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Introduction to Stochastic Multi-Armed Bandits in BAI

Efficacies: µ1 = 0.8 µ2 = 0.9 µ3 = 0.2 µ4 = 0.5

In clinical trials, there are N potential treatments for a disease.

At each time, the scientist prescribes one of them to each lab animal
and the efficacies of the treatments can be observed.

Goal: Find the best treatment using the smallest number of trials.

Vincent Tan (NUS) Almost Optimal Variance-Constrained BAI July 7, 2022 2 / 28



Formulation of Stochastic Multi-Armed Bandits in BAI

N arms: [N ] = {1, 2, . . . , N} with unknown distributions {νi}Ni=1

Sampling strategy: At each round r, select arm ir ∈ [N ] based on the
observation history

Hr = ((i1, X1,i1), . . . , (ir−1, Xr−1,ir−1))

and observe the reward Xr,ir ∼ νir
The sequence of random variables {Xr,i}∞r=1 is assumed to be i.i.d.
across rounds r ∈ N and arms i ∈ [N ]

Goal: Design a policy to find the arm with the highest expectation
(best arm) in the smallest number of rounds.

Probably approximately correct (PAC) framework (Even-Dar et al.,
2006). Given a fixed confidence parameter δ, find any i ∈ [N ] s.t.

P
[
i ∈ arg max

j∈[N ]
µj

]
≥ 1− δ.
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Introduction to BAI
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Figure 1: An illustration of a 3-arm BAI problem. At each round, only one arm is
sampled and the reward is observed.
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Motivation of Risk-Aware BAI
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Figure 2: An example of risk-aware BAI: Clinical trials
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Another motivation: Going to office bandit style

On every day

1 Pick a route to office

2 Reach office and record (suffered) delay
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Why consider risk?

E[time] = 10 mins,Var(time) = 10 E[time] = 11 mins,Var(time) = 0.1

Delays are stochastic.

In choosing between routes, we need not necessarily want to minimize
expected delay.

Two route scenario: Average delay of Route 1 slightly below that of
Route 2.

Route 1 has a small chance of very high delay, e.g., jams.

I might prefer Route 2.
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Introduction to Risk-Aware Bandits

Incorporate the risk into the quality measure:
I Mean-variance: Sani et al. (2012), Vakili and Zhao (2016), and Zhu

and Tan (2020).
I Value-at-Risk or α-quantile: David and Shimkin (2016)
I Conditional Value-at-risk (CVaR): Kagrecha et al. (2020) and Baudry

et al. (2021)

Risk-constrained problem, i.e., conventional BAI with constraints
I Variance
I α-quantile: David et al. (2018)
I Safe bandits: Wu et al. (2016); Amani et al. (2019)
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Introduction to Variance-Constrained BAI

An instance (ν = {νi}Ni=1, σ̄
2) consists of

N arms with associated with unknown reward distributions {νi}Ni=1,
where arm i follows νi with expectation µi and variance σ2

i .

permissible upper bound on the variance: σ̄2.

Based on the means and variances, define

Feasible set F := {i ∈ [N ] : σ2
i ≤ σ̄2}

Infeasible set F̄c := [N ]\F
Best feasible arm i? := argmax{µi : i ∈ F}
Suboptimal set S := {i ∈ [N ] : µi < µi?}
Risky set R := [N ] \ (S ∪ {i?})
Mean gap ∆i = µi? − µi ≥ 0

Variance gap ∆v
i = |σ2

i − σ̄2|
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Introduction to Variance-Constrained BAI

Figure 3: An illustration of an instance

Goal: Minimize the number of arm pulls needed for

Ascertaining the feasibility of the instance (ν, σ̄2);

Finding the best feasible arm i? if F 6= ∅
with probability ≥ 1− δ
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Main Result: Upper Bound

Theorem 1 (Upper bound)

Define the hardness parameter

HVA :=
1

min{∆i?

2 ,∆v
i?}2

+
∑
i∈F∩S

1

(∆i
2 )2

+
∑

i∈F̄c∩R

1

(∆v
i )

2
+
∑

i∈F̄c∩S

1

max{∆i
2 ,∆

v
i }2

.

