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Introduction to Stochastic Multi-Armed Bandits in BAI

/ / / /
/ / /’ S

Efficacies: wu1 = 0.8 w2 =0.9 ps = 0.2 pa = 0.5

@ In clinical trials, there are IV potential treatments for a disease.

@ At each time, the scientist prescribes one of them to each lab animal
and the efficacies of the treatments can be observed.

@ Goal: Find the best treatment using the smallest number of trials.
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Formulation of Stochastic Multi-Armed Bandits in BAI

e N arms: [N] = {1,2,..., N} with unknown distributions {v;}&,
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Formulation of Stochastic Multi-Armed Bandits in BAI

e N arms: [N] = {1,2,..., N} with unknown distributions {v;}&,

e Sampling strategy: At each round r, select arm i, € [N] based on the
observation history

Hr = ((i1, X1,i1 )5 o5 (r1, Xo—14,1)

and observe the reward X, ; ~ v;

T
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@ The sequence of random variables {X, ;}>°, is assumed to be i.i.d.
across rounds r € N and arms i € [N]
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Formulation of Stochastic Multi-Armed Bandits in BAI

e N arms: [N] = {1,2,..., N} with unknown distributions {v;}&,

e Sampling strategy: At each round r, select arm i, € [N] based on the
observation history

Hr = ((i1, X1,i1 )5 o5 (r1, Xo—14,1)

and observe the reward X, ; ~ v;

T

@ The sequence of random variables {X, ;}>°, is assumed to be i.i.d.
across rounds r € N and arms i € [N]

@ Goal: Design a policy to find the arm with the highest expectation
(best arm) in the smallest number of rounds.
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Formulation of Stochastic Multi-Armed Bandits in BAI

e N arms: [N] = {1,2,..., N} with unknown distributions {v;}&,

e Sampling strategy: At each round r, select arm i, € [N] based on the
observation history

Hr = ((i1, X1,i1 )5 o5 (r1, Xo—14,1)

and observe the reward X, ; ~ v;

T

@ The sequence of random variables {X, ;}>°, is assumed to be i.i.d.
across rounds r € N and arms i € [N]

@ Goal: Design a policy to find the arm with the highest expectation
(best arm) in the smallest number of rounds.

@ Probably approximately correct (PAC) framework (Even-Dar et al.,
2006). Given a fixed confidence parameter 4, find any i € [N] s.t.

P[i € argmax ;| > 1 — 0.
JE[N]
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Introduction to BAI
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Figure 1: An illustration of a 3-arm BAI problem. At each round, only one arm is
sampled and the reward is observed.
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Motivation of Risk-Aware BAI
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Figure 2: An example of risk-aware BAI: Clinical trials
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Another motivation: Going to office bandit style

@ Pick a route to office

On every da V
i /
@ Reach office and record (suffered) delay @
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Why consider risk?

E[time] = 10 mins, Var(time) = 10

E[time] = 11 mins, Var(time) = 0.1
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Why consider risk?

E[time] = 10 mins, Var(time) = 10  E[time] = 11 mins, Var(time) = 0.1
@ Delays are stochastic.

@ In choosing between routes, we need not necessarily want to minimize
expected delay.

@ Two route scenario: Average delay of Route 1 slightly below that of
Route 2.

@ Route 1 has a small chance of very high delay, e.g., jams.

@ | might prefer Route 2.
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Introduction to Risk-Aware Bandits

@ Incorporate the risk into the quality measure:
» Mean-variance: Sani et al. (2012), Vakili and Zhao (2016), and Zhu
and Tan (2020).
» Value-at-Risk or a-quantile: David and Shimkin (2016)
» Conditional Value-at-risk (CVaR): Kagrecha et al. (2020) and Baudry
et al. (2021)
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Introduction to Risk-Aware Bandits

@ Incorporate the risk into the quality measure:
» Mean-variance: Sani et al. (2012), Vakili and Zhao (2016), and Zhu
and Tan (2020).
» Value-at-Risk or a-quantile: David and Shimkin (2016)
» Conditional Value-at-risk (CVaR): Kagrecha et al. (2020) and Baudry
et al. (2021)

@ Risk-constrained problem, i.e., conventional BAI with constraints

» Variance
» a-quantile: David et al. (2018)
» Safe bandits: Wu et al. (2016); Amani et al. (2019)
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Introduction to Variance-Constrained BAI

An instance (v = {v;}¥,,5?%) consists of

e N arms with associated with unknown reward distributions {v;},
where arm i follows v; with expectation u; and variance o?

