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Abstract—This paper addresses the estimation of the latent dimensionality in nonnegative matrix factorization (NMF) with the

�-divergence. The �-divergence is a family of cost functions that includes the squared euclidean distance, Kullback-Leibler (KL) and

Itakura-Saito (IS) divergences as special cases. Learning the model order is important as it is necessary to strike the right balance

between data fidelity and overfitting. We propose a Bayesian model based on automatic relevance determination (ARD) in which the

columns of the dictionary matrix and the rows of the activation matrix are tied together through a common scale parameter in their prior.

A family of majorization-minimization (MM) algorithms is proposed for maximum a posteriori (MAP) estimation. A subset of scale

parameters is driven to a small lower bound in the course of inference, with the effect of pruning the corresponding spurious

components. We demonstrate the efficacy and robustness of our algorithms by performing extensive experiments on synthetic data,

the swimmer dataset, a music decomposition example, and a stock price prediction task.

Index Terms—Nonnegative matrix factorization, model order selection, majorization-minimization, group-sparsity, automatic

relevance determination

Ç

1 INTRODUCTION

GIVEN a data matrix V of dimensions F �N with
nonnegative entries, nonnegative matrix factorization

(NMF) consists in finding a low-rank factorization

V � V̂ ¼4 WH; ð1Þ

where W and H are nonnegative matrices of dimensions
F �K and K �N , respectively. The common dimension K
is usually chosen such that F K þK N � F N ; hence the
overall number of parameters to describe the data (i.e., data
dimension) is reduced. Early references on NMF include the
work of Paatero and Tapper [1] and a seminal contribution
by Lee and Seung [2]. Since then, NMF has become a widely
used technique for nonsubtractive, parts-based representa-
tion of nonnegative data. There are numerous applications
of NMF in diverse fields, such as audio signal processing
[3], image classification [4], analysis of financial data [5],
and bioinformatics [6]. The factorization (1) is usually
sought after through the minimization problem:

minimize
W;H

DðVjWHÞ subject to W � 0;H � 0; ð2Þ

where A � 0 means that all entries of the matrix A are
nonnegative (and not positive semidefiniteness). The func-
tion DðVjWHÞ is a separable measure of fit, i.e.,

DðVjWHÞ ¼
XF
f¼1

XN
n¼1

dð½V�fn j ½WH�fnÞ; ð3Þ

where dðxjyÞ is a scalar cost function of y 2 IRþ given x 2 IRþ,
and it equals zero when x ¼ y. In this paper, we will consider
the dðxjyÞ to be the �-divergence, a family of cost functions
parameterized by a single scalar � 2 IR. The squared
euclidean (EUC) distance, the generalized Kullback-Leibler
(KL) divergence, and the Itakura-Saito (IS) divergence are
special cases of the �-divergence. NMF with the
�-divergence (or, in short, �-NMF) was first considered by
Cichocki et al. [7], and more detailed treatments have been
proposed in [8], [9], and [10].

1.1 Main Contributions

In most applications, it is crucial that the “right” model
order K is selected. If K is too small, the data does not fit
the model well. Conversely, if K is too large, overfitting
occurs. We seek to find an elegant solution for this
dichotomy between data fidelity and overfitting. Tradi-
tional model selection techniques such as the Bayesian
information criterion (BIC) [11] are not applicable in our
setting as the number of parameters is FK þKN and this
scales linearly with the number of data points N , whereas
BIC assumes that the number of parameters stays constant
as the number of data points increases.

To ameliorate this problem, we propose a Bayesian
model for �-NMF based on automatic relevance determina-
tion (ARD) [12], and in particular, we are inspired by
Bayesian principal component analysis (PCA) [13]. We
derive computationally efficient algorithms with monotonicity
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guarantees to estimate the model order K and to estimate
the basis W and the activation coefficients H. The proposed
algorithms are based on the use of auxiliary functions (local
majorizations of the objective function). The optimization of
these auxiliary functions leads directly to majorization-
minimization (MM) algorithms, resulting in efficient multi-
plicative updates. The monotonicity of the objective func-
tion can be proven by leveraging on techniques in [9]. We
show via simulations in Section 6 on synthetic data and real
datasets (such as a music decomposition example) that the
proposed algorithms recover the correct model order and
produce better decompositions. We also describe a proce-
dure based on the method of moments for adaptive and data-
dependent selection of some of the hyperparameters.

1.2 Prior Work

To the best of our knowledge, there is fairly limited literature
on model order selection in NMF. References [14] and [15]
describe Markov chain Monte Carlo (MCMC) strategies for
evaluation of the model evidence in EUC-NMF or KL-NMF.
The evidence is calculated for each candidate value ofK, and
the model with highest evidence is selected. The studies in
[16] and [17] describe reversible jump MCMC approaches
that allow to sample the model orderK, along with any other
parameter. These sampling-based methods are computa-
tionally intensive. Another class of methods, given in [18],
[19], [20], and [21], is closer to the principles that underlie this
work; in these works, the number of componentsK is set to a
large value and irrelevant components in W and H are
driven to zero during inference. A detailed but qualitative
comparison between our work and these methods is given in
Section 5. In Section 6, we compare the empirical perfor-
mance of our methods to [18] and [21].

This paper is a significant extension of the authors’
conference publication in [22]. First, the cost function in [22]
was restricted to be the KL-divergence. In this paper, we
consider a continuum of costs parameterized by �, under-
lying different statistical noise models. We show that this
flexibility in the cost function allows for better quality of
factorization and model selection on various classes of real-
world signals such as audio and images. Second, the
algorithms described herein are such that the cost function
monotonically decreases to a local minimum whereas the
algorithm in [22] is heuristic. Convergence is guaranteed by
the MM framework.

1.3 Paper Organization

In Section 2, we state our notation and introduce �-NMF
and the MM technique. In Section 3, we present our
Bayesian model for �-NMF. Section 4 details ‘1- and ‘2-ARD
for model selection in �-NMF. We then compare the
proposed algorithms to other related works in Section 5.
In Section 6, we present extensive numerical results to
demonstrate the efficacy and robustness of ‘1- and ‘2-ARD.
We conclude the discussion in Section 7.

2 PRELIMINARIES

2.1 Notations

We denote by V, W, and H, the data, dictionary and
activation matrices, respectively. These nonnegative matrices
are of dimensions F �N , F �K, and K �N , respectively.

The entries of these matrices are denoted by vfn, wfk, and
hkn respectively. The kth column of W is denoted by
wk 2 IRF

þ, and hk 2 IRN
þ denotes the kth row of H. Thus,

W ¼ ½w1; . . . ;wK � and H ¼ ½hT1 ; . . . ; hTK �
T .

2.2 NMF with the �-Divergence

This paper considers NMF based on the �-divergence,
which we now review. The �-divergence was originally
introduced for � � 1 in [23] and [24] and later generalized
to � 2 IR in [7], which is the definition we use here:

d�ðxjyÞ ¼4

x�

� ð� � 1Þ þ
y�

�
� x y

��1

� � 1
; � 2 IRnf0; 1g;

x log
x

y
� xþ y; � ¼ 1;

x

y
� log

x

y
� 1; � ¼ 0:

8>>>>><
>>>>>:

ð4Þ

The limiting cases � ¼ 0 and � ¼ 1 correspond to the IS and
KL-divergences, respectively. Another case of note is � ¼ 2,
which corresponds to the squared euclidean distance, i.e.,
d�¼2ðxjyÞ ¼ ðx� yÞ2=2. The parameter � essentially controls
the assumed statistics of the observation noise and can
either be fixed or learned from training data by cross-
validation. Under certain assumptions, the �-divergence
can be mapped to a log-likelihood function for the Tweedie
distribution [25], parameterized with respect to its mean. In
particular, the values � ¼ 0; 1; 2 underlie the multiplicative
Gamma observation noise, Poisson noise, and Gaussian
additive observation noise, respectively. We describe this
property in greater detail in Section 3.2. The �-divergence
offers a continuum of noise statistics that interpolates
between these three specific cases. In the following, we
use the notation D�ðVjWHÞ to denote the separable cost
function in (3) with the scalar cost d ¼ d� in (4).

