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Block-Coding Formalism

Encoder DecoderW (y|x)Xn Y n

G ∼ Unif[1 : M ] Ĝ

Block channel coding

Consider a discrete memoryless channel W : X → Y

Fundamental problem in information theory is the interplay
between n, R and ε

Shannon (1948) showed that the maximum rate of communication
with ε→ 0 as n→∞ is

C(W) = max
PX

I(X; Y) = max
PX

I(PX,W)
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Refined Asymptotics

Regime Large deviations Moderate deviations Central limit
[Gallager ’65] [Altüg, Wagner ’14] [Strassen ’62]

[Shannon et al. ’67] [Polyanskiy, Verdú ’10] [Hayashi ’09]
[Polyanskiy et al. ’10]

Code R < C R = C − ρn R ≈ C −
√

V
n Q−1(ε)

Rate ρn → 0 and nρ2
n →∞

Error Exponential Subexponential Non-vanishing
Prob. ε ≤ exp{−nEr(R)} ε ≈ exp

{
− nρ2

n
2V

}
ε > 0
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n
2V
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(
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)
Channel dispersion

V = V(W) = min
PX :I(PX ,W)=C(W)

var(i(X; Y))

Smaller dispersion is better.
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Streaming Communications

Streaming Services
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An Information-Theoretic Model

G1 ∈ [1 : M ] G3 G4 G5

Ĝ2 Ĝ3

G2

Ĝ1

T = 2 block delays

Encoder

Decoder

Channel

X1

Y1

Wn(y|x)
X2

Y2

X3

Y3

X4

Y4

Wn(y|x) Wn(y|x) Wn(y|x)

Streaming setup

An (n,M, ε,T)-streaming code consists of
1 a sequence of messages {Gk}k≥1 each uniform over G = [1 : M];
2 a sequence of encoders φk : Gk → X n s.t. φk(Gk) = Xk;
3 a sequence of decoders ψk : Y(k+T−1)n → G s.t. ψk(Yk+T−1) = Ĝk.

that satisfies

lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk)

N
≤ ε.
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Streaming Setup

G1 ∈ [1 : M ] G3 G4 G5

Ĝ2 Ĝ3

G2

Ĝ1

T = 2 block delays

Encoder
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Channel

X1

Y1

Wn(y|x)
X2

Y2

X3

Y3

X4

Y4

Wn(y|x) Wn(y|x) Wn(y|x)

Streaming setup

Inherent tension in utilizing a block:
Use codeword only for fresh msg vs. also for previous msges?
Time sharing?

For block fading channels with constant fading gain for each block,
this attains the optimal diversity-multiplexing tradeoff [Khisti, Draper
’14]
No gain in our setup due to the memoryless nature of Wn

Joint encoding?
Does improve
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First Main Result (Achievability)

Theorem (Lee-T.-Khisti (2015))

Let the message size grow as

log Mn = n(C − ρn)

where
ρn ≥ 0, ρn → 0, nρ2

n →∞.

There exists a sequence of (n,Mn, εn,T)-streaming codes such that

lim
n→∞

1
nρ2

n
log εn ≤ −

T
2V
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Interpretation of Moderate Deviations Result

lim
n→∞

1
nρ2

n
log εn ≤ −

T
2V

In block coding,

lim
n→∞

1
nρ2

n
log ε∗n = − 1

2V

Hence, moderate deviations constant improves (increases) by a
factor of T

Dispersion V is reduced by a factor of T
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Second Main Result (Achievability)

Theorem (Lee-T.-Khisti (2015))

For any L > 0, let the message size grow as

log Mn = n
(

C − L√
n

)
.

Then there exists a sequence of (n,Mn, εn,T)-streaming codes s.t.

εn . c · Q
(√

T
V

L

)
c ≈ 1.

In block coding,

lim
n→∞

ε∗n = Q
(

L√
V

)
Dispersion V is approx. reduced by a factor of T
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Summary of Main Results

Regime Moderate deviations Central limit
Operating rate R = C − ρn R = C − L√

n
ρn → 0 and nρ2

n →∞ L > 0

Error Prob. ε ≈ exp
{
−Tnρ2

n
2V

}
ε ≈ Q

(
L
√

T
V

)
V → V/T

Encoding Joint encoding of previous and fresh msges
Decoding Sequential decoding of previous and new msges

Accumulation of error probabilities
Key innovation Non-asymptotic Truncated memory

moderate deviations theorem structure
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Recap of Coding Scheme for Block Coding

Codebook generation: Fix dispersion-achieving PX. For each
message g ∈ [1 : M], generate x(g) indep. according to Pn

X.

