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Connection between Two Areas of Study

Area of Matrix Completion Rank-Metric Codes
Study Rank Minimization

Applications Collaborative Filtering Crisscross Error Correction
Minimal Realization Network Coding

Field Reals R, Complex C Finite Field Fq

Techniques Functional Analysis Algebraic coding

Decoding Nuclear Norm Berlekamp-Massey
Convex Optimization Error Trapping

Can we draw analogies between the two areas of study?

Rank Minimization over finite fields
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Rank-metric codes

Definition
The rank distance between matrices A,B ∈ Fm×n

q is defined as

∆(A,B) := rank(A− B).

Fact: ∆(A,B) is a metric

Definition
A rank-metric code is C is a non-empty subset of Fm×n

q endowed with
the rank distance.
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Minimum rank distance decoding

Transmit some codeword C ∈ C

Receive some received word R ∈ Fm×n
q

Decoding problem (under mild conditions) is

Ĉ = arg min
C∈C

rank(R− C)

Minimum distance decoding since rank induces a metric

X ≡ R− C is known as the error matrix – low-rank

Assume linear

Rank minimization over finite field problem

X̂ = arg min
X∈ coset

rank(X)
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Ĉ = arg min
C∈C

rank(R− C)

Minimum distance decoding since rank induces a metric

X ≡ R− C is known as the error matrix – low-rank

Assume linear

Rank minimization over finite field problem

X̂ = arg min
X∈ coset

rank(X)

Vincent Tan (UW-Madison) Rank Minimization over Finite Fields UIUC Comm Seminar 7 / 49



Minimum rank distance decoding

Transmit some codeword C ∈ C

Receive some received word R ∈ Fm×n
q

Decoding problem (under mild conditions) is
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When do low-rank errors occur?

Probabilistic crisscross error correction

Roth, IT Trans 1997

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 5, SEPTEMBER 1997 1425

Probabilistic Crisscross Error Correction
Ron M. Roth,Member, IEEE

Abstract—The crisscross error model in data arrays is consid-
ered, where the corrupted symbols are confined to a prescribed
number of rows or columns (or both). Under the additional
assumption that the corrupted entries are uniformly distributed
over the channel alphabet, and by allowing a small decoding error
probability, a coding scheme is presented where the redundancy
can get close to one half the redundancy required in minimum-
distance decoding of crisscross errors.

Index Terms—Crisscross errors, probabilistic coding, rank
metric.

I. INTRODUCTION

CONSIDER an application where information symbols
(such as bits or bytes) are stored in arrays, with the

possibility of some of the symbols recorded erroneously. The
error patterns are such that all corrupted symbols are confined
to a prescribed number of rows or columns (or both). We
refer to such an error model ascrisscross errors. A crisscross
error pattern that is confined to two rows and three columns
is shown in Fig. 1.

Crisscross errors can be found in various data storage
applications; see, for instance, [3], [5], [6], [11], [16]–[19].
Such errors may occur in memory chip arrays, where row
or column failures occur due to the malfunctioning of row
drivers or column amplifiers. Crisscross errors can also be
found in helical tapes, where the tracks are recorded in a
direction which is (conceptually) perpendicular to the direction
of the movement of the tape; misalignment of the reading head
causes burst errors to occur along the track (and across the
tape), whereas scratches on the tape usually occur along the
tape (and across the tracks). Crisscross error-correcting codes
can also be applied in linear magnetic tapes, where the tracks
are written along the direction of the movement of the tape
and, therefore, scratches cause bursts to occur along the tracks;
still, the information and check symbols are usually recorded
across the tracks. Computation of check symbols is equivalent
to decoding of erasures at the check locations, and in this case
these erasures are perpendicular to the erroneous tracks.

Crisscross errors can be analyzed through the following
cover metric. Acover of an array over a field
is a set of rows or columns that contain all the nonzero entries
in . The cover weightof , denotedw , is the size
of the smallest cover of . The cover distancebetween two

Manuscript received October 23, 1995; revised February 18, 1997. Part of
this work was performed at Hewlett-Packard Israel Science Center, Haifa,
Israel. The material in this paper was presented in part at the 34th Annual
Allerton Conference on Communication, Control, and Computing, Urbana-
Champaign, IL, October 2–4, 1996.