Given an instance (ν, σ̄2) with probability at least 1− δ, our proposed
algorithm VA-LUCB succeeds and terminates in

O

(
HVA ln

HVA

δ

)
time steps.

Vincent Tan (NUS) Almost Optimal Variance-Constrained BAI July 7, 2022 11 / 28



Main Result: Upper Bound

Theorem 1 (Upper bound)

Define the hardness parameter

HVA :=
1

min{∆i?

2 ,∆v
i?}2

+
∑
i∈F∩S

1

(∆i
2 )2

+
∑

i∈F̄c∩R

1

(∆v
i )

2
+
∑

i∈F̄c∩S

1

max{∆i
2 ,∆

v
i }2

.

Given an instance (ν, σ̄2) with probability at least 1− δ, our proposed
algorithm VA-LUCB succeeds and terminates in

O

(
HVA ln

HVA

δ

)
time steps.

Vincent Tan (NUS) Almost Optimal Variance-Constrained BAI July 7, 2022 11 / 28



Main Result: Lower Bound and Almost-Tightness

Theorem 2 (Lower bound)

Given any instance (ν, σ̄2) with σ̄2 ∈ (0, 1/4), the optimal expected time
complexity τ?δ satisfies

τ?δ = Ω

(
HVA ln

1

δ

)
.

Corollary 3 (Almost optimality of VA-LUCB)

Given any instance (ν, σ̄2) and variance threshold σ̄2 ∈ (0, 1
4),

τ?δ = Θ̃
(
HVA ln

1

δ

)
,

which is achieved by VA-LUCB.
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Interpretation of Hardness Parameter I

Hardness parameter:

HVA :=
1

min{∆i?

2 ,∆v
i?}2

+
∑
i∈F∩S

1

(∆i
2 )2

+
∑

i∈F̄c∩R

1

(∆v
i )

2
+
∑

i∈F̄c∩S

1

max{∆i
2 ,∆

v
i }2

.
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Interpretation of Hardness Parameter II

Hardness Parameter

HVA :=
1

min{∆i?

2 ,∆v
i?}2

+
∑
i∈F∩S

1

(∆i
2 )2

+
∑

i∈F̄c∩R

1

(∆v
i )

2
+
∑

i∈F̄c∩S

1

max{∆i
2 ,∆

v
i }2

.

HVA :=
1

min{∆i?

2 ,�
�∆v
i?}2

+
∑
i∈�F∩S

1

(∆i
2 )2

+

���
����∑

i∈F̄c∩R

1

(∆v
i )

2
+

�����������∑
i∈F̄c∩S

1

max{∆i
2 ,∆

v
i }2

.

As σ̄2 →∞,

HVA = HVA(σ̄2) −→ H̃1 =
∑
i∈[N ]

4

∆2
i

and 4H1 ≤ H̃1 ≤ 8H1

where

H1 :=
∑
i 6=i?

1

∆2
i

.

Particularizes to classical unconstrained result (Even-Dar et al., 2006).
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VA-LUCB

Concentration inequalities (for distributions bounded on [0, 1]):

Lemma 4 (Implication of Hoeffding’s and McDiarmid’s Inequalities)

Given an instance (ν, σ̄2), for any arm i with Ti(t) ≥ 2 and ε > 0 we have

P
[
|µ̂i(t)− µi| ≥ ε

]
≤ 2 exp(−2Ti(t)ε

2)

and
P
[
|σ̂2
i (t)− σ2

i | ≥ ε
]
≤ 2 exp(−2Ti(t)ε

2)

where

Ti(t) is the number of times arm i is sampled before time t;

µ̂i(t) is the sample mean of arm i at time t;

σ̂2
i (t) is the unbiased sample variance of arm i at time t.
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VA-LUCB: Confidence Bounds

With high probability,

µi ∈ [µ̂i(t)− ε, µ̂i(t) + ε] =: [Lµi (t), Uµi (t)]

σ2
i ∈ [σ̂2

i (t)− ε, σ̂2
i (t) + ε] =: [Lv

i (t), U
v
i (t)]

Define good event

E =
⋂
t∈N

⋂
i∈[N ]

{
µi ∈ [Lµi (t), Uµi (t)], σ2

i ∈ [Lv
i (t), U

v
i (t)]

}
At time step t ∈ N and for arm i ∈ [N ], take

ε =

√
1

2Ti(t)
ln

(
2Nt4

δ

)
Event E occurs with probability at least 1− δ

2 .
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VA-LUCB: Possibly Feasible Set

Figure 4: Illustration of the empirical sets. Each dot represents the sample mean
and sample variance of each arm at time step t.