Encoding: If g is the message, send x(g)

Decoding: If there exists a unique g ∈ [1 : M] such that

i(x(g); y) > log M, where i(x; y) = log
Wn(y|x)

(PXW)n(y)

let Ĝ = g.

Error analysis:
ε ≤ Pr(E1) + Pr(E2)

where

E1 := {i(X(G); Y) ≤ log M}
E2 := {∃ g̃ 6= G s.t. i(X(g̃); Y) > log M}

Note that E1 is dominant in both regimes
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Analysis of Error Probability

Probability of error

εn ≈ Pr (i(X(G); Y) ≤ M) = Pr

(
n∑

l=1

Zl ≤ log M

)
where

Zl := log
W(Yl|Xl)

PXW(Yl)
, l = 1, . . . , n

are i.i.d. random variables.

Note that for all l ∈ [1 : n],

E[Zl] = C and var[Zl] = V

Under various regimes, analyze

Pr

(
n∑

l=1

Zl ≤ log M

)
.
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Analysis of Error: Moderate Deviations Regime

Theorem (Moderate Deviations Theorem (Dembo and Zeitouni))

Under regularity conditions on Zl, and log M = n(C − ρn),

lim
n→∞

1
nρ2

n
log Pr

(
n∑

l=1

Zl ≤ log M

)
= − 1

2V
.

Thus, we have

lim
n→∞

1
nρ2

n
log εn ≤ −

1
2V
.

However, note that the standard MD theorem is asymptotic in
nature

We need a non-asymptotic version in the streaming scenario
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Analysis of Error: Central Limit Regime

Theorem (Berry-Esseen Theorem)

Under regularity conditions on Zl, and

log M = nC −√nL,

we have

Pr

(
n∑

l=1

Zl ≤ log M

)
= Q

(
L√
V

)
± τ√

n
.

where τ is a constant (depending on Z1).

Thus, we have

εn ≤ Q
(

L√
V

)
+ O

(
1√
n

)
.

However, note that the Berry-Esseen residual terms hurt us in the
streaming setup
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[Streaming setup] Moderate deviations regime

G1 ∈ [1 : M ] G3 G4 G5

Ĝ2 Ĝ3

G2

Ĝ1

T = 2 block delays

Encoder

Decoder

Channel

X1

Y1

Wn(y|x)
X2

Y2

X3

Y3

X4

Y4

Wn(y|x) Wn(y|x) Wn(y|x)

Consider block delay T = 2.

Codebook generation for block k: For each gk ∈ [1 : M]k, generate xk(gk)
in an i.i.d. manner according to PX that achieves the dispersion.

Encoding at block k: Send xk(G1, · · · ,Gk).

Decoding at block k + 1:
Target message: Gk

Due to joint encoding, Gk is in error if any of Ĝ1, · · · , Ĝk−1 is in error.
Sequentially decode G1, · · · ,Gk.
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Ĝ2 Ĝ3
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[Streaming Setup] Moderate Deviations Regime
G1 ∈ [1 : M ] G3 G4 G5

Ĝ2 Ĝ3

G2

Ĝ1

T = 2 block delays

Encoder

Decoder

Channel

X1

Y1

Wn(y|x)
X2

Y2

X3

Y3

X4

Y4

Wn(y|x) Wn(y|x) Wn(y|x)

T = 2: At the end block 3, sequentially decode G1 and G2.