The author is with Hewlett-Packard Laboratories, Palo Alto, CA 94304
USA, on leave from the Computer Science Department, Technion–Israel
Institute of Technology, Haifa 32000, Israel,

Publisher Item Identifier S 0018-9448(97)05407-2.

Fig. 1. Typical crisscross error pattern.

arrays over is the cover weight of their difference. An
array code over is a -dimensional linear

subspace of the vector space of all matrices over
such that is the smallest cover distance between any

two distinct elements of or, equivalently, the smallest cover
weight of any nonzero element of. The parameter is
referred to as theminimum cover distanceof and the term

stands for theredundancyof .
The Singleton bound on the minimum cover distance states

that the minimum cover distance and the redundancy of any
array code over a field satisfy the relation

(1)

where we assume that (see [9] and [19]).
Let be the “transmitted” array and be the

“received” array, where is the error array. The number of
crisscross errors is bounded from below byw . Since
cover distance is a metric, then by using an
array code, we can recover any pattern of up to
crisscross errors. On the other hand, if we wish to be able
to recoverany pattern of up to crisscross errors, then we
mustuse an array code with minimum cover distance which
is at least . The Singleton bound on the minimum cover
distance implies that the number of redundancy symbols must
be at least , namely, at least twice the maximum number
of erroneous symbols that need to be corrected.

A simple constructive technique to combat crisscross errors
is through theskewing methodwhich we explain next (see
[9], [19], [20]). Let be a conventional linear

0018–9448/97$10.00 1997 IEEE
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Error patterns confined to two rows and three columns above

Low-rank errors
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of the movement of the tape; misalignment of the reading head
causes burst errors to occur along the track (and across the
tape), whereas scratches on the tape usually occur along the
tape (and across the tracks). Crisscross error-correcting codes
can also be applied in linear magnetic tapes, where the tracks
are written along the direction of the movement of the tape
and, therefore, scratches cause bursts to occur along the tracks;
still, the information and check symbols are usually recorded
across the tracks. Computation of check symbols is equivalent
to decoding of erasures at the check locations, and in this case
these erasures are perpendicular to the erroneous tracks.

Crisscross errors can be analyzed through the following
cover metric. Acover of an array over a field
is a set of rows or columns that contain all the nonzero entries
in . The cover weightof , denotedw , is the size
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arrays over is the cover weight of their difference. An
array code over is a -dimensional linear

subspace of the vector space of all matrices over
such that is the smallest cover distance between any

two distinct elements of or, equivalently, the smallest cover
weight of any nonzero element of. The parameter is
referred to as theminimum cover distanceof and the term

stands for theredundancyof .
The Singleton bound on the minimum cover distance states

that the minimum cover distance and the redundancy of any
array code over a field satisfy the relation

(1)

where we assume that (see [9] and [19]).
Let be the “transmitted” array and be the

“received” array, where is the error array. The number of
crisscross errors is bounded from below byw . Since
cover distance is a metric, then by using an
array code, we can recover any pattern of up to
crisscross errors. On the other hand, if we wish to be able
to recoverany pattern of up to crisscross errors, then we
mustuse an array code with minimum cover distance which
is at least . The Singleton bound on the minimum cover
distance implies that the number of redundancy symbols must
be at least , namely, at least twice the maximum number
of erroneous symbols that need to be corrected.

A simple constructive technique to combat crisscross errors
is through theskewing methodwhich we explain next (see
[9], [19], [20]). Let be a conventional linear
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When do low-rank errors occur?

Probabilistic crisscross error correction

Roth, IT Trans 1997

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 5, SEPTEMBER 1997 1425

Probabilistic Crisscross Error Correction
Ron M. Roth,Member, IEEE
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ered, where the corrupted symbols are confined to a prescribed
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metric.
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Index coding with side information

k-receiver deterministic broadcast channel

Birk and Kol (IT Trans 06) and Bar-Yossef et al. (FOCS 06)

Transmitter has k bits of information xk = {0, 1}k

Wishes to transmit xi to receiver i

Receiver i also has subset of other coordinates

Side information {xj : (i, j) ∈ G}
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Index coding with side information

We say that a matrix A ∈ Fk×k
2 fits a graph G if

aii = 1, aij = 0 if (i, j) /∈ G

Definition
The minimum rank of a graph G is defined as

minrk2(G) := min{rank(A) : A fits G}

This is an example of a rank minimization problem over F2

Theorem (Bar-Yossef et al. 06)
The optimal length of a linear index code for graph G equals minrk2(G).
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Matrix completion in the reals