2.3 Majorization-Minimization for �-NMF

We briefly recall some results in [9] on standard �-NMF. In
particular, we describe how an MM algorithm [26] that
recovers a stationary point of (3) can be derived. The
algorithm updates H given W, and W given H, and these
two steps are essentially the same by the symmetry of W
and H by transposition (V �WH is equivalent to
VT � HTWT ). Let us thus focus on the optimization of H
given W. The MM framework involves building a
(nonnegative) auxiliary function GðHj ~HÞ that majorizes the
objective CðHÞ ¼ D�ðVjWHÞ everywhere, i.e.,

GðHj ~HÞ � CðHÞ; ð5Þ

for all pairs of nonnegative matrices H; ~H 2 IRK�N
þ . The

auxiliary function also matches the cost function whenever
its arguments are the same, i.e., for all ~H,

Gð ~Hj ~HÞ ¼ Cð ~HÞ: ð6Þ

If such an auxiliary function exists and the optimization of
GðHj ~HÞ over H for fixed ~H is simple, the optimization
of CðHÞ may be replaced by the simpler optimization of
GðHj ~HÞ over H. Indeed, any iterate Hðiþ1Þ such that
GðHðiþ1ÞjHðiÞÞ � GðHðiÞjHðiÞÞ reduces the cost since

CðHðiþ1ÞÞ � GðHðiþ1ÞjHðiÞÞ � GðHðiÞjHðiÞÞ ¼ CðHðiÞÞ: ð7Þ
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The first inequality follows from (5) and the second from
the optimality of Hðiþ1Þ. Thus, the MM update is

Hðiþ1Þ ¼ arg min
H�0

GðHjHðiÞÞ: ð8Þ

Note that if Hðiþ1Þ ¼ HðiÞ, a local minimum is attained since
the inequalities in (7) are equalities. The key of the MM
approach is thus to build an auxiliary function G which
reasonably approximates the original objective at the
current iterate ~H and such that the function is easy to
minimize (over the first variable H). In our setting, the
objective function CðHÞ can be decomposed into the sum of
a convex term and a concave term. As such, the construc-
tion proposed in [8] and [9] involves majorizing the convex
and concave terms separately, using Jensen’s inequality and
a first-order Taylor approximation, respectively. Denoting
~vfn ¼4 ½W ~H�fn and

pkn ¼4
X
f

wfkvfn~v��2
fn ; qkn ¼4

X
f

wfk~v
��1
fn ; ð9Þ

the resulting auxiliary function can be expressed as in
Table 1, where cst denotes constant terms that do not
depend on H. In the sequel, the use of the tilde over a
parameter will generally denote its previous iterate. Mini-
mization of GðHj ~HÞ with respect to (w.r.t) H thus leads to
the following simple update:

hkn ¼ ~hkn
pkn
qkn

� ��ð�Þ
; ð10Þ

where the exponent �ð�Þ is defined as

�ð�Þ ¼4
1=ð2� �Þ; � < 1;
1; 1 � � � 2;
1=ð� � 1Þ; � > 2:

8<
: ð11Þ

3 THE MODEL FOR AUTOMATIC RELEVANCE

DETERMINATION IN �-NMF

In this section, we describe our probabilistic model for
NMF. The model involves tying the kth column of W to the
kth row of H together through a common scale parameter
�k. If �k is driven to zero (or, as we will see, a positive lower
bound) during inference, then all entries in the correspond-
ing column of W and row of H will also be driven to zero.

3.1 Priors

We are inspired by Bayesian PCA [13], where each element
of W is assigned a Gaussian prior with column-dependent

variance-like parameters �k. These �ks are known as the
relevance weights. However, our formulation has two main
differences vis-à-vis Bayesian PCA. First, there are no
nonnegativity constraints in Bayesian PCA. Second, in
Bayesian PCA, thanks to the simplicity of the statistical
model (multivariate Gaussian observations with Gaussian
parameter priors), H can be easily integrated out of the
likelihood, and the optimization can be done over
pðW; ����jVÞ, where ���� ¼ ð�1; . . . ; �KÞ 2 IRK

þ is the vector of
relevance weights. We have to maintain the nonnegativity
of the elements in W and H and also, in our setting, the
activation matrix H cannot be integrated out analytically.

To ameliorate the above-mentioned problems, we pro-
pose to tie the columns of W and the rows of H together
through common scale parameters. This construction is not
overconstraining the scales of W and H because of the
inherent scale indeterminacy between wk and hk. Moreover,
we choose nonnegative priors for W and H to ensure that
all elements of the basis and activation matrices are
nonnegative. We adopt a Bayesian approach and assign
W and H Half-Normal or Exponential priors. When W and
H have Half-Normal priors:

pðwfkj�kÞ ¼ HNðwfkj�kÞ; pðhknj�kÞ ¼ HNðhknj�kÞ; ð12Þ

where for x � 0, HNðxj�Þ ¼4 ð 2
��Þ

1=2 expð� x2

2�Þ, and HNðx j
�Þ ¼ 0 when x < 0. Note that if x is a Gaussian (Normal)
random variable, then jxj is a Half-Normal. When W and H

are assigned Exponential priors:

pðwfkj�kÞ ¼ Eðwfkj�kÞ; pðhknj�kÞ ¼ Eðhknj�kÞ; ð13Þ

where for x � 0, Eðxj�Þ ¼4 1
� expð� x

�Þ, and Eðxj�Þ ¼ 0 other-
wise. Note from (12) and (13) that the kth column of W and
the kth row of H are tied together by a common variance-like
parameter �k, also known as the relevance weight. When a
particular �k is small, that particular column of W and row of
H are not relevant and vice versa. When a row and a column
are not relevant, their norms are close to zero and thus can be
removed from the factorization without compromising too
much on data fidelity. This removal of common rows and
columns makes the model more parsimonious.

Finally, we impose inverse-Gamma priors on each
relevance weight �k, i.e.,

pð�k; a; bÞ ¼ IGð�kja; bÞ ¼
ba

�ðaÞ�
�ðaþ1Þ
k exp � b

�k

� �
; ð14Þ

where a and b are the (nonnegative) shape and scale
hyperparameters, respectively. We set a and b to be constant
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for all k. We will state how to choose these in a principled

manner in Section 4.5. Furthermore, each relevance para-

meter is independent of every other, i.e., pð����; a; bÞ ¼QK
k¼1 pð�k; a; bÞ.