Re-decode G1: Choose Ĝ′
1 as a unique g1 ∈ [1 : M] such that

i([x1(g1) x2(g1, g2) x3(g1, g2, g3)], [y1 y2 y3]) > 3 log M, for some g2, g3

Decode G2: Choose Ĝ2 as a unique g2 ∈ [1 : M] such that

i([x2(Ĝ′
1, g2) x3(Ĝ′

1, g2, g3)], [y2 y3]) > 2 log M for some g3

Pr(Ĝ2 6= G2) ≤ Pr((Ĝ′
1 6= G1) ∪ (Ĝ2 6= G2))

≈ Pr(
∑3n

l=1 Zl ≤ 3 log M) + Pr(
∑2n

l=1 Zl ≤ 2 log M)

For all k ∈ N,

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 19 / 43



[Streaming Setup] Moderate Deviations Regime
G1 ∈ [1 : M ] G3 G4 G5
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≈ Pr(
∑3n

l=1 Zl ≤ 3 log M) + Pr(
∑2n

l=1 Zl ≤ 2 log M)

For all k ∈ N,

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 19 / 43



[Streaming Setup] Moderate Deviations Regime
G1 ∈ [1 : M ] G3 G4 G5
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Pr(Ĝk 6= Gk) ≤
∞∑
j=2

Pr

(
jn∑

l=1

Zl ≤ j log M

)
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[Streaming Analysis] Moderate Deviations Regime

For all k ∈ N,

Pr(Ĝk 6= Gk) ≤
∞∑

j=T

Pr

( jn∑
l=1

Zl ≤ j log M

)

However, recall that the standard moderate deviations theorem is
asymptotic, i.e.,

lim
n→∞

1
nρ2

n
log Pr

( jn∑
l=1

Zl ≤ j log M

)
≤ − j

2V

Cannot “exchange limits”

Need to develop a non-asymptotic upper bound for moderate
deviations theorem [Altüg and Wagner (2014)]
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[Streaming Analysis] Moderate Deviations Regime

Lemma

Under regularity conditions on Zl, for any positive ρn satisfying ρn → 0
and nρ2

n →∞,

Pr

(
1
n

n∑
l=1

Zl ≥ ρn

)
≤ exp

{
−n
(
ρ2

n

2σ2 −
ρ3

n

6σ6 K
)}

where K is a constant that only depends on Z1.

Using the lemma, we conclude that for all k ∈ N,

lim
n→∞

1
nρ2

n
log

[
lim

n→∞
1
N

N∑
k=1

Pr(Ĝk 6= Gk)

]
≤ − T

2V
.
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[Streaming Analysis] Central limit regime
For all k ∈ N,

Pr(Ĝk 6= Gk) ≤
∞∑

j=T

Pr

(
jn∑

l=1

Zl ≤ j log M

)

=

∞∑
j=T

Pr

(
jn∑

l=1

Zl ≤ j(nR− L
√

n)

)

≤
∞∑

j=T

(
Q
(√

jL√
V

)
+

τ√
jn

)

≤
∞∑

j=T

Q
(√

jL√
V

)
+

∞∑
j=T

τ√
jn

≤ c · Q
(√

TL√
V

)
+

∞∑
j=T

τ√
jn

c ≈ 1 for a wide range of channel parameters.

Compared to the block coding case, n→ jn, L→
√

jL.

The remainder terms from the Berry-Esseen theorem diverge!
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[Streaming Analysis] Truncated Memory

block index

7

m
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sa
ge
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P(1)

P(2)

P(3)

2
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8

71 2 3 4 5 6 8 11121314151617181920

11
12
13
14
15
16
17
18
19
20

Memory structure with A = 9, B = 4

A,B: Max/Min memories

Decode all msgs in the previous
group and all previous msgs in
the current group

Example of A = 9, B = 4, T = 2
To decode G17 at the end of
block 18, decodes G7, · · · ,G17

by considering codewords in
blocks 10, · · · , 18.

Judiciously choose A and B as
functions of n to balance

Rate penalty ( B
A ↓)

Contributions to error
probability
Remainder terms (A ↓)
Previous group (B ↑)
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Extension 1: Erasure Option

An (n,M, ε, ε′,T)-streaming code with an erasure option is the
same as the usual streaming code except that

1 the decoding functions

ψk : Y(k+T−1)n → G ∪ {0}
where 0 denotes the erasure option

2 the total error probability does not exceed ε, i.e.,

lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk)

N
≤ ε.

3 the erasure error probability does not exceed ε′, i.e.,

lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk, Ĝk 6= 0)

N
≤ ε′.

Seek upper bounds on ε and ε′ when M is the moderate
deviations regime.
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Pr(Ĝk 6= Gk)

N
≤ ε.