Very popular and well-studied problem

Given a subset of entries from a low-rank matrix X ∈ Rm×n

Green = Missing entry

Goal: Recover the matrix X

The nuclear norm heuristic has enjoyed tremendous successes
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Rank minimization in the reals

X ∈ Rm×n a low-rank matrix

Given k linear measurements:

y1 = 〈H1,X〉 = Trace(H1XT)

...

yk = 〈Hk,X〉 = Trace(HkXT)

A generalization of matrix completion

Goal: Recover the matrix X

The nuclear norm heuristic has also enjoyed tremendous
successes

Wide applicability in for e.g., collaborative filtering, minimal
realization of LTI system etc.
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Problem Setup: Rank minimization over finite fields

Assume that the sensing matrices H1, . . . ,Hk are random.

Assume for simplicity that X is square (n× n)

X has rank ≤ r ≤ n

!!!"

Arithmetic is performed in the field Fq

Each measurement ya, a = 1, . . . , k belongs to Fq
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Problem Setup: Rank minimization over finite fields

Problem Statement: Given (yk,Hk) and the measurement model,
estimate X.

Find necessary and sufficient conditions on k and sensing model
such that recovery is reliable, i.e.,

P(En)→ 0
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Main Results

Converse without assuming linear model

Lower bound on number of measurements k

Achievability under uniform sampling model

Sufficient condition that matches lower bound

Reliability function for the particular decoder

Achievability under sparse sampling model

Sufficient condition that matches lower bound

Coding-theoretic interpretations: Geometric insights
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Main Results

k: Num. of linear measurements
n: Dim. of matrix X
r: Max. rank of matrix X
γ = r

n : Rank-dimension ratio

2γ (1− γ/2) n2

= 2rn− r2

Result Statement Consequence

Converse k < (2− ε)γ(1− γ/2)n2 P(En) 9 0
P(En)→ 0

Achievability (Uniform) k > (2 + ε)γ(1− γ/2)n2 P(En) ≈ q−n2E(R)

Achievability (Sparse) k > (2 + ε)γ(1− γ/2)n2 P(En)→ 0

Achievability (Noisy) k ' (3 + ε)(γ + σ)n2 P(En)→ 0
(q assumed large)
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Outline

1 Motivation

2 Problem Setup and Summary of Main Results

3 Converse

4 Achievability for Uniform Model

5 Achievability for Sparse Model

6 Coding-Theoretic Interpretations
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A necessary condition on number of measurements

Given k measurements ya ∈ Fq and sensing matrices Ha ∈ Fn×n
q , we

want a necessary condition for reliable recovery of X.

Proposition (Converse)
Assume

X drawn uniformly at random from all matrices in Fn×n
q of rank ≤ r

Sensing matrices Ha independent of X

r/n→ γ (constant)

If the number of measurements satisfies

k < (2− ε)γ
(

1− γ

2

)
n2

then P(X̂ 6= X) ≥ ε/2 for all n sufficiently large.
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A necessary condition on number of measurements

Ramifications:

We need at least
k ≥ 2γ

(
1− γ

2

)
n2

measurements for successful recovery

Need as many measurements as there are degrees of freedom

Fano’s inequality and counting
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A sensing model: Uniform model

Now we assume that X is non-random

rank(X) ≤ r = γn

!!!"

Each entry of each sensing matrix Ha is i.i.d. and has a uniform
distribution in Fq:

P([Ha]i,j = h) =
1
q
, ∀ h ∈ Fq
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The min-rank decoder

We employ the min-rank decoder

minimize rank(X̃)

subject to 〈Ha, X̃〉 = ya, a = 1, . . . , k

NP-hard, combinatorial

Denote the set of optimizers as S

Define the error event:

En := {|S| > 1} ∪ ({|S| = 1} ∩ {X∗ 6= X})

We want the solution to be unique and correct
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Achievability under uniform model

Proposition (Achievability under uniform model)
Assume

Sensing matrices Ha drawn uniformly

Min-rank decoder is used

r/n→ γ (constant)