Possibly feasible set at time t is F̄t := Ft ∪ ∂Ft.
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VA-LUCB: Sampling Strategy

Figure 5: Illustration of the empirical sets.

Empirical Leader it := argmax
{
µ̂i(t) : i ∈ F̄t

}
Empirical Challenger ct := argmax

{
Uµi (t) : i ∈ F̄t \ {it}

}
.
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VA-LUCB: Stopping Strategy

Figure 6: Illustration of the empirical sets.

Potential set Pt :=

{
{i : Lµi?t

(t) ≤ Uµi (t), i 6= i?t }, Ft 6= ∅

[N ], Ft = ∅
Termination condition: F̄t ∩ Pt = ∅.
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Time/Sample Complexity of VA-LUCB

Enhance deployment and analysis of LUCB (Kalyanakrishnan et al., 2012)

Figure 7: An illustration of the suboptimal and risky set.
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Time/Sample Complexity of VA-LUCB

Figure 8: A scenario where all arms have been pulled sufficiently many times.

When empirically potential best feasible arm set

(∂Ft\St) ∪ (Ft ∩Nt) = ∅,

VA-LUCB must stop.
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Time/Sample Complexity of VA-LUCB

Lemma: Existence of Arms to Pull

On the event E, if VA-LUCB does not terminate, then at least one of
the following statements holds:

it ∈ (∂Ft\St) ∪ (Ft ∩Nt).
ct ∈ (∂Ft\St) ∪ (Ft ∩Nt).

Need to compute the number of pulls needed for each arm i such that

i /∈ (∂Ft\St) ∪ (Ft ∩Nt).

Lemma: Small Non-Termination Probability

Let t? := 152 HVA ln HVA
δ . For any t > t?,

P
[
VA-LUCB does not terminate

∣∣∣E] ≤ 2δ

t2
.
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Experiment: VA-LUCB

Recall the upper bound on τ?δ is O
(
HVA ln HVA

δ

)
where

HVA :=
1

min{∆i?

2 ,∆v
i?}2

+
∑
i∈F∩S

1

(∆i
2 )2

+
∑

i∈F̄c∩R

1

(∆v
i )

2
+
∑

i∈F̄c∩S

1

max{∆i
2 ,∆

v
i }2

.

Test the four terms individually

For example, change ∆i? and observe how sample complexity changes
as a function of HVA or HVA ln HVA

δ .
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VA-LUCB: Exploring Effects of the Terms in HVA
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Figure 9: Time complexities with respect to HVA ln(HVA/δ) with δ = 0.05.
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Experiment: Comparison to Competing Algorithms

VA-Uniform: Randomly and uniformly sample two different arms at
each time step.

RiskAverse-UCB-BAI: A variant of the algorithm proposed in
David et al. (2018):

I Sample it = argmax
{
Uµi (t) : i ∈ F̄t

}
(UCB type).

I Terminate at time t when the confidence radius of the mean of it is
smaller than εv.

I Not parameter free: find the εv-approximately feasible and
εµ-approximately optimal arm; the confidence radius involves H, the
hardness parameter in David et al. (2018).

I The upper bound is greater than that of VA-LUCB in sample
complexity.

I The lower bound is looser than ours for almost all instances.
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Experiment: Comparison to Competing Algorithms
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Figure 10: Parameter settings for instance j ∈ [10]. The variance gaps for the
infeasible arms ∆v

i = εvj = 0.233− 0.003 · j in instance j ∈ [10].
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Conclusion and Extensions

Proposed a framework for risk-constrained best arm identification

Developed an algorithm VA-LUCB whose time/sample complexity
matches the information-theoretic lower bound (up to constants and
log terms)

Future work 1: Development of tracking-based risk-constrained BAI
algorithms that can nail down constants

Future work 2: Other bandit feedback models, e.g., dueling bandits.
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