3 the erasure error probability does not exceed ε′, i.e.,

lim sup
N→∞

N∑
k=1

Pr(Ĝk 6= Gk, Ĝk 6= 0)
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Illustration of the Erasure Option

D1
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D3

DM
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Decoding with an erasure option
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Result for Erasure Option

Theorem

Let the message size grow as

log Mn = n(C − ρn)

where
ρn ≥ 0, ρn → 0, nρ2

n →∞.

There exists a sequence of (n,Mn, εn, ε
′
n,T)-streaming codes with the

erasure option such that

lim
n→∞

1
nρ2

n
log εn ≤ −

T(1− γ)2

2V

lim
n→∞

1
nρn

log ε′n ≤ −Tγ

for any 0 < γ < 1.
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Discussion of Result for Erasure Option

The undetected error probability is

εn ≤ exp
{
−nρ2

n ·
T(1− γ)2

2V
+ o(nρ2

n)

}
and the total error probability is

ε′n ≤ exp {−nρn · Tγ + o(nρn)}

Total error probability is much larger than undetected error
probability

When T = 1, this reduces to Theorem 1 in Hayashi-T. (Dec. 2015)

With T > 1, streaming boosts both exponents by a factor of T
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Extension 2: Decoding with Variable Delay

An (n,M, ε,T)-streaming code with an average delay constraint is
the same as the usual streaming code except that

1 the sequence of decoding functions

ψk : Ykn → (G ∪ {0})k

2 the average error probability is upper bounded as

lim
N→∞

1
N

N∑
k=1

Pr(Ĝk+Dk+1 6= Gk) ≤ ε

where Dk := min{d ∈ N : Ĝk+d−1,k 6= 0} denotes the random
decoding delay of the k-th message and

3 the average delay satisfies

lim
N→∞

N∑
k=1

E[Dk]

N
≤ T.
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Result for Decoding with Variable Delay

Theorem

Let the message size grow as

log Mn = n(C − ρn)

where
ρn ≥ 0, ρn → 0, nρ2

n →∞.

There exists a sequence of (n,Mn, εn,Tn)-streaming codes with
average delay constraint such that

lim
n→∞

Tn = T

lim
n→∞

1
nρn

log εn ≤ −T
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Discussion of Result for Decoding with Variable Delay

For block coding with one-bit feedback (ARQ), Forney (1968)
showed that the reliability function can be significantly improved

Without variable delay,

εn ≤ exp(−Θ(nρ2
n))

With variable delay

εn ≤ exp(−nρnT + o(nρn))

A significant gain in the can be achieved in the moderate
deviations regime with streaming and variable delay without
feedback

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 31 / 43



Discussion of Result for Decoding with Variable Delay

For block coding with one-bit feedback (ARQ), Forney (1968)
showed that the reliability function can be significantly improved

Without variable delay,

εn ≤ exp(−Θ(nρ2
n))

With variable delay

εn ≤ exp(−nρnT + o(nρn))

A significant gain in the can be achieved in the moderate
deviations regime with streaming and variable delay without
feedback

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 31 / 43



Discussion of Result for Decoding with Variable Delay

For block coding with one-bit feedback (ARQ), Forney (1968)
showed that the reliability function can be significantly improved

Without variable delay,

εn ≤ exp(−Θ(nρ2
n))

With variable delay

εn ≤ exp(−nρnT + o(nρn))

A significant gain in the can be achieved in the moderate
deviations regime with streaming and variable delay without
feedback

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 31 / 43



Discussion of Result for Decoding with Variable Delay

For block coding with one-bit feedback (ARQ), Forney (1968)
showed that the reliability function can be significantly improved

Without variable delay,

εn ≤ exp(−Θ(nρ2
n))

With variable delay

εn ≤ exp(−nρnT + o(nρn))

A significant gain in the can be achieved in the moderate
deviations regime with streaming and variable delay without
feedback

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 31 / 43



Outline

1 Background and Streaming Setup

2 Achievability Results and Proof Sketches

3 Achievability Extensions

4 Converse Result and the Proof Sketch

5 Conclusion and an Announcement

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 32 / 43



A Slightly Different Streaming Setup

To derive lower bounds to error probability, we consider a slightly
different setup.