2.
@ permissible upper bound on the variance: 2.
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2.
@ permissible upper bound on the variance: 2.

Based on the means and variances, define
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@ Best feasible arm ¢* := argmax{u; : i € F}
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Introduction to Variance-Constrained BAI

An instance (v = {v;}¥,,5?%) consists of

e N arms with associated with unknown reward distributions {v;},

2

where arm i follows v; with expectation ; and variance o7}

@ permissible upper bound on the variance: 2.

Based on the means and variances, define
o Feasible set F := {i € [N]: 0? < 5?}
e Infeasible set F¢ := [N]\F
@ Best feasible arm ¢* := argmax{y; : i € F}
@ Suboptimal set S :={i € [N]: p; < p}
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Introduction to Variance-Constrained BAI

An instance (v = {v;}¥,,5?%) consists of
e N arms with associated with unknown reward distributions {v;},

where arm i follows v; with expectation u; and variance 02-2.
@ permissible upper bound on the variance: 2.
Based on the means and variances, define
Feasible set F := {i € [N]: 0? < &%}
Infeasible set F¢ := [N]\F

°
@ Best feasible arm ¢* := argmax{u; : i € F}
°
°

Suboptimal set S :={i € [N] : p; < pi=}
Risky set R := [N]\ (SU {i*})
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Introduction to Variance-Constrained BAI

An instance (v = {v;}¥,,5?%) consists of
e N arms with associated with unknown reward distributions {v;},

where arm i follows v; with expectation u; and variance 02-2.

@ permissible upper bound on the variance: 2.
Based on the means and variances, define

o Feasible set F := {i € [N]: 0? < 5?}
Infeasible set F¢ := [N]\F
Best feasible arm ¢* := argmax{y; : i € F}
Suboptimal set S :={i € [N] : p; < pi=}
Risky set R := [N]\ (SU {i*})
Mean gap A; = pj» — p1; > 0
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Introduction to Variance-Constrained BAI

An instance (v = {v;}¥,,5?%) consists of

e N arms with associated with unknown reward distributions {v;},
where arm i follows v; with expectation ; and variance o7}

@ permissible upper bound on the variance: 2.

Based on the means and variances, define

o Feasible set F := {i € [N]: 0? < 5?}
Infeasible set F¢ := [N]\F
Best feasible arm ¢* := argmax{y; : i € F}
Suboptimal set S :={i € [N] : p; < pi=}
Risky set R := [N]\ (SU {i*})

Mean gap A; = pj» — p1; > 0
57|

Variance gap AY = |02 — &
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Introduction to Variance-Constrained BAI
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Figure 3: An illustration of an instance
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Introduction to Variance-Constrained BAI
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Figure 3: An illustration of an instance

Goal: Minimize the number of arm pulls needed for
@ Ascertaining the feasibility of the instance (v, 52);
@ Finding the best feasible arm i* if F # ()

with probability > 1 —§
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Main Result: Upper Bound

Theorem 1 (Upper bound)

Define the hardness parameter
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Main Result: Upper Bound

Theorem 1 (Upper bound)
Define the hardness parameter

1 1

+
A A,
=, ALY (s ()

1 1
F L BT L A

i€FenS

Hvp =

min{

Given an instance (v,5%) with probability at least 1 — &, our proposed
algorithm VA-LUCB succeeds and terminates in

@) (HVA In I’IgA)

time steps.
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Main Result: Lower Bound and Almost-Tightness

Theorem 2 (Lower bound)