If the number of measurements satisfies

k > (2 + ε)γ
(

1− γ

2

)
n2

then P(En)→ 0.
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Proof Sketch

By the union bound, the error probability can be bounded as

P(En) ≤
∑

Z6=X:rank(Z)≤rank(X)

P(〈Z,Ha〉 = 〈X,Ha〉, ∀a = 1, . . . , k)

At the same time, by uniformity and independence,

P(〈Z,Ha〉 = 〈X,Ha〉,∀a = 1, . . . , k) = q−k

That the number of matrices of rank ≤ r is bounded above as

4q2γ(1−γ/2)n2
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Remarks for the sufficient condition

Recall the lower bound:

k ≥ 2γ
(

1− γ

2

)
n2

Thus, min-rank decoder matches the lower bound

Optimal measurement complexity

Can we provide a precise rate of convergence of P(En)?

Reliability Function?
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The Reliability Function

Definition
The rate of a sequence of linear measurement models is defined as

R := lim
n→∞

n2 − k
n2 = lim

n→∞
1− k

n2 , k = # measurements

Analogy to coding: The rate of the code

C = {C : 〈C,Ha〉 = 0, a = 1, . . . , k}

is lower bounded by 1− k/n2.
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The Reliability Function

Definition
The reliability function of the min-rank decoder is defined as

E(R) := lim
n→∞

− 1
n2 logq P(En)

Roughly speaking,
P(En) ≈ q−n2E(R)

Reliability function also known as error exponent
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The Reliability Function

Our achievability proof gives a lower bound on E(R)

Upper bound is more tricky. But...

Proposition (Reliability Function)
Assume

Sensing matrices Ha drawn uniformly

Min-rank decoder is used

r/n→ γ (constant)

Then,
E(R) =

∣∣∣(1− R)− 2γ
(

1− γ

2

)∣∣∣+
Note |x|+ := max{x, 0}.
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Interpretation

E(R) ≈
∣∣∣∣ k
n2 − 2γ

(
1− γ

2

)∣∣∣∣+

The more the ratio k
n2 exceeds 2γ

(
1− γ

2

)
The larger E(R)

The faster P(En) decays

Linear relationship
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Remarks on the reliability function

E(R) ≈
∣∣ k

n2 − 2γ
(
1− γ

2

)∣∣+
Proof of upper bound on E(R) is interesting

It utilizes de Caen’s lower bound: Let B1, . . . ,BM be events:

P

(
M⋃

m=1

Bm

)
≥

M∑
m=1

P(Bm)2∑M
m′=1 P(Bm ∩ Bm′)

.

Pairwise independence of error events

Analogy: Linear codes achieve capacity for symmetric DMCs

de Caen’s inequality allows us to exploit pairwise independence to
make statements about error exponents

Union bound in achievability is tight!
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Extensions

All the preceding analyses can be extended to the noisy case:

ya = 〈Ha,X〉+ wa

Noise wa can be random or deterministic but assume ‖w‖0 = σn2

minimize rank(X̃) + λ‖w̃‖0

subject to 〈Ha, X̃〉+ w̃a = ya, a = 1, . . . , k

Choose λ = 1/n

If
k ' (3 + ε)(γ + σ)n2,

P(En)→ 0. See preprint
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Outline

1 Motivation

2 Problem Setup and Summary of Main Results

3 Converse

4 Achievability for Uniform Model

5 Achievability for Sparse Model

6 Coding-Theoretic Interpretations
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Sparse sensing model

Assume as usual that X is non-random

rank(X) ≤ r = γn

Sensing matrices are sparse

!!!"

Arithmetic still performed in Fq
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Sparse sensing model

Each entry of each sensing matrix Ha is i.i.d. and has a δ-sparse
distribution in Fq:

1−δ

δ/(q−1) δ/(q−1) δ/(q−1) δ/(q−1)

0

P([Ha]ij = h) =

{
1− δ h = 0
δ

q−1 h 6= 0

Fewer adds and multiplies since Ha sparse⇒ Encoding cheaper

May help in decoding via message-passing algorithms

How fast can δ, the sparsity factor, decay with n for reliable
recovery?
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Sparse sensing model

Problem becomes more challenging

X is not sensed “as much”

Measurements yk do not contain as much information about X

The equality

P(〈Z,Ha〉 = 〈X,Ha〉,∀a = 1, . . . , k) = q−k

no longer holds

Nevertheless....
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Achievability under sparse model