3.2 Likelihood

The �-divergence is related to the family of Tweedie

distributions [25]. The relation was noted by Cichocki

et al. [27] and detailed in [28]. The Tweedie distribution is a

special case of the exponential dispersion model [29], itself a

generalization of the more familiar natural exponential

family. It is characterized by the simple polynomial relation

between its mean and variance:

var½x� ¼ ��2��; ð15Þ

where � ¼ IE½x� is the mean, � is the shape parameter , and �

is referred to as the dispersion parameter. The Tweedie

distribution is only defined for � � 1 and � � 2. For

� 6¼ 0; 1, its probability density function (pdf) or probability

mass function (pmf) can be written in the following form:

T ðxj�; �; �Þ ¼ hðx; �Þ exp
1

�

1

� � 1
x���1 � 1

�
��

� �� �
; ð16Þ

where hðx; �Þ is referred to as the base function. For � 2 f0; 1g,
the pdf or pmf takes the appropriate limiting form of (16). The

support ofT ðxj�; �; �Þvaries with the value of�, but the set of

values that � can take on is generally IRþ, except for � ¼ 2, for

which it is IR, and the Tweedie distribution coincides with the

Gaussian distribution of mean � and variance �. For � ¼ 1

(and � ¼ 1), the Tweedie distribution coincides with the

Poisson distribution. For � ¼ 0, it coincides with the Gamma

distribution with shape parameter � ¼ 1=� and scale para-

meter �=�.1 The base function admits a closed form only for

� 2 f�1; 0; 1; 2g.
Finally, the deviance of Tweedie distribution, i.e., the log-

likelihood ratio of the saturated (� ¼ x) and general model,

is proportional to the �-divergence. In particular,

log
T ðxj� ¼ x; �; �Þ
T ðxj�; �; �Þ ¼ 1

�
d�ðxj�Þ; ð17Þ

where d�ð 	 j 	 Þ is the scalar cost function defined in (4). As

such the �-divergence acts as a minus log-likelihood for the

Tweedie distribution whenever the latter is defined.

Because the data coefficients fvfng are conditionally

independent given ðW;HÞ, the negative log-likelihood

function is

� log pðVjW;HÞ ¼ 1

�
D�ðVjWHÞ þ cst: ð18Þ

3.3 Objective Function

We now form the maximum a posteriori (MAP) objective

function for the model described in Sections 3.1 and 3.2.

Due to (12), (13), (14), and (18):

CðW;H; ����Þ ¼4 � log pðW;H; ����jVÞ; ð19Þ

¼ 1

�
D�ðVjWHÞ þ

XK
k¼1

1

�k
fðwkÞ þ fðhkÞ þ bð Þ

þ c log�k þ cst;

ð20Þ

where (20) follows from Bayes’ rule and, for the two

statistical models,

. Half-Normal model as in (12), fðxÞ ¼ 1
2 kxk

2
2 and

c ¼ ðF þNÞ=2þ aþ 1;
. Exponential model as in (13), fðxÞ ¼ kxk1 and

c ¼ F þN þ aþ 1.

Observe that for the regularized cost function in (20), the

second term is monotonically decreasing in �k, while the

third term is monotonically increasing in �k. Thus, a subset of

the �ks will be forced to a lower bound, which we specify in

Section 4.4, while the others will tend to a larger value. This

serves the purpose of pruning irrelevant components out of

the model. In fact, the vector of relevance parameters ���� ¼
ð�1; . . . ; �KÞ can be optimized analytically in (20) leading to

an objective function that is a function of W and H only, i.e.,

CðW;HÞ ¼ 1

�
D�ðVjWHÞ

þ c
XK
k¼1

log fðwkÞþfðhkÞþbð Þ þ cst;

ð21Þ

where cst ¼ Kcð1� log cÞ.
In our algorithms, instead of optimizing (21), we keep�k as

an auxiliary variable for optimizing CðW;H; ����Þ in (20) to

ensure that the columns H and the rows of W are decoupled.

More precisely, wk and hk are conditionally independent

given �k. In fact, (21) shows that the ����-optimized objective

function CðW;HÞ induces sparse regularization among

groups, where the groups are pairs of columns and rows,

i.e., fwk; hkg. In this sense, our work is related to group

LASSO [30] and its variants. See, for example, [31]. The

function x 7! logðxþ bÞ in (21) is a sparsity-inducing term

and is related to reweighted ‘1-minimization [32]. We discuss

these connections in greater detail in the supplementary

material, which can be found in the Computer Society Digital

Library at http://doi.ieeecomputersociety.org/10.1109/

TPAMI.2012.240, [33].

4 INFERENCE ALGORITHMS

In this section, we describe two algorithms for optimizing

the objective function (20) for H given fixed W. The

updates for W are symmetric given H. These algorithms

will be based on the MM idea for �-NMF and on the two

prior distributions of W and H. In particular, we use the

auxiliary function GðHj ~HÞ defined in Table 1 as an upper

bound of the data fit term D�ðVjWHÞ.

4.1 Algorithm for ‘2-ARD �-NMF

We now introduce ‘2-ARD �-NMF. In this algorithm, we

assume that W and H have Half-Normal priors as in (12)

and thus the regularizer is
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R2ðHÞ ¼4
X
k

1

�k
fðhkÞ ¼

X
kn

1

2�k
h2
kn: ð22Þ

The main idea behind the algorithms is as follows: Consider

the function F ðHj ~HÞ ¼4 ��1 GðHj ~HÞ þR2ðHÞ, which is the

original auxiliary function GðHj ~HÞ times ��1 plus the ‘2

regularization term. It can, in fact, be easily shown in [9,

Section 6] that F ðHj ~HÞ is an auxiliary function to the

(penalized) objective function in (20). Ideally, we would

take the derivative of F ðHj ~HÞ w.r.t hkn and set it to zero.

Then the updates would proceed in a manner analogous to

(10). However, the regularization term R2ðHÞ does not “fit

well” with the form of the auxiliary function GðHj ~HÞ in the

sense that rHF ðHj ~HÞ ¼ 0 cannot be solved analytically for

all � 2 IR. Thus, our idea for ‘2-ARD is to consider the cases

� � 2 and � < 2 separately and to find an upper bound of

F ðHj ~HÞ by some other auxiliary function JðHj ~HÞ so that

the resulting equation rHJðHj ~HÞ ¼ 0 can be solved in

closed-form.
To derive our algorithms, we first note the following.

Lemma 1. For every 	 > 0, the function g	ðtÞ ¼ 1
t ð	t � 1Þ is

monotonically nondecreasing in t 2 IR. In fact, g	ðtÞ is

monotonically increasing unless 	 ¼ 1.

In the above lemma, g	ð0Þ ¼4 log 	 by L’Hôpital’s rule.

The proof of this simple result can be found in [34].
We first derive ‘2-ARD for � > 2. The idea is to upper

bound the regularizer R2ðHÞ in (22) elementwise using

Lemma 1, and is equivalent to the moving-term technique

described by Yang and Oja in [34] and [35]. Indeed, we have

1

2

hkn
~hkn

� �2

�1

" #
� 1

�

hkn
~hkn

� ��
�1

" #
; ð23Þ

by taking 	 ¼ hkn=~hkn in Lemma 1. Thus, for � > 2,

1

2�k
h2
kn �

1

�k�
~h2
kn

hkn
~hkn

� ��
þcst; ð24Þ

where cst is a constant w.r.t the optimization variable hkn.

We upper bound the regularizer (22) elementwise by (24).

