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Connection between Two Areas of Study

Area of Matrix Completion Rank-Metric Codes
Study Rank Minimization
Applications || Collaborative Filtering | Crisscross Error Correction
Minimal Realization Network Coding
Field Reals R, Complex C Finite Field F,
Techniques Functional Analysis Algebraic coding
Decoding Nuclear Norm Berlekamp-Massey

Convex Optimization

Error Trapping

Can we draw analogies between the two areas of study?

Rank Minimization over finite fields
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Rank-metric codes

Definition
The rank distance between matrices A, B € Fy*" is defined as

A(A,B) :=rank(A — B).
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Rank-metric codes

Definition
The rank distance between matrices A, B € Fy*" is defined as

A(A,B) :=rank(A — B).

Fact: A(A,B) is a metric

Definition

A rank-metric code is C is a non-empty subset of Fy'*" endowed with
the rank distance.

Vincent Tan (UW-Madison) Rank Minimization over Finite Fields UIUC Comm Seminar 6/49



Minimum rank distance decoding

@ Transmit some codeword C € C

Vincent Tan (UW-Madison) Rank Minimization over Finite Fields UIUC Comm Seminar 7149



Minimum rank distance decoding

@ Transmit some codeword C € C

@ Receive some received word R € IF;”X"

Vincent Tan (UW-Madison) Rank Minimization over Finite Fields UIUC Comm Seminar 7149



Minimum rank distance decoding

@ Transmit some codeword C € C
@ Receive some received word R € IF;”X"

@ Decoding problem (under mild conditions) is

C = argmin rank(R — C)
CecC

@ Minimum distance decoding since rank induces a metric

Vincent Tan (UW-Madison) Rank Minimization over Finite Fields UIUC Comm Seminar 7149



Minimum rank distance decoding

@ Transmit some codeword C € C
@ Receive some received word R € IF;”X"

@ Decoding problem (under mild conditions) is

C = argmin rank(R — C)
CecC

@ Minimum distance decoding since rank induces a metric

@ X =R — Cis known as the error matrix — low-rank

Vincent Tan (UW-Madison) Rank Minimization over Finite Fields UIUC Comm Seminar 7149



Minimum rank distance decoding

@ Transmit some codeword C € C
@ Receive some received word R € IF;”X"
@ Decoding problem (under mild conditions) is

C = argmin rank(R — C)
CecC

@ Minimum distance decoding since rank induces a metric
@ X =R — Cis known as the error matrix — low-rank

@ Assume linear

Vincent Tan (UW-Madison) Rank Minimization over Finite Fields UIUC Comm Seminar 7149



Minimum rank distance decoding

@ Transmit some codeword C € C

@ Receive some received word R € IF;”X"

Decoding problem (under mild conditions) is

C = argmin rank(R — C)
CecC

Minimum distance decoding since rank induces a metric

X = R — C is known as the error matrix — low-rank

Assume linear

@ Rank minimization over finite field problem

X = argmin rank(X)
X € coset
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When do low-rank errors occur?

@ Probabilistic crisscross error correction

Roth, IT Trans 1997 ° :

fr i T
@ Data storage applications: Data stored in arrays
@ Error patterns confined to two rows and three columns above

@ Low-rank errors
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Index coding with side information

@ k-receiver deterministic broadcast channel

Birk and Kol (IT Trans 06) and Bar-Yossef et al. (FOCS 06)

Transmitter has & bits of information x* = {0, 1}*
@ Wishes to transmit x; to receiver i
@ Receiver i also has subset of other coordinates

@ Side information {x; : (i,j) € G}
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Index coding with side information

X1 X2

*3 M (xy,x2,x3,%4)

€ {0,1}*

Tx

What'’s the minimum length
[ required for reliable
reconstruction of
(x1,X2,x3,x4) given graph G?
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Index coding with side information

We say that a matrix A € F5** fits a graph § if

ajj = 1’ ajj = 0 if (la]) ¢ g
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Index coding with side information

We say that a matrix A € F5** fits a graph § if

ajj = 1’ ajj = 0 if (la]) ¢ g

Definition
The minimum rank of a graph G is defined as

minrky (G) := min{rank(A) : A fits G}

This is an example of a rank minimization problem over F,

Theorem (Bar-Yossef et al. 06)
The optimal length of a linear index code for graph G equals minrk,(G).

11/49
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Matrix completion in the reals

@ Very popular and well-studied problem

@ Given a subset of entries from a low-rank matrix X € R™>"

Eod B =7

= Missing entry

@ Goal: Recover the matrix X

@ The nuclear norm heuristic has enjoyed tremendous successes
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Rank minimization in the reals

@ X € R™" g |ow-rank matrix
@ Given k linear measurements:

y1 = (Hy,X) = Trace(H;XT)

yi = (Hy, X) = Trace(H; XT)

@ A generalization of matrix completion
@ Goal: Recover the matrix X

@ The nuclear norm heuristic has also enjoyed tremendous
successes

@ Wide applicability in for e.g., collaborative filtering, minimal
realization of LTI system etc.
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Problem Setup: Rank