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Nonnegative Matrix Factorization (Lee and seung, 1999)

m Given a nonnegative data matrix V € R’*", approximate V as
V ~ WH

where W € RYX (basis) and H € RX*" (coefficient) matrices.
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Nonnegative Matrix Factorization (Lee and seung, 1999)

m Given a nonnegative data matrix V € R’*", approximate V as
V ~ WH

where W € RYX (basis) and H € RX*" (coefficient) matrices.
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m One typically solves
WnﬁI;OD(V | WH) eg. D(V|W

where A > 0 means that all the entries of A are nonnegative.
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Motivation and Main Contribution

m Adversarial training (Goodfellow et al., 2015; Madry et al., 2018;
Tramer et al., 2018)

1 n
i a - Loss( fo(x}),y; ).
min  max =3 Loss(fa(x), )
R , i=1

perturbation of features
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m Improve the predictive performance of NMF using adversarial
training for matrix completion tasks.
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Motivation and Main Contribution

m Adversarial training (Goodfellow et al., 2015; Madry et al., 2018;
Tramer et al., 2018)

1 n
i a - Loss( fo(x}),y; ).
min  max =3 Loss(fa(x), )
R , i=1

perturbation of features

m Improve the predictive performance of NMF using adversarial
training for matrix completion tasks.

m Derive efficient algorithms for updating the adversary and (W, H).

m Demonstrate the superior predictive performance of
adversarially-trained NMF or AT-NMF over other methods on
matrix completion tasks for three benchmark datasets.
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Formulation of AT-NMF

m Consider an adversary that adds an arbitrary matrix R € RV to
V to maximize the divergence between V and WH, AT-NMF is
formulated as

min max HV + R — WHHIZJ
W,H>0 ReR
where the constraint set

R={R:|R|g<eV+R>0}
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Formulation of AT-NMF

m Consider an adversary that adds an arbitrary matrix R € RV to
V to maximize the divergence between V and WH, AT-NMF is
formulated as

min max HV + R — WHHIZJ
W,H>0 ReR
where the constraint set

R={R:|R|g<eV+R>0}

m ¢ > 0 is a constant indicating the adversary’s power.

m To relax the problem, dualize the constraint |R||# < e with
Lagrange multiplier A > 0, AT-NMF becomes

min max HV—I—R—WHH;—AHRH?
W, H>0 R:V+R>0
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AT-NMF Algorithm (Update of R)
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AT-NMF Algorithm (Update of R)

m Let V = WH, the inner maximization problem can be rewritten as
a minimization problem as

R* = argmin —||V+ R — V[ + A|[R|[2
R:V4+R>0
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m Objective separates into FN independent terms

gR) =D [~(va+r — ) + A7,
fn
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AT-NMF Algorithm (Update of R)

m Let V = WH, the inner maximization problem can be rewritten as
a minimization problem as

R* = argmin —||V+ R — V[ + A|[R|[2
R:V4+R>0

m Objective separates into FN independent terms

g(R) =" [~ (v + i — o) + A1) -
fn

m Suffices to minimize each term inside over r4,. By re-arranging:

. ) R
lffnivjrf;liglzo (>\ - l)rﬁl - 2’?}‘51(th - th)

m Can be solved in closed-form. For A € [0, 1], r3 = oo; for A > 1,

V-V
R* = RS i/
s { Y=Y )
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AT-NMF Algorithm (Update of (W, H))
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AT-NMF Algorithm (Update of (W, H))

m After update of R to R*,

argmin ||V + R* —WH||% —
WgHZO | e IF — MRAE

fix U:=V+R".
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AT-NMF Algorithm (Update of (W, H))

m After update of R to R*,
i R* ~WH]|% —
argmin ||V + IE — MRt

W.H>0
=:U
fix U:=V+R*.
m Use majorization-minimization (MM) (Hunter and Lange, 2000) to
update
w'u UH'
Hel grwe @9 VoW ymmm
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AT-NMF Algorithm (Update of (W, H))

m After update of R to R*,
i R* ~WH]|% —
argmin ||V + IE — MRt

W.H>0
=:U
fix U:=V+R*.
m Use majorization-minimization (MM) (Hunter and Lange, 2000) to
update
w'u UH'
Hel grwe @9 VoW ymmm

m Initialization of (W, H)

m Sample each entry independently from Half-Normal distribution
(with variance parameter v = 1);

m Run 5 standard MM steps on V to obtain W;,;; and Hj,;;.
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AT-NMF Algorithm (Update of (W, H))

m After update of R to R*,
i R* ~WH]|% —
argmin ||V + IE — MRt

W.H>0
=:U
fix U:=V+R*.
m Use majorization-minimization (MM) (Hunter and Lange, 2000) to
update
w'u UH'
Hel grwe @9 VoW ymmm

m Initialization of (W, H)

m Sample each entry independently from Half-Normal distribution
(with variance parameter v = 1);

m Run 5 standard MM steps on V to obtain W;,;; and Hj,;;.