Theorem (Achievability under sparse model)
Assume

Sensing matrices Ha drawn according to δ-sparse distribution

Min-rank decoder is used

r/n→ γ (constant)

If the sparsity factor satisfies

δ ∈ Ω

(
log n

n

)
and the number of measurements satisfies

k > (2 + ε)γ
(

1− γ

2

)
n2

then P(En)→ 0.
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Remarks on achievability under sparse model

No loss in measurement complexity

Average number of entries in Ha is Ω(n log n)

Number of measurements matches uniform model and
information-theoretic (Fano’s) lower bound

Roughly speaking, if

δ ∈ Ω

(
log n

n

)
probability of error events still “look like” the uniform model
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Proof Strategy

Approximate with uniform model

P(En) ≤
∑

Z6=X:rank(Z)≤rank(X)
‖Z−X‖0≤βn2

P(〈Z,Ha〉 = 〈X,Ha〉, ∀a = 1, . . . , k)

+
∑

Z6=X:rank(Z)≤rank(X)
‖Z−X‖0>βn2

P(〈Z,Ha〉 = 〈X,Ha〉, ∀a = 1, . . . , k)

First term
Few terms
Low Hamming weight – can afford loose bound on probability

Second term
Many terms
Tight bound on probability (circular convolution of δ-sparse pmf)
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Interpreting our results from the rank-metric lens

Recall that a rank-metric code C is a non-empty subset of Fm×n
q

endowed with the rank distance

The minimum rank distance decoding problem

min
C∈C

rank(R− C)

is in one-to-one correspondence to the rank minimization problem

minimize rank(X)

subject to 〈Ha,X〉 = ya, a = 1, . . . , k

with the identification X ≡ R− C and

C := {C : 〈C,Ha〉 = 0, a = 1, . . . , k}
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Minimum rank distance

Definition
The minimum rank distance of a rank-metric code C is

d(C) := min
C1,C2∈C:C1 6=C2

rank(C1 − C2)

If the code is linear (as it is)

d(C) := min
C∈C:C6=0

rank(C)

How does d(C) behave for the random linear rank-metric code under
the uniform and sparse models?
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Minimum rank distance

The rate of the code is defined as

R = 1− k
n2

Proposition (Concentration of minimum rank distance)
For the uniform model, with probability approaching 1 as n→∞, the
relative minimum distance satisfies

d(C)
n
∈ (1−

√
R− ε, 1−

√
R + ε)
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Minimum rank distance: Interpretation

The rate-dependent function

γGV(R) := 1−
√

R

can be regarded as the “Gilbert-Varshamov distance” of the
random rank-metric code

Barg and Forney (2002) derived similar properties for the binary
Hamming case

Uniform rank-metric code has
minimum distance

nγGV(R) = n(1−
√

R)

with high probability for n large

C

C C

3

1 2
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Barg and Forney (2002) derived similar properties for the binary
Hamming case

Uniform rank-metric code has
minimum distance

nγGV(R) = n(1−
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with high probability for n large
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Ramification in terms of measurement complexity for
uniform model

For successful recovery of X on average,

relative minimum distance ≥ rank-dimension ratio

Achievability result may be derived by setting R = 1− k
n2 and

considering
γGV(R) = 1−

√
R− ε ≥ γ =

r
n

which is equivalent to

k ≥ (2 + ε′)γ
(

1− γ

2

)
n2
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Minimum distances for the sparse model

Proposition (Concentration of minimum rank distance)
For the

δ = Ω

(
log n

n

)
sparse model, with probability approaching 1 as n→∞, the relative
minimum distance satisfies

d(C)
n
≥ 1−

√
R− ε

The minimum distance properties of the uniform and sparse
models are identical

So are their measurement complexities!

k > (2 + ε)γ
(

1− γ

2

)
n2
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Concluding remarks

Derived necessary and sufficient conditions for rank minimization
over finite fields

Derived minimum distance properties of rank-metric codes

Drawn analogies between number of measurements and
minimum distance properties

Reduced complexity of the min-rank decoder vis-à-vis exhaustive
search
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Open Problems

Can the sparsity level of

Ω

(
log n

n

)
be improved (reduced) further?

Tradeoff between sparsity and number of measurements?

Check out the preprint: http://arxiv.org/abs/1104.4302
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