The resulting auxiliary function (modified version of

F ðHj ~HÞ) is

JðHj ~HÞ ¼ 1

�
GðHj ~HÞ þ

X
kn

1

�k�
~h2
kn

hkn
~hkn

� ��
: ð25Þ

Note that (24) holds with equality iff 	 ¼ 1 or, equivalently,

hkn ¼ ~hkn so (6) holds. Thus, JðHj ~HÞ is indeed an auxiliary

function to F ðHj ~HÞ. Recalling the definition of GðHj ~HÞ for

� > 2 in Table 1, differentiating JðHj ~HÞ w.r.t hkn and

setting the result to zero yields the update

hkn ¼ ~hkn
pkn

qkn þ ð�=�kÞ~hkn

 !1=ð��1Þ

: ð26Þ

Note that the exponent 1=ð� � 1Þ corresponds to �ð�Þ for the

� > 2 case. Also observe that the update is similar to MM

for �-NMF (cf. (10)) except that there is an additional term

in the denominator.

Algorithm 1. ‘2-ARD for �-NMF
Input: Data matrix V, hyperparameter a, tolerance 


Output: Nonnegative matrices W and H, nonnegative

relevance vector ���� and model order Keff

Init: Fix K. Initialize W 2 IRF�K
þ and H 2 IRK�N

þ to

nonnegative values and tolerance parameter tol ¼ 1
Calculate: c ¼ ðF þNÞ=2þ aþ 1 and �ð�Þ as in (31)

Calculate: Hyperparameter b as in (38)

while (tol < 
) do

H H 	
�

WT ½ðWHÞ	ð��2Þ	V�
WT ½ðWHÞ�	ð��1Þþ�H=repmatð����;1;NÞ

�	�ð�Þ

W W 	
�

½ðWHÞ	ð��2Þ	V�HT

½ðWHÞ	ð��1Þ�HTþ�W=repmatð����;F ;1Þ

�	�ð�Þ
�k  ½ð12

P
f w

2
fk þ 1

2

P
n h

2
knÞ þ b�=c for all k

tol  maxk¼1;...;K jð�k � ~�kÞ= ~�kj
end while

Calculate: Keff as in (34)

For the case � � 2, our strategy is not to majorize the
regularization term. Rather, we majorize the auxiliary
function GðHj ~HÞ itself. By applying Lemma 1 with
	 ¼ hkn=~hkn, we have that for all � � 2:

1

�

hkn
~hkn

� ��
�1

" #
� 1

2

hkn
~hkn

� �2

�1

" #
; ð27Þ

which means that

1

�
qkn ~hkn

hkn
~hkn

� ��
� 1

2
qkn ~hkn

hkn
~hkn

� �2

þcst: ð28Þ

By replacing the first term of GðHj ~HÞ in Table 1 (for � � 2)
with the upper bound above, we have the following new
objective function:

JðHj ~HÞ ¼
X
kn

qkn ~hkn
2�

hkn
~hkn

� �2

� pkn ~hkn
�ð� � 1Þ

hkn
~hkn

� ���1

þ h
2
kn

2�k
:

ð29Þ

Differentiating JðHj ~HÞ w.r.t hkn and setting to zero yields
the simple update

hkn ¼ ~hkn
pkn

qkn þ ð�=�kÞ~hkn

 !1=ð3��Þ

: ð30Þ

To summarize the algorithm concisely, we define the
exponent used in the updates in (26) and (30) as

�ð�Þ ¼4 1=ð3� �Þ � � 2;
1=ð� � 1Þ � > 2:

�
ð31Þ

Finally, we remark that even though the updates in (26) and
(30) are easy to implement, we either majorized the
regularizer R2ðHÞ or the auxiliary function GðHj ~HÞ. These
bounds may be loose and thus may lead to slow
convergence in the resulting algorithm. In fact, we can
show that for � ¼ 0; 1; 2, we do not have to resort to upper
bounding the original function F ðHj ~HÞ ¼ ��1 GðHj ~HÞ þ
R2ðHÞ. Instead, we can choose to solve a polynomial
equation to update hkn. The cases � ¼ 0; 1; 2 correspond to
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solving cubic, quadratic, and linear equations in hkn,
respectively. It is also true that for all rational �, we can
form a polynomial equation in hkn, but the order of the
resulting polynomial depends on the exact value of �. See
the online supplementary material [33].

4.2 Algorithm for ‘1-ARD �-NMF

The derivation of ‘1-ARD �-NMF is similar to its ‘2

counterpart. We find majorizers for either the likelihood
or the regularizer. We omit the derivations and refer the
reader to the online supplementary material [33]. In sum:

hkn ¼ ~hkn
pkn

qkn þ �=�k

� ��ð�Þ
; ð32Þ

where �ð�Þ is defined in (11).

Algorithm 2. ‘1-ARD for �-NMF

Input: Data matrix V, hyperparameter a, tolerance 


Output: Nonnegative matrices W and H, nonnegative
relevance vector ���� and model order Keff

Init: Fix K. Initialize W 2 IRF�K
þ and H 2 IRK�N

þ to

nonnegative values and tolerance parameter tol ¼ 1
Calculate: c ¼ F þN þ aþ 1 and �ð�Þ as in (11)

Calculate: Hyperparameter b as in (38)

while (tol < 
) do

H H 	
�

WT ½ðWHÞ	ð��2Þ	V�
WT ½ðWHÞ	ð��1Þ�þ�=repmatð����;1;NÞ

�	 �ð�Þ

W W 	
�

½ðWHÞ	ð��2Þ	V�HT

½ðWHÞ	ð��1Þ�HTþ�=repmatð����;F ;1Þ

�	 �ð�Þ
�k  ð

P
f wfk þ

P
n hkn þ bÞ=c for all k

tol  maxk¼1;...;K jð�k � ~�kÞ=~�kj
end while

Calculate: Keff as in (34)

4.3 Update of �k
We have described how to update H using either ‘1-ARD or
‘2-ARD. Since H and W are related in a symmetric manner,
we have also effectively described how to update W. We
now describe a simple update rule for the �ks. This update
is the same for both ‘1- and ‘2-ARD. We first find the partial
derivative of CðW;H; ����Þ w.r.t �k and set it to zero. This
gives the update:

�k ¼
fðwkÞ þ fðhkÞ þ b

c
; ð33Þ

where fð 	 Þ and c are defined after (20).

4.4 Stopping Criterion and Determination of Keff

In this section, we describe the stopping criterion and the
determination of the effective number of components Keff .
Let ���� ¼ ð�1; . . . ; �KÞ and ~���� ¼ ð ~�1; . . . ; ~�KÞ be the vector of
relevance weights at the current (updated) and previous
iterations, respectively. The algorithm is terminated when-
ever tol ¼4 maxk¼1;...;K jð�k � ~�kÞ=~�kj falls below some
threshold 
 > 0. Note from (33) that iterates of each �k are
bounded from below as �k � B ¼4 b=c and this bound is
attained when wk and hk are zero vectors, i.e., the
kth column of W and the kth row of H are pruned out of

the model. After convergence, we set Keff to be the number
of components of such that the ratio ð�k �BÞ=B is strictly
larger than 
 , i.e.,

Keff ¼4 k 2 f1; . . . ; Kg :
�k �B
B

> 


� �����
����; ð34Þ

where 
 > 0 is some threshold. We choose this threshold to
be the same as that for the tolerance level tol.

The algorithms ‘2-ARD and ‘1-ARD are detailed in
Algorithms 1 and 2, respectively. In the algorithms, we use
the notation A 	B to mean entrywise multiplication of A and
B, A

B to mean entrywise division, and A	 � to mean entrywise
raising to the �th power. In addition, repmatð����; 1; NÞ denotes
the K �N matrix with each column being the � vector.