m Termination (described in paper)
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Synthetic Dataset: Setup

m o< {0.1,0.2,---,0.8,0.9} denotes the fraction of held-out entries.
mI'c{l,--- F} x{1,--- N} is the set of held-out entries of V.
W vy, is the prediction of vy,.
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W vy, is the prediction of vy,.
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Synthetic Dataset: Metric and Results

m Our performance metric is the root mean-squared error (RMSE)

RMSE := J |1r| ST (v — o)’
(

le)EF

m Systhetic dataset of F = 100, N = 50, and K = 5.
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Synthetic Dataset: Metric and Results

m Our performance metric is the root mean-squared error (RMSE)

RMSE = |1F| Z (th — f/fn)z
(f,n)er

m Systhetic dataset of F = 100, N = 50, and K = 5.

m RMSE of Synthetic dataset

a NMF ANMF AT-NMF (2) | AT-NMF (3) | AT-NMF (5)
0.3 | 537+0.02 | 6.78£0.17 | 5.41%+0.12 | 5.11£0.03 | 5.20 £0.02
0.4 | 5.62+0.03 | 6.92+0.17 | 5.564+0.08 | 5.32+0.09 | 5.4240.04
0.5 | 6.41+0.01 | 7.44+£0.09 | 6.27+0.11 | 6.05+0.03 | 6.18 £0.02
0.6 | 6.74+0.02 | 7.61+£0.09 | 6.47+0.07 | 6.39+0.03 | 6.53 +0.02
0.7 | 7.30+£0.01 | 7.99+£0.06 | 7.02+0.04 | 6.94+0.01 | 7.10 £0.02
0.8 | 7.87+0.01 | 8.30£0.06 | 7.69+0.04 | 7.61£0.03 | 7.71 £0.00
0.9 | 8.45+0.01 | 8.58+0.06 | 8.44+0.02 | 8.34+0.02 | 8.35+0.02
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CBCL Face Dataset: Parts Learned

m N = 2429 facial images with F = 361 pixels.
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CBCL Face Dataset: Parts Learned

m N = 2429 facial images with F = 361 pixels.

m Parts learnt when o = 0.1
NMF

AT-NMF A =2 AT-NMFA =5
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CBCL Face Dataset: Image Restoration

Image Restoration by AT-NMF

(@ (b)
(a) Original Image V;
(b) Masked training image V;
(c) Adversary’s added-on masked image R*;
(

)
)
d) AT-masked image V + R* [Features (eyes, nose, lower cheeks) become
more distinctive];
)

(e) Restored image using AT-NMF with A = 2;
(f) Restored image using NMF.
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CBCL Face Dataset: Training Losses

Training losses when o = 0.5

led NMF led AT-NMF .
1 — A=2 |
1.0 1.0 s
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Hyperspectral Datasets

m |t includes the Moffet (Jet Propulsion Lab) and Madonna (Sheeren
et al., 2011) datasets with F = 165 and F = 160 respectively and
N = 2500.
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Hyperspectral Datasets

m |t includes the Moffet (Jet Propulsion Lab) and Madonna (Sheeren
et al., 2011) datasets with F = 165 and F = 160 respectively and

N = 2500.
m Effect of A on the RMSE
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Conclusions and Future Work

m Formulation and algorithm for Adversarially-Trained NMF:

min max HV +R— WHHIZJ
WH>0 ReR

where R = {R: |[R||2 <¢e,V+R >0} or

min max_|[V+R— WH|> - |R]]%.
W.H>0 R:V4R>0
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m Other divergence measures beyond the Frobenius norm , e.g.,
B-divergence (Févotte et al., 2009).
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Conclusions and Future Work

m Formulation and algorithm for Adversarially-Trained NMF:

min max HV +R— WHHIZJ
WH>0 RER

where R = {R: |[R||2 <¢e,V+R >0} or

min max_|[V+R— WH|> - |R]]%.
W.H>0 R:V4R>0

m Other divergence measures beyond the Frobenius norm , e.g.,
B-divergence (Févotte et al., 2009).

m Different bounded sets R, e.g., {R: |R]|, 4, <€, V+R > 0}.

m Online NMF (Lefevre et al., 2011; Mairal, 2015)?
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