An (n,M, ε,T, S)-streaming code consists of

1 a sequence of messages {Gk}S
k=1 each uniformly distributed over

G = [1 : M]

2 a sequence of encoding functions

φk : Gmin{k,S} → X n for k ∈ [1 : S + T − 1]

3 a sequence of decoding functions

ψk : Y(k+T−1)n → G, for k ∈ [1 : S]

s.t. the maximum error probability over all S msgs satisfies

max
k∈[1:S]

Pr(Ĝk 6= Gk) ≤ ε.
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A Slightly Different Streaming Setup

T = 2 and S = 5. A total of five msges (S = 5) are sequentially encoded and
are sequentially decoded after the delay of two blocks (T = 2).

Fundamental limit on error probability

ε∗(n,M,T, S) := min{ε : ∃ an (n,M, ε,T, S)-streaming code}
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Main Converse Result

Theorem (Lee-T.-Khisti (2016))

For an output symmetric DMC with V > 0, consider sequences Mn and
Sn such that

log Mn = n(C − n−t), with 0 < t < 1/3,

and
Sn = ω(nt) ∩ exp(o(n1−2t)).

Then
lim

n→∞
1

n1−2t log ε∗(n,Mn,T, Sn) = − T
2V

Matches previous moderate deviations achievability result
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Discussion of Main Converse Result

lim
n→∞

1
n1−2t log ε∗(n,Mn,T, Sn) = − T

2V

Need to restrict to output symmetric channels because

E+(R; W) = Esp(R; W)

for output symmetric channels, where

E+(R; W) := min
V:C(V)≤R

max
P

D(V‖W|P) (Haroutunian)

Esp(R; W) := max
P

min
V:I(P,V)≤R

D(V‖W|P) (Sphere Packing)

Range 0 < t < 1/3 is more restrictive than the usual 0 < t < 1/2

Range of Sn = ω(nt) ∩ exp(o(n1−2t)) is rather extensive

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 36 / 43



Discussion of Main Converse Result

lim
n→∞

1
n1−2t log ε∗(n,Mn,T, Sn) = − T

2V

Need to restrict to output symmetric channels because

E+(R; W) = Esp(R; W)

for output symmetric channels, where

E+(R; W) := min
V:C(V)≤R

max
P

D(V‖W|P) (Haroutunian)

Esp(R; W) := max
P

min
V:I(P,V)≤R

D(V‖W|P) (Sphere Packing)

Range 0 < t < 1/3 is more restrictive than the usual 0 < t < 1/2

Range of Sn = ω(nt) ∩ exp(o(n1−2t)) is rather extensive

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 36 / 43



Discussion of Main Converse Result

lim
n→∞

1
n1−2t log ε∗(n,Mn,T, Sn) = − T

2V

Need to restrict to output symmetric channels because

E+(R; W) = Esp(R; W)

for output symmetric channels, where

E+(R; W) := min
V:C(V)≤R

max
P

D(V‖W|P) (Haroutunian)

Esp(R; W) := max
P

min
V:I(P,V)≤R

D(V‖W|P) (Sphere Packing)

Range 0 < t < 1/3 is more restrictive than the usual 0 < t < 1/2

Range of Sn = ω(nt) ∩ exp(o(n1−2t)) is rather extensive

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 36 / 43



Discussion of Main Converse Result

lim
n→∞

1
n1−2t log ε∗(n,Mn,T, Sn) = − T

2V

Need to restrict to output symmetric channels because

E+(R; W) = Esp(R; W)

for output symmetric channels, where

E+(R; W) := min
V:C(V)≤R

max
P

D(V‖W|P) (Haroutunian)

Esp(R; W) := max
P

min
V:I(P,V)≤R

D(V‖W|P) (Sphere Packing)

Range 0 < t < 1/3 is more restrictive than the usual 0 < t < 1/2

Range of Sn = ω(nt) ∩ exp(o(n1−2t)) is rather extensive

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 36 / 43



Proof Ideas for the Converse Part

lim
n→∞

1
n1−2t log ε∗(n,Mn,T, Sn) ≥ − T

2V

Step 1: Assume a feedforward decoder (genie-aided decoder)

Step 2: Lower bound maximal error probability over a certain
number of messages S∗n using an auxiliary channel V∗n

Step 3: Lower bound error probability of the maximal error
message under true channel W using a change-of-measure idea
due to Sahai (2008)
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Step 1 of the Converse Part

Definition

A feedforward decoder consists of a sequence of decoding function
ψf

k : Gk−1 × Y(k+T−1)n → G for k ∈ [1 : Sn], i.e.,

ψf
k(Gk−1,Yk+T−1) = Ĝk

Suffices for a feedforward decoder to consider decoding functions that
utilize the channel output sequences only in recent T blocks.