Given any instance (v,5%) with 52 € (0,1/4), the optimal expected time

complexity 5 satisfies
N 1
75 =Q | Hya In 5
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Main Result: Lower Bound and Almost-Tightness

Theorem 2 (Lower bound)

Given any instance (v,5%) with 52 € (0,1/4), the optimal expected time

complexity 5 satisfies

1
Ty = <HVA In 5) )

Corollary 3 (Almost optimality of VA-LUCB)

Given any instance (v,52) and variance threshold 5% € (0, 3),

~ 1
Tg( = @(H\/A In g),
which is achieved by VA-LUCB.
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Interpretation of Hardness Parameter |

Hardness parameter:

e 6 o6 o
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Interpretation of Hardness Parameter |

Hardness parameter:

1 1

HVA = T A + Z A
min{S5, AR T (5)°
1 1
+ D At X A A
i€FenR (A7) i€Fens max{ 3, Af}

Ascertain optimality and feasibility of i*;
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Interpretation of Hardness Parameter |

Hardness parameter:

1 1
Y Er L A

iEFeNS

@ Ascertain optimality and feasibility of ¢*;
@ Ascertain suboptimality of arms in the feasible and suboptimal set;
°
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Interpretation of Hardness Parameter |

Hardness parameter:

1
Hvyp =
mln{ =AY, }2 ; %
+ Z Z maX{A AV}2
ze]—'CﬂR Z i€FenS

Ascertain optimality and feasibility of ¢*;
Ascertain suboptimality of arms in the feasible and suboptimal set;

°
°
@ Ascertain infeasibility of risky and infeasible arms;
°
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Interpretation of Hardness Parameter |

Hardness parameter:

1 1
Hyp = . A, + A
min{ =} A%}? icrns (247

p> AV et 2 max{ 5t AZY}Q'

ze]—‘CﬁR ‘ i€FenS

Ascertain optimality and feasibility of *;
Ascertain suboptimality of arms in the feasible and suboptimal set;

Ascertain infeasibility of risky and infeasible arms;

Ascertain either infeasibility or suboptimality of arms in infeasible and
suboptimal set.
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Interpretation of Hardness Parameter |l

Hardness Parameter

1 1
Hyp == — o AV}2+ Z (Ai)Q

min{=; icFNS \ 2

T Diffe. >

ieFenR ¢ i€FenS

max{ LAY
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Interpretation of Hardness Parameter |l

Hardness Parameter

Hyp =

min{

1
A*%Q Z %

As 52 — o0,
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Interpretation of Hardness Parameter |l

Hardness Parameter

Particularizes to classical unconstrained result (Even-Dar et al., 2006).
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VA-LUCB

Concentration inequalities (for distributions bounded on [0, 1]):
Lemma 4 (Implication of Hoeffding's and McDiarmid's Inequalities)

Given an instance (v,5?), for any arm i with T;(t) > 2 and € > 0 we have
P[|fi(t) — pal > €] < 2exp(—2T;(t)e?)

and
IP’[|6Z-2(t) - 0'Z~2| > s] < 2exp(—2Ti(t)52)
where
e T;(t) is the number of times arm i is sampled before time t;
@ [1;(t) is the sample mean of arm i at time t;
52
@ O

2(t) is the unbiased sample variance of arm i at time t.
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VA-LUCRB: Confidence Bounds

@ With high probability,

m [2i(t) — &, fu(t) + €] =: [L{'(8), U (1)]
of € [07(t) = e,67(t) + €] = [LY (1), Uy (1))
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VA-LUCRB: Confidence Bounds

@ With high probability,

m [13(t) — &, fus(t) + €] =: [LY (1), U (1)]
of € [07(t) = e,67(t) + €] = [LY (1), Uy (1))

@ Define good event

B=( () {m € L4, VL), 02 € L (1), UF (1)}

teNie[N]
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VA-LUCRB: Confidence Bounds

@ With high probability,

m [13(t) — &, fus(t) + €] =: [LY (1), U (1)]
of € [07(t) = e,67(t) + €] = [LY (1), Uy (1))

