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Nonnegative Matrix Factorization (Lee and Seung, 1999)

Given a nonnegative data matrix V ∈ RF×N
+ , approximate V as

V ≈WH

where W ∈ RF×K
+ (basis) and H ∈ RK×N

+ (coefficient) matrices.

One typically solves

min
W,H≥0

D(V |WH) e.g. D(V |WH) =
∥∥V−WH

∥∥2
F,

where A ≥ 0 means that all the entries of A are nonnegative.
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Motivation and Main Contribution

Adversarial training (Goodfellow et al., 2015; Madry et al., 2018;
Tramèr et al., 2018)

min
θ∈Θ

max
x′:‖x−x′‖≤ε︸ ︷︷ ︸

perturbation of features

1
n

n∑
i=1

Loss
(

fθ(x′i), yi
)
.

Improve the predictive performance of NMF using adversarial
training for matrix completion tasks.

Derive efficient algorithms for updating the adversary and (W,H).

Demonstrate the superior predictive performance of
adversarially-trained NMF or AT-NMF over other methods on
matrix completion tasks for three benchmark datasets.
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Formulation of AT-NMF

Consider an adversary that adds an arbitrary matrix R ∈ RF×N
+ to

V to maximize the divergence between V and WH, AT-NMF is
formulated as

min
W,H≥0

max
R∈R

∥∥V + R−WH
∥∥2

F

where the constraint set

R =
{

R : ‖R‖2
F ≤ ε,V + R ≥ 0

}

ε > 0 is a constant indicating the adversary’s power.

To relax the problem, dualize the constraint ‖R‖2
F ≤ ε with

Lagrange multiplier λ > 0, AT-NMF becomes

min
W,H≥0

max
R:V+R≥0

∥∥V + R−WH
∥∥2

F − λ
∥∥R
∥∥2

F.
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AT-NMF Algorithm (Update of R)

Let V̂ = WH, the inner maximization problem can be rewritten as
a minimization problem as

R∗ = arg min
R:V+R≥0

−‖V + R− V̂‖2
F + λ ‖R‖2

F

Objective separates into FN independent terms

g(R) =
∑
f ,n

[
−(vfn + rfn − v̂fn)2 + λ r2

fn
]
.

Suffices to minimize each term inside over rfn. By re-arranging:

min
rfn:vfn+rfn≥0

(λ− 1)r2
fn − 2rfn(vfn − v̂fn)

Can be solved in closed-form. For λ ∈ [0, 1], rfn =∞; for λ > 1,

R∗ = max

{
V− V̂
λ− 1

,−V
}
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AT-NMF Algorithm (Update of (W,H))

After update of R to R∗,

arg min
W,H≥0

‖V + R∗︸ ︷︷ ︸
=:U

−WH‖2
F −����λ ‖R‖2

F

fix U := V + R∗.

Use majorization-minimization (MM) (Hunter and Lange, 2000) to
update

H← H · W>U
W>WH

and W←W · UH>

WHH>

Initialization of (W,H)

Sample each entry independently from Half-Normal distribution
(with variance parameter γ = 1);

Run 5 standard MM steps on V to obtain Winit and Hinit.

Termination (described in paper)
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Synthetic Dataset: Setup

α ∈ {0.1, 0.2, · · · , 0.8, 0.9} denotes the fraction of held-out entries.
Γ ⊂ {1, · · · ,F} × {1, · · · ,N} is the set of held-out entries of V.
v̂fn is the prediction of vfn.
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Synthetic Dataset: Metric and Results

Our performance metric is the root mean-squared error (RMSE)

RMSE :=

√√√√ 1
|Γ|

∑
(f ,n)∈Γ

(
vfn − v̂fn

)2

Systhetic dataset of F = 100, N = 50, and K = 5.

RMSE of Synthetic dataset
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CBCL Face Dataset: Parts Learned

N = 2429 facial images with F = 361 pixels.

Parts learnt when α = 0.1
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CBCL Face Dataset: Image Restoration

Image Restoration by AT-NMF

(a) Original Image V;

(b) Masked training image V;

(c) Adversary’s added-on masked image R∗;

(d) AT-masked image V + R∗ [Features (eyes, nose, lower cheeks) become
more distinctive];

(e) Restored image using AT-NMF with λ = 2;

(f) Restored image using NMF.
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CBCL Face Dataset: Training Losses

Training losses when α = 0.5
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Hyperspectral Datasets

It includes the Moffet (Jet Propulsion Lab) and Madonna (Sheeren
et al., 2011) datasets with F = 165 and F = 160 respectively and
N = 2500.

Effect of λ on the RMSE
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Conclusions and Future Work

Formulation and algorithm for Adversarially-Trained NMF:

min
W,H≥0

max
R∈R

∥∥V + R−WH
∥∥2

F

where R = {R : ‖R‖2
F ≤ ε,V + R ≥ 0} or

min
W,H≥0

max
R:V+R≥0

∥∥V + R−WH
∥∥2

F − λ
∥∥R
∥∥2

F.

Other divergence measures beyond the Frobenius norm , e.g.,
β-divergence (Févotte et al., 2009).

Different bounded sets R, e.g., {R : ‖R‖p,q ≤ ε,V + R ≥ 0}.

Online NMF (Lefèvre et al., 2011; Mairal, 2015)?
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Online NMF (Lefèvre et al., 2011; Mairal, 2015)?

Vincent Y. F. Tan (NUS) Adversarially-Trained NMF ICASSP 13 / 15



Conclusions and Future Work

Formulation and algorithm for Adversarially-Trained NMF:

min
W,H≥0

max
R∈R

∥∥V + R−WH
∥∥2

F

where R = {R : ‖R‖2
F ≤ ε,V + R ≥ 0} or

min
W,H≥0

max
R:V+R≥0

∥∥V + R−WH
∥∥2

F − λ
∥∥R
∥∥2

F.

Other divergence measures beyond the Frobenius norm , e.g.,
β-divergence (Févotte et al., 2009).

Different bounded sets R, e.g., {R : ‖R‖p,q ≤ ε,V + R ≥ 0}.
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