4.5 Choosing the Hyperparameters

4.5.1 Choice of Dispersion Parameter �

The dispersion parameter � represents the tradeoff between
the data fidelity and the regularization terms in (20). It
needs to be fixed, based on prior knowledge about the noise
distribution, or learned from the data using either cross-
validation or MAP estimation. In the latter case, � is
assigned a prior pð�Þ and the objective CðW;H; �; �Þ can be
optimized over �. This is a standard feature in penalized
likelihood approaches and has been widely discussed in the
literature. In this work, we will not address the estimation
of �, but only study the influence of the regularization term
on the factorization given �. In many cases, it is reasonable
to fix � based on prior knowledge. In particular, under the
Gaussian noise assumption, vfn 
 Nðvfnjv̂fn; �2Þ, and � ¼ 2
and � ¼ �2. Under the Poisson noise assumption, vfn 

Pðvfnjv̂fnÞ, and � ¼ 1 and � ¼ 1. Under multiplicative
Gamma noise assumption, vfn ¼ v̂fn 	 fn and fn is a
Gamma noise of mean 1, or equivalently, vfn 
 Gðvknj�;
v̂fn=�Þ, and � ¼ 0 and � ¼ 1=�. In audio applications where
the power spectrogram is to be factorized, as in Section 6.3,
the multiplicative exponential noise model (with � ¼ 1) is a
generally agreed upon assumption [3] and thus � ¼ 1.

4.5.2 Choice of Hyperparameters a and b

We now discuss how to choose the hyperparameters a and b
in (14) in a data-dependent and principled way. Our
method is related to the method of moments. We first focus
on the selection of b using the sample mean of data, given a.
Then the selection of a based on the sample variance of the
data is discussed at the end of the section.

Consider the approximation in (1), which can be written
element-wise as

vfn � v̂fn ¼
X
k

wfkhkn: ð35Þ

The statistical models corresponding to shape parameter
� 62 ð1; 2Þ imply that IE½vfnjv̂fn� ¼ v̂fn. We extrapolate this
property to derive a rule for selecting the hyperparameter b
for all � 2 IR (and for nonnegative real-valued data in
general), even though there is no known statistical model
governing the noise when � 2 ð1; 2Þ. When FN is large, the
law of large numbers implies that the sample mean of the
elements in V is close to the population mean (with high
probability), i.e.,
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�̂V ¼4
1

FN

X
fn

vfn � IE½vfn� ¼ IE½v̂fn� ¼
X
k

IE½wfkhkn�: ð36Þ

We can compute IE½v̂fn� for the Half-Normal and Exponen-
tial models using the moments of these distributions and
those of the inverse-Gamma for �k. These yield

IE½v̂fn� ¼

2Kb

�ða� 1Þ Half-Normal;

Kb2

ða� 1Þða� 2Þ Exponential:

8>><
>>: ð37Þ

By equating these expressions to the empirical mean �̂V, we
conclude that we can choose b according to

b̂ ¼

�ða� 1Þ�̂V

2K
‘2-ARD;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða� 1Þða� 2Þ�̂V

K

r
‘1-ARD:

8>><
>>: ð38Þ

In summary, b̂ / �̂V=K and b̂ / ð�̂V=KÞ1=2 for ‘2- and
‘1-ARD, respectively.

By using the empirical variance of V and the relation
between the mean and variance of the Tweedie distribution
in (15), we may also estimate a from the data. The resulting
relations are more involved and these calculations are
deferred to the online supplementary material [33] for
� 2 f0; 1; 2g. However, experiments showed that the result-
ing learning rules for a did not consistently give satisfac-
tory results, especially when FN is not sufficiently large. In
particular, the estimates sometimes fall out of the para-
meter space, which is a known feature of the method of
moments. Observe that a appears in the objective function
(21) only through c ¼ ðF þNÞ=2þ aþ 1 (‘2-ARD) or c ¼
F þN þ aþ 1 (‘1-ARD). As such, the influence of a is
moderated by F þN . Hence, if we want to choose a prior
on a that is not too informative, then we should choose a to
be small compared to F þN . Experiments in Section 6
confirm that smaller values of a (relative to F þN)
typically produce better results. As discussed in the
conclusion, a more robust estimation of a (as well as b
and �) would involve a fully Bayesian treatment of our
problem, which is left for future work.

5 CONNECTIONS WITH OTHER WORKS

Our work draws parallels with a few other works on model
order selection in NMF. The closest work is [18], which also
proposes automatic component pruning via a MAP
approach. It was developed during the same period as
and independently of our earlier work [22]. An extension to
multi-array analysis is also proposed in [19]. In [18], Mørup
and Hansen consider NMF with the euclidean and KL costs.
They constrained the columns of W to have unit norm (i.e.,
kwkk2 ¼ 1) and assumed that the coefficients of H are
assigned exponential priors Eðhknj�kÞ. A noninformative
Jeffrey’s prior is further assumed on �k. Put together, they
consider the following optimization over ðW;HÞ:

minimize
W;H;����

DðVjWHÞ þ
X
k

1

�k
khkk1 þN log�k

subject to W � 0; H � 0; kwkk2 ¼ 1; 8 k;
ð39Þ

where Dð	j	Þ is either the squared euclidean distance or the

KL-divergence. A major difference compared to our

objective function in (20) is that this method involves

optimizing W under the constraint kwkk2 ¼ 1, which is

nontrivial. As such, to solve (39), Mørup and Hansen [18]

used a change of variables w0k  wk=kwkk2 and derived a

heuristic multiplicative algorithm based on the ratio of

negative and positive parts of the new objective function,

along the lines of [36]. In contrast, our approach treats wk

and hk symmetrically and the updates are simple.

Furthermore, the pruning approach in [18] only occurs in

the rows H and the corresponding columns of W may take

any nonnegative value (subject to the norm constraint),

which makes the estimation of these columns of W ill-

posed (i.e., the parameterization is such that a part of the

model is not observable). In contrast, in our approach wk

and hk are tied together so they converge to zero jointly

when �k reaches its lower bound.
Our work is also related to the automatic rank determi-

nation method in Projective NMF proposed by Yang et al.
[20]. Following the principle of PCA, Projective NMF seeks a
nonnegative matrix W such that the projection of V on the
subspace spanned by W best fits V. In other words, it is
assumed that H ¼WTV. Following ARD in Bayesian PCA
as originally described by Bishop [13], Yang et al. consider
the additive Gaussian noise model and propose placing
half-normal priors with relevance parameters �k on the
columns of W. They describe how to adapt EM to achieve
MAP estimation of W and its relevance parameters.

Estimation of the model order in the Itakura-Saito
NMF (multiplicative exponential noise) was addressed by
Hoffman et al. [21]. They employ a nonparametric
Bayesian setting in which K is assigned a large value
(in principle, infinite), but the model is such that only a
finite subset of components is retained. In their model,
the coefficients of W and H have Gamma priors with
fixed hyperparameters and a weight parameter �k is
placed before each component in the factor model, i.e.,
v̂fn ¼

P
k �kwfkhkn. The weight, akin to the relevance

parameter in our setting, is assigned a Gamma prior
with a sparsity-enforcing shape parameter. A difference
with our model is the a priori independence of the factors
and the weights. Variational inference is used in [21].