Lemma

For a feedforward decoder, there exists a sequence of decoding
functions ψ∗k : Gk−1 × YTn → G for k ∈ [1 : Sn], i.e.,

ψ∗k (Gk−1,Yk+T−1
k ) = Ĝk and satisfies

Pr(Gk 6= ψ∗k (Gk−1,Yk+T−1
k )) ≤ Pr(Gk 6= ψf

k(Gk−1,Yk+T−1))
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Step 2 of the Converse Part

Lemma

Let V∗n be an auxiliary channel defined as

V∗n := min
V:C(V)≤Rn−δn

max
P

D(V‖W|P)

for appropriately chosen Rn = C − n−t and δn = o(n−t).

Then there
exists δ′n ≈ δn s.t. if ψ∗k is applied to V∗n

max
k∈[1:Sn]

Pr
(

Ĝk 6= Gk

)
≥ δ′n.

Thus ∃ at least a fraction of δ′n/2 messages s.t.

(V∗n )Tn ({bad channel outputs }| cwd given message) ≥ δ′n
2
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Step 3 of the Converse Part

Lemma

If for some xTn ∈ X Tn with type P̂xTn ,

(V∗n )Tn(A|xTn) ≥ δ′n
2
, for some A ⊂ YTn,

and 0 < t < 1/3,

then

WTn(A|xTn) ≥ δ′n
4

exp
{
−Tn

(
D(V∗n‖W|P̂xTn) + ηn

)}
where ηn = o(n−2t).

Finally approximate

max
P

D(V∗n‖W|P) = E+(Rn− δn) = Esp(C− n−t− o(n−t)) ≤ n−2t

2V
+ o(n−2t).

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 40 / 43



Step 3 of the Converse Part

Lemma

If for some xTn ∈ X Tn with type P̂xTn ,

(V∗n )Tn(A|xTn) ≥ δ′n
2
, for some A ⊂ YTn,

and 0 < t < 1/3, then

WTn(A|xTn) ≥ δ′n
4

exp
{
−Tn

(
D(V∗n‖W|P̂xTn) + ηn

)}
where ηn = o(n−2t).

Finally approximate

max
P

D(V∗n‖W|P) = E+(Rn− δn) = Esp(C− n−t− o(n−t)) ≤ n−2t

2V
+ o(n−2t).

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 40 / 43



Step 3 of the Converse Part

Lemma

If for some xTn ∈ X Tn with type P̂xTn ,

(V∗n )Tn(A|xTn) ≥ δ′n
2
, for some A ⊂ YTn,

and 0 < t < 1/3, then

WTn(A|xTn) ≥ δ′n
4

exp
{
−Tn

(
D(V∗n‖W|P̂xTn) + ηn

)}
where ηn = o(n−2t).

Finally approximate

max
P

D(V∗n‖W|P) = E+(Rn− δn) = Esp(C− n−t− o(n−t)) ≤ n−2t

2V
+ o(n−2t).

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 40 / 43



Outline

1 Background and Streaming Setup

2 Achievability Results and Proof Sketches

3 Achievability Extensions

4 Converse Result and the Proof Sketch

5 Conclusion and an Announcement

Vincent Tan (NUS) Streaming Communication Beyond IID, 2016 41 / 43



Summary

Information-theoretic streaming model with a delay of T blocks for
the MD and CL regimes

For both regimes, V → V
T (approximately for the CL regime)

Joint encoding and decoding of fresh and previous messages

Error probabilities associated with the previous messages add up

Sequential decoding and truncation of memory if necessary

Also provided a converse in the MD regime under some conditions

See arXiv 1512.06298 for achievability and arXiv 1604.06848 for
the converse
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Invitation to Beyond IID 2017

Beyond IID 2017 will be at NUS, Singapore
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