1/3, then

$$W^{Tn}(\mathcal{A}|x^{Tn}) \geq \frac{\delta'_n}{4} \exp\left\{-Tn\left(D(V_n^*||W|\hat{P}_{x^{Tn}}) + \eta_n\right)\right\}$$

where $\eta_n = o(n^{-2t})$.

Ξ.

If for some $x^{Tn} \in \mathcal{X}^{Tn}$ with type $\hat{P}_{x^{Tn}}$,

$$(V_n^*)^{Tn}(\mathcal{A}|x^{Tn}) \geq rac{\delta_n'}{2}, \quad \textit{for some} \quad \mathcal{A} \subset \mathcal{Y}^{Tn},$$

and 0 < t < 1/3, then

$$W^{Tn}(\mathcal{A}|x^{Tn}) \geq \frac{\delta'_n}{4} \exp\left\{-Tn\left(D(V_n^*||W|\hat{P}_{x^{Tn}}) + \eta_n\right)\right\}$$

where $\eta_n = o(n^{-2t})$.

Finally approximate

$$\max_{P} D(V_n^* || W | P) = E^+(R_n - \delta_n) = E_{sp}(C - n^{-t} - o(n^{-t})) \le \frac{n^{-2t}}{2V} + o(n^{-2t}).$$

1 Background and Streaming Setup

- 2 Achievability Results and Proof Sketches
- 3 Achievability Extensions
- 4 Converse Result and the Proof Sketch

5 Conclusion and an Announcement

Information-theoretic streaming model with a delay of T blocks for the MD and CL regimes

3

- Information-theoretic streaming model with a delay of T blocks for the MD and CL regimes
- For both regimes, $V \rightarrow \frac{V}{T}$ (approximately for the CL regime)

Sac

- Information-theoretic streaming model with a delay of T blocks for the MD and CL regimes
- For both regimes, $V \rightarrow \frac{V}{T}$ (approximately for the CL regime)
- Joint encoding and decoding of fresh and previous messages

- Information-theoretic streaming model with a delay of T blocks for the MD and CL regimes
- For both regimes, $V \rightarrow \frac{V}{T}$ (approximately for the CL regime)
- Joint encoding and decoding of fresh and previous messages
- Error probabilities associated with the previous messages add up

- Information-theoretic streaming model with a delay of T blocks for the MD and CL regimes
- For both regimes, $V \rightarrow \frac{V}{T}$ (approximately for the CL regime)
- Joint encoding and decoding of fresh and previous messages
- Error probabilities associated with the previous messages add up
- Sequential decoding and truncation of memory if necessary

- Information-theoretic streaming model with a delay of T blocks for the MD and CL regimes
- For both regimes, $V \rightarrow \frac{V}{T}$ (approximately for the CL regime)
- Joint encoding and decoding of fresh and previous messages
- Error probabilities associated with the previous messages add up
- Sequential decoding and truncation of memory if necessary
- Also provided a converse in the MD regime under some conditions

3

∃ ► < ∃ ►</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Information-theoretic streaming model with a delay of T blocks for the MD and CL regimes
- For both regimes, $V \rightarrow \frac{V}{T}$ (approximately for the CL regime)
- Joint encoding and decoding of fresh and previous messages
- Error probabilities associated with the previous messages add up
- Sequential decoding and truncation of memory if necessary
- Also provided a converse in the MD regime under some conditions
- See arXiv 1512.06298 for achievability and arXiv 1604.06848 for the converse

Sac

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Invitation to Beyond IID 2017

NUS National University of Singapore	
ABOUT IMS PEOPLE	PROGRAMS & ACTIVITIES PUBLICATIONS VISITOR INFO CONTACT US LINKS SOLVENIR
Institute for Mathematical Sciences Programs & Activities	
	IMS Home > Programs & Activities > Current and Up-coming
	Beyond I.I.D. in Information Theory
Online registration form Register	(24 - 28 July 2017)
Enquiries	Organizing Committee - Visitors and Participants - Overview - Activities - Venue
Scientific aspects	Organizing Committee
	Co-Chairse Massahita Hayoshi (Nagoya University and National University of Singapore) Massahita Hayoshi University of Singapore)
	Members • Nilingiana Datta (Cambridge University) Albert Guilden Fabresgas (Universitat Pompeu Fabra) • Andreas Witting (Universitat Authorma de Barcelona) Andreas Witting (Universitat Authorma de Barcelona)
	Visitors and Participants
	Oversees visitors Local visitors Graduat students

Beyond IID 2017 will be at NUS, Singapore

Vincent Tan (NUS)

1

Sac

・ロト ・ 四ト ・ ヨト ・ ヨト