In contrast with the above-mentioned works, the work
herein presents a unified framework for model selection in
�-NMF. The proposed algorithms have low complexity
per iteration and are simple to implement while decreas-
ing the objective function at every iteration. We compare
the performance of our algorithms to those in [18] and
[21] in Sections 6.3 (music decomposition) and 6.4 (stock
price prediction).

6 EXPERIMENTS

In this section, we present extensive numerical experiments
demonstrating the robustness and efficiency of the pro-
posed algorithms for 1) uncovering the correct model order
and 2) learning better decompositions for modeling non-
negative data.
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6.1 Simulations with Synthetic Data

In this section, we describe experiments on synthetic data

generated according to the model. In particular, we fixed a

pair of hyperparameters ðatrue; btrueÞ and sampled Ktrue ¼ 5

relevance weights �k according to the inverse-Gamma prior

in (14). Conditioned on these relevance weights, we

sampled the elements of W and H from the Half-Normal

or Exponential models depending on whether we chose to

use ‘2- or ‘1-ARD. These models are defined in (12) and (13),

respectively. We set atrue ¼ 50 and btrue ¼ 70 for reasons that

will be made clear in the following. We defined the

noiseless matrix V̂ as WH. We then generated a noisy

matrix V given V̂ according to the three statistical models

� ¼ 0; 1; 2 corresponding to IS-, KL- and EUC-NMF,

respectively. More precisely, the parameters of the noise

models are chosen so that the signal-to-noise ratio SNR in

dB, defined as SNR ¼ 20 log10ðkV̂kF =kV� V̂kF Þ, is ap-

proximately 10 dB for each � 2 f0; 1; 2g. For � ¼ 0, this

corresponds to an �, the shape parameter, of approximately

10. For � ¼ 1, the parameterless Poisson noise model results

in an integer-valued noisy matrix V. Since there is no noise

parameter to select Poisson noise model, we chose btrue so

that the elements of the data matrix V are large enough,

resulting in an SNR � 10 dB. For the Gaussian observation

model (� ¼ 2), we can analytically solve for the noise

variance �2 so that the SNR is approximately 10 dB. In

addition, we set the number of columns N ¼ 100, the initial

number of components K ¼ 2 Ktrue ¼ 10, and chose two

different values for F , namely, 50 and 500. The threshold

value 
 is set to 10�7 (refer to Section 4.4). It was observed

using this value of the threshold that the iterates of �k
converged to their limiting values. We ran ‘1- and ‘2-ARD

for a 2 f5; 10; 25; 50; 100; 250; 500g and using b com-

puted as in Section 4.5.2. The dispersion parameter � is

assumed known and set as in the discussion after (18).
To make fair comparisons, the data and the initializa-

tions are the same for ‘2- and ‘1-ARD as well as for every

ð�; aÞ. We averaged the inferred model order Keff over
10 different runs. The results are displayed in Fig. 1.

First, we observe that ‘1-ARD recovers the model order
Ktrue ¼ 5 correctly when a � 100 and � 2 f0; 1; 2g. This
range includes atrue ¼ 50, which is the true hyperparameter
we generated the data from. Thus, if we use the correct range
of values of a and if the SNR is of the order 10 dB (which is
reasonable in most applications), we are able to recover the
true model order from the data. On the other hand, from the
top right and bottom right plots, we see that ‘2-ARD is not as
robust in recovering the right latent dimensionality.

Second, note that the quality of estimation is relatively
consistent across various �s. The success of the proposed
algorithms hinges more on the amount of noise added
(i.e., the SNR) compared to which specific � is assumed.
However, as discussed in Section 3.2, the shape parameter �
should be chosen to reflect our belief in the underlying
generative model and the noise statistics.

Third, observe that when more data are available
(F ¼ 500), the estimation quality improves significantly.
This is evidenced by the fact that even ‘2-ARD (bottom right
plot) performs much better—it selects the right model order
for all a � 25 and � 2 f1; 2g. The estimates are also much
more consistent across various initializations. Indeed the
standard deviations for most sets of experiments is zero,
demonstrating that there is little or no variability due to
random initializations.

6.2 Simulations with the swimmer Dataset

In this section, we report experiments on the swimmer

dataset introduced in [37]. This is a synthetic dataset of
N ¼ 256 images each of size F ¼ 32� 32 ¼ 1;024. Each
image represents a swimmer composed of an invariant
torso and four limbs, where each limb can take one of four
positions. We set background pixel values to 1 and body
pixel values to 10, and generated noisy data with Poisson
noise. Sample images of the resulting noisy data are shown
in Fig. 2. The “ground truth” number of components for this
dataset is Ktrue ¼ 16, which corresponds to all the different
limb positions. The torso and background form an invariant
component that can be associated with any of the four
limbs, or equally split among limbs. The data images are
vectorized and arranged in the columns of V.

We applied ‘1- and ‘2-ARD with � ¼ 1 (KL-divergence,
matching the Poisson noise assumption, and thus� ¼ 1),K ¼
32 ¼ 2 Ktrue and 
 ¼ 10�6. We tried several values for the
hyperparameter a, namely, a 2 f5; 10; 25; 50; 75; 100;
250; 500; 750; 1;000g, and set b according to (38). For every
value of a we ran the algorithms from 10 common positive
random initializations. The regularization paths returned by
the two algorithms are displayed in Fig. 3. ‘1-ARD consis-
tently estimates the correct number of components
(Ktrue ¼ 16) up to a ¼ 500. Fig. 4 displays the learned basis,
objective function, and relevance parameters along iterations
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Fig. 1. Estimated number of components as a function of the
hyperparameter a (log-linear plot). The true model order is Ktrue ¼ 5.
The solid line is the mean across 10 runs and the error bars display �
the standard deviation.

Fig. 2. Sample images of the noisy swimmer data. The colormap is
adjusted such that black corresponds to the smallest data coefficient
value (vfn ¼ 0) and white the largest (vfn ¼ 24).



in one run of ‘1-ARD when a ¼ 100. It can be seen that the
ground truth is perfectly recovered.

In contrast to ‘1-ARD, Fig. 3 shows that the value of Keff

returned by ‘2-ARD is more variable across runs and values
of a. Manual inspection reveals that some runs return the
correct decomposition when a ¼ 500 (and those are the runs
with the lowest end value of the objective function,
indicating the presence of apparent local minima), but far
less consistently than ‘1-ARD. Then it might appear that the
decomposition strongly overfits the noise for a 2 f750;
1;000g. However, visual inspection of learned dictionaries
with these values shows that the solutions still make sense.
As such, Fig. 5 displays the dictionary learned by ‘2-ARD
with a ¼ 1;000. The figure shows that the hierarchy of the
decomposition is preserved, despite the fact that the last

16 components capture some residual noise, as a closer
inspection would reveal. Thus, despite that fact that
pruning is not fully achieved in the 16 extra components,
the relevance parameters still give a valid interpretation of
what the most significant components are. Fig. 5 shows the
evolution of relevance parameters along iterations and it
can be seen that the 16 “spurious” components approach
the lower bound in the early iterations before they start to fit
noise. Note that ‘2-ARD returns a solution where the torso
is equally shared by the four limbs. This is because the ‘2

penalization favors this particular solution over the one
returned by ‘1-ARD, which favors sparsity of the individual
dictionary elements.

With 
 ¼ 10�6, the average number of iterations for
convergence is approximately 4;000� 2;000 for ‘1-ARD for
all a. The average number of iterations for ‘2-ARD is of the
same order for a � 500, and increases to more than 10,000
iterations for a � 750 because all components are active for
these as.