@ Define good event

E=( ) {me Uf'(#)), o7 € [Lj (1), U7 ()]}

teNie[N]

@ At time step ¢ € N and for arm i € [N], take
_ 1 (2Nt
Vo "\
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VA-LUCRB: Confidence Bounds

@ With high probability,

m [13(t) — &, fus(t) + €] =: [LY (1), U (1)]
of € [07(t) = e,67(t) + €] = [LY (1), Uy (1))

@ Define good event

E=( ) {me Uf'(#)), o7 € [Lj (1), U7 ()]}

teNie[N]

@ At time step ¢ € N and for arm i € [N], take

oz ()

@ Event E occurs with probability at least 1 — g.
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VA-LUCB: Possibly Feasible Set

L
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Figure 4: Illustration of the empirical sets. Each dot represents the sample mean
and sample variance of each arm at time step ¢.

Possibly feasible set at time t is F; := F; U OF;.
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VA-LUCB: Sampling Strategy
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Figure 5: Illustration
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of the empirical sets.
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VA-LUCB: Sampling Strategy

A A
T = arms in F; T T arms in F;
¢ armsin 0F; : . ¢ ammsin f)_.?"j'.
t I o ammsin Fy ! '« armsin F;
| ; '
" = "
i sp | L. (t)
b = i
2 ] g
= =3
g g :
172] (7] =
0 & Sample Variance 0 Fa Sample Variance

Figure 5: Illustration of the empirical sets.

o Empirical Leader i; := argmax {;(t) : i € 7}
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VA-LUCB: Sampling Strategy

A A
T = arms in F; T T arms in F;
¢ armsin OF; : ¢ armsin 0_{-',
t I o ammsin Fy ! o armsin F;
| + ; '
i g T i@ o

= =
) 2
= =3
g g
172] w

0 & Sample Variance 0 Fa Sample Variance

Figure 5: Illustration of the empirical sets.
o Empirical Leader i; := argmax {;(t) : i € 7}
o Empirical Challenger ¢; := argmax {U}(t) : i € F; \ {is}}.
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VA-LUCB: Stopping Strategy

A i
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Figure 6: Illustration of the empirical sets.
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VA-LUCB: Stopping Strategy

A i
T T arms in F;
arms in OF;
. e
arms in F,
,
13
TZ10) PRSI A ST N S —
g !
] |
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° g
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Figure 6: Illustration of the empirical sets.

(i LE(t) <UF@),i £t} Fi#0
@ Potential set P; := t

[N], Fr=0
e Termination condition: F; NP = ().
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Time/Sample Complexity of VA-LUCB

Enhance deployment and analysis of LUCB (Kalyanakrishnan et al., 2012)

s o arms in R;

| A armsin N

arms in S;

71 IO AU S I
g
Q
=
2
=
g
[75]
0 52  Sample Variance

Figure 7: An illustration of the suboptimal and risky set.
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Time/Sample Complexity of VA-LUCB

B i B -
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Figure 8: A scenario where all arms have been pulled sufficiently many times.
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Time/Sample Complexity of VA-LUCB

TT AZd
: arms in S

4, { e armsin }':
_ OFi\ S, i
[ e —— i \& ) % T
g FnN : s
g i 7 §
o =
e : 2
] i £
] _ {

FnS @ J

0 P Sample Variance 0 7’

e Sample Variance

Figure 8: A scenario where all arms have been pulled sufficiently many times.
When empirically potential best feasible arm set
(8Ff\8f) U (ft ﬁ./\/;‘) - @,
VA-LUCB must stop.
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Time/Sample Complexity of VA-LUCB

Lemma: Existence of Arms to Pull

On the event E, if VA-LUCB does not terminate, then at least one of
the following statements holds:

@ i € (8]-}\5}) U (.7'-15 ﬁ./\/’t)
@ ¢t € (8.7:t\5t) U (]:t mM)
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Time/Sample Complexity of VA-LUCB

Lemma: Existence of Arms to Pull

On the event E, if VA-LUCB does not terminate, then at least one of
the following statements holds:

@ i € ((?ft\St) U (.7'—15 ﬁ./\/’t)
@ ¢t € (8]—}\5}) U (.7:15 ﬂM)

Need to compute the number of pulls needed for each arm i such that

i & (0F\St) U (Fr NNG).
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Time/Sample Complexity of VA-LUCB

Lemma: Existence of Arms to Pull

On the event E, if VA-LUCB does not terminate, then at least one of
the following statements holds:

@ i € (Oft\St) U (.7'—15 ﬁ./\/’t)
@ ¢t € (8]—}\5}) U (.7:15 ﬂM)

Need to compute the number of pulls needed for each arm i such that
i & (0F\St) U (Fr N N).
Lemma: Small Non-Termination Probability

Let t* := 152 Hya In VA . For any t > t*,

P|VA-LUCB does not terminate ‘ E] < i—g
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Experiment: VA-LUCB

@ Recall the upper bound on 75 is O (HVA In %) where
1 1
Hyp = » A

minl 5 857 RIREY:

+ Z AV)

iEFNR v

- Z I'IlaX{A AV}

i€FenS

@ Test the four terms individually
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Experiment: VA-LUCB

@ Recall the upper bound on 75 is O (HVA In %) where

1 1
Hya : . :
min{ 55, AY, }2 Ze;ns (59
+ +
P

@ Test the four terms individually

@ For example, change A;« and observe how sample complexity changes
as a function of Hya or Hya In H"A
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VA-LUCB: Exploring Effects of the Terms in Hya

4 X 10° p x10°
é 5 .
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Z 2 -
& 7
o oL 0
0 5 10 0 05 R 0 10 0 30
(Hva In(Hva /6))/10° (Hvya In(Hya /0))/10° (Hva In(Hya /0))/10°
(a) Case 1(a) (b) Case 1(c) (c) Case 2
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Figure 9: Time complexities with respect to Hya In(Hya /J) with § = 0.05.

Vincent Tan (NUS) Almost Optimal Variance-Constrained BAI July 7, 2022 24/28



Experiment: Comparison to Competing Algorithms

@ VA-UNIFORM: Randomly and uniformly sample two different arms at
each time step.
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Experiment: Comparison to Competing Algorithms

@ VA-UNIFORM: Randomly and uniformly sample two different arms at
each time step.

o RISKAVERSE-UCB-BAI: A variant of the algorithm proposed in
David et al. (2018):

» Sample i, = argmax {U/"(t) : i € F;} (UCB type).

» Terminate at time ¢ when the confidence radius of the mean of i; is
smaller than ¢,.
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Experiment: Comparison to Competing Algorithms

@ VA-UNIFORM: Randomly and uniformly sample two different arms at
each time step.

o RISKAVERSE-UCB-BAI: A variant of the algorithm proposed in
David et al. (2018):
» Sample i, = argmax {U/"(t) : i € F;} (UCB type).
» Terminate at time ¢ when the confidence radius of the mean of i; is
smaller than ¢, .

> Not parameter free: find the e,-approximately feasible and
€,-approximately optimal arm; the confidence radius involves H, the
hardness parameter in David et al. (2018).

» The upper bound is greater than that of VA-LUCB in sample
complexity.

» The lower bound is looser than ours for almost all instances.
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Experiment: Comparison to Competing Algorithms
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Figure 10: Parameter settings for instance j € [10]. The variance gaps for the
infeasible arms A} = € = 0.233 — 0.003 - j in instance j € [10].
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Conclusion and Extensions

@ Proposed a framework for risk-constrained best arm identification

@ Developed an algorithm VA-LUCB whose time/sample complexity
matches the information-theoretic lower bound (up to constants and
log terms)
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Conclusion and Extensions

@ Proposed a framework for risk-constrained best arm identification

@ Developed an algorithm VA-LUCB whose time/sample complexity
matches the information-theoretic lower bound (up to constants and
log terms)

@ Future work 1: Development of tracking-based risk-constrained BAI
algorithms that can nail down constants

o Future work 2: Other bandit feedback models, e.g., dueling bandits.
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