6.3 Music Decomposition

We now consider a music signal decomposition example and
illustrate the benefits of ARD in NMF with the IS divergence
(� ¼ 0). Févotte et al. [3] showed that IS-NMF of the power
spectrogram underlies a generative statistical model of
superimposed Gaussian components, which is relevant to
the representation of audio signals. As explained in Sections
3.2 and 4.5, this model is also equivalent to assuming that the
power spectrogram is observed in multiplicative exponential
noise, i.e., setting �¼1=�¼1. We investigate the decomposi-
tion of the short piano sequence used in [3], a monophonic
15 seconds-long signal xt recorded in real conditions. The
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Fig. 3. Estimated number of components Keff as a function of a for ‘1-
and ‘2-ARD. The plain line is the average value of Keff over the 10 runs
and dashed lines display � the standard deviation.

Fig. 4. Top: Dictionary learned in one run of ‘1-ARD with a ¼ 100. The
dictionary elements are presented left to right, top to bottom, by
descending order of their relevance �k. For improved visualization and
fair comparison of the relative importance of the dictionary elements,
we display wk rescaled by the expectation of hkn, i.e., for ‘1-ARD,
�kwk. The figure colormap is then adjusted to fit the full range of
values taken by W diag ����. Middle: Values of the objective function
(21) along iterations (log-log scale). Bottom: Values of �k �B along
iterations (log-linear scale).

Fig. 5. Top: Dictionary learned by ‘2-ARD with a ¼ 1;000. The dictionary
is displayed using the same convention as in Fig. 4, except that the
vectors wk are now rescaled by the expectation of hkn under the Half-
Normal prior, i.e., ð2�k=�Þ1=2. Middle: Values of the cost function (21)
along iterations (log-log scale). Bottom: Values of �k �B along iterations
(log-linear scale).



sequence is composed of four piano notes, played all at once
in the first measure and then played by pairs in all possible
combinations in the subsequent measures. The STFT xfn of
the temporal data xt was computed using a sinebell analysis
window of length L ¼ 1;024 (46 ms) with 50 percent overlap
between two adjacent frames, leading to N ¼ 674 frames
and F ¼ 513 frequency bins. The musical score, temporal
signal, and log-power spectrogram are shown in Fig. 6. In
[3], it was shown that IS-NMF of the power spectrogram
vfn ¼ jxfnj2 can correctly separate the spectra of the
different notes and other constituents of the signal (sound
of hammer on the strings, sound of sustain pedal, etc.).

We set K ¼ 18 (three times the “ground truth” number
of components) and ran ‘2-ARD with � ¼ 0, a ¼ 5, and b

computed according to (38). We ran the algorithm from
10 random initializations and selected the solution returned
with the lowest final cost. For comparison, we ran standard
nonpenalized Itakura-Saito NMF using the multiplicative
algorithm described in [3], equivalent to ‘2-ARD with �k !
1 and �ð�Þ ¼ 1. We ran IS-NMF 10 times with the same
random initializations we used for ARD IS-NMF, and
selected the solution with minimum fit. Additionally, we
ran the methods by Mørup and Hansen (with KL-
divergence) [18] and Hoffman et al. [21]. We used Matlab
implementations either publicly available [21] or provided
to us by Mørup and Hansen [18]. The best among 10 runs of
these methods was selected.

Given an approximate factorization WH of the data
spectrogram V returned by any of the four algorithms, we
proceeded to reconstruct time-domain components by
Wiener filtering, following [3]. The STFT estimate ĉk;fn of
component k is reconstructed by

ĉk;fn ¼
wfkhknP
j wfjhjn

xfn; ð40Þ

and the STFT is inverted to produce the temporal compo-
nent ĉk;t.

2 By linearity of the reconstruction and inversion,
the decomposition is conservative, i.e., xt¼

P
k ĉk;t.

The components produced by IS-NMF were ordered by
decreasing value of their standard deviations (computed from
the time samples). The components produced by ARD IS-
NMF, Mørup and Hansen [18], and Hoffman et al. [21] were
ordered by decreasing value of their relevance weights (f�kg or
f�kg). Fig. 7 displays the 10 first components produced by
IS-NMF and ARD IS-NMF. The y-axes of the two figures are
identical so that the component amplitudes are directly
comparable. Fig. 8 displays the histograms of the standard
deviation values of all 18 components for IS-NMF, ARD IS-
NMF, Mørup and Hansen [18], and Hoffman et al. [21].3

The histogram in the top right of Fig. 8 indicates that
ARD IS-NMF retains six components. This is also confirmed
by the value of relative relevance ð�k �BÞ=B (upon
convergence of the relevance weights), displayed with the
components in Fig. 7, which drops by a factor of about 2,000
from components 6 to 7. The six components correspond to
expected semantic units of the musical sequence: The first
four components extract the individual notes and the next
two components extract the sound of a hammer hitting the
strings and the sound produced by the sustain pedal when
it is released. In contrast, IS-NMF has a tendency to overfit;
in particular the second note of the piece is split into two
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Fig. 6. Three representations of data: Top: original score, middle: time-
domain recorded signal, bottom: log-power spectrogram.

Fig. 7. The first 10 components produced by IS-NMF and ARD IS-NMF.
STD denotes the standard deviation of the time samples. TOL is the
relevance relative to the bound, i.e., ð�k � BÞ=B. With IS-NMF, the
second note of the piece is split into two components (k ¼ 2 and k ¼ 4).

2. With the approach of Hoffman et al. [21], the columns of W have to
be multiplied by their corresponding weight parameter �k prior to
reconstruction.

3. The sound files produced by all the approaches are available in the
supplementary material, available online. See [33].



components (k ¼ 2 and k ¼ 4). The histogram in the bottom
left of Fig. 8 shows that the approach of Mørup and Hansen
[18] (with the KL-divergence) retains 11 components.
Visual inspection of the reconstructed components reveals
inaccuracies in the decomposition and significant overfit
(some notes are split in subcomponents). The poorness of
the results is in part explained by the inadequacy of the
KL-divergence (or euclidean distance) for factorization of
spectrograms, as discussed in [3]. In contrast, our approach
offers flexibility for ARD NMF where the fit-to-data term
can be chosen according to the application by setting � to
the desired value.

The histogram in the bottom right of Fig. 8 shows that the
method by Hoffman et al. [21] retains approximately five
components. The decomposition resembles the expected
decomposition more closely than [18], except that the
hammer attacks are merged with one of the notes.
However, it is interesting to note that the distribution of
standard deviations does not follow the order of relevance
values. This is because the weight parameter �k is
independent of W and H in the prior. As such, the factors
are allowed to take very small values while the weight
values are not necessarily small.

Finally, we remark that on this data ‘1-ARD IS-NMF
performed similarly to ‘2-ARD IS-NMF and in both cases
the retrieved decompositions were fairly robust to the
choice of a. We experimented with the same values of a as
in previous section and the decompositions and their
hierarchies were always found correct. We point out that,
as with IS-NMF, initialization is an issue, as other runs did
not produce the desired decomposition into notes. How-
ever, in our experience the best out of 10 runs always
outputs the correct decomposition.

6.4 Prediction of Stock Prices

NMF (with the euclidean and KL costs) has previously
been applied on stock data [5] to learn “basis functions”
and to cluster companies. In this section, we perform a
prediction task on the stock prices of the Dow 30

companies (comprising the Dow Jones Industrial Average).
These are major American companies from various sectors
of the economy such as services (e.g., Walmart), consumer
goods (e.g., General Motors), and healthcare (e.g., Pfizer).
The dataset consists of the stock prices of these F ¼ 30
companies from 3 January 2000 to 27 July 2011, a total of
N ¼ 2;543 trading days.4 The data are displayed in the top
left plot of Fig. 9.

In order to test the prediction capabilities of our
algorithm, we organized the data into an F �N matrix V

and removed 50 percent of the entries at random. For the
first set of experiments, we performed standard �-NMF
with � ¼ 1, for different values of K, using the observed
entries only.5 We report results for different noninteger
values of � in the following. Having performed KL-NMF on
the incomplete data, we then estimated the missing entries
by multiplying the inferred basis W and the activation
coefficients H to obtain the estimate V̂. The normalized KL-
divergence (NKLD) between the true (missing) stock data
and their estimates is then computed as

NKLD ¼4 1

jEj
X
ðf;nÞ2E

dKLðvfnjv̂fnÞ; ð41Þ

where E � f1; . . . ; Fg � f1; . . . ; Ng is the set of missing

entries and dKLð 	 j 	 Þ is the KL-divergence (� ¼ 1). The

smaller the NKLD, the better the prediction of the missing

stock prices and hence the better the decomposition of V

into W and H. We then did the same for ‘1- and ‘2-ARD

KL-NMF, for different values of a and using K ¼ 25. For

1602 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 7, JULY 2013

Fig. 9. Top left: The stock data. Top right: Effective model order Keff as a
function of a. Bottom: Normalized KL-divergence for KL-NMF (left), ‘1-
and ‘2-ARD KL-NMF (right). Note that the y-axes on both plots are the
same. Mørup and Hansen’s method [18] yielded an NKLD of 0:37� 0:03
(averaged over 10 runs), which is inferior to ‘2-ARD, as seen in the
bottom right.

Fig. 8. Histograms of standard deviation values of all 18 components
produced by IS-NMF, ARD IS-NMF, Mørup and Hansen [18], and
Hoffman et al. [21]. ARD IS-NMF only retains 6 components, which
correspond to the expected decomposition, displayed in Fig. 7. On this
dataset, the methods proposed in [18] and [21] fail to produce the
desired decomposition.

4. Stock prices of the Dow 30 companies are provided at the following
link: http://www.optiontradingtips.com/resources/historical-data/dow-
jones30.html. The raw data consists of four stock prices per company per
day. The mean of the four data points is taken to be the representative of the
stock price of that company for that day.

5. Accounting for the missing data involves applying a binary mask to V
and WH, where 0 indicates missing entries [38].



KL-NMF, the criterion for termination is chosen so that it

mimics that in Section 4.4. Namely, as is commonly done in

the NMF literature, we ensured that the columns of W are

normalized to unity. Then, we computed the NMF relevance

weights �NMF
k ¼4 1

2 khkk
2
2. We terminated the algorithm when-

ever tolNMF ¼4 maxkjð�NMF
k � ~�NMF

k Þ= ~�NMF
k j falls below 
 ¼

5� 10�7. We averaged the results over 20 random initi-

alizations. The NKLDs and the inferred model orders Keff

are displayed in Fig. 9.
In the top right plot of Fig. 9, we observe that there is a

general increasing trend; as a increases, the inferred model
order Keff also increases. In addition, for the same value of
a, ‘1-ARD prunes more components than ‘2-ARD due to its
sparsifying effect. This was also observed for synthetic data
and the swimmer dataset. However, even though ‘2-ARD
retains almost all the components, the basis and activation
coefficients learned model the underlying data better. This
is because ‘2 penalization methods result in coefficients that
are more dense and are known to be better for prediction
(rather than sparsification) tasks.

From the bottom left plot of Fig. 9, we observe that when
K is too small, the model is not “rich” enough to model the
data and hence the NKLD is large. Conversely, when K is
too large, the model overfits the data, resulting in a large
NKLD. We also observe that ‘2-ARD performs spectacularly
across a range of values of the hyperparameter a, uniformly
better than standard KL-NMF. The NKLD for estimating
the missing stock prices hovers around 0.2, whereas KL-
NMF results in an NKLD of more than 0.23 for all K. This
shows that ‘2-ARD produces a decomposition that is more
relevant for modeling missing data. Thus, if one does not
know the true model order a priori and chooses to use
‘2-ARD with some hyperparameter a, the resulting NKLD
would be much better than doing KL-NMF even though
many components will be retained. In contrast, ‘1-ARD
does not perform as spectacularly across all values of a but
even when a small number of components is retained (at
a ¼ 500, Keff ¼ 5, NKLD for ‘1-ARD � 0:23, NKLD for KL-
NMF � 0:25), it performs significantly better than KL-NMF.
It is plausible that the stock data fits the assumptions of the
Half-Normal model better than the Exponential model and
hence ‘2-ARD performs better.

For comparison, we also implemented a version of the
method by Mørup and Hansen [18] that handles missing
data. The mean NKLD value returned over 10 runs is
0:37� 0:03, and thus it is clearly inferior to the methods in
this paper. The data does not fit the model well.

Finally, in Fig. 10, we demonstrate the effect of varying the
shape parameter � and the dispersion parameter �. The
distance between the predicted stock prices and the true ones
is measured using the NKLD in (41) and the NEUC (the
euclidean analogue of the NKLD). We also computed the NIS
(the IS analogue of the NKLD), and noted that the results
across all three performance metrics are similar so we omit
the NIS. We used l2-ARD, set a ¼ 1;000, and calculated b

using (38). We also chose integer and noninteger values of �
to demonstrate the flexibility of l2-ARD. It is observed that
� ¼ 0:5; � ¼ 10 gives the best NKLD and NEUC and that
1 � � � 1:5 performs well across a wide range of values of �.

7 CONCLUSION

In this paper, we proposed a novel statistical model for
�-NMF where the columns of W and rows H are tied together
through a common scale parameter in their prior, exploiting
(and solving) the scale ambiguity between W and H. MAP
estimation reduces to a penalized NMF problem with a
group-sparsity inducing regularizing term. A set of MM
algorithms accounting for all values of � and either ‘1- or
‘2-norm group-regularization was presented. They ensure
the monotonic decrease of the objective function at each
iteration and result in multiplicative update rules of linear
complexity in F , K, and N . The updates automatically
preserve nonnegativity, given positive initializations, and
are easily implemented. The efficiency of our approach was
validated on several synthetic and real-world datasets, with
competitive performance w.r.t. the state of the art. At the
same time, our proposed methods offer improved flexibility
over existing approaches (our approach can deal with
various types of observation noise and prior structure in a
unified framework). Using the method of moments, an
effective strategy for the selection of hyperparemeter b
given a was proposed and, as a general rule of thumb, we
recommend setting a to a small value w.r.t. F þN .

There are several avenues for further research: here, we
derived a MAP approach that works efficiently, but more
sophisticated inference techniques can be envisaged, such
as fully Bayesian inference in the model we proposed in
Section 3. Following similar treatments in sparse regression
[39], [40] or with other forms of matrix factorization [41],
one could seek the maximization of log pðVja; b; �Þ using
variational or Markov chain Monte-Carlo inference, and in
particular handle hyperparameter estimation in a (more)
principled way. Other more direct extensions of this work
concern the factorization of tensors and online-based
methods akin to [42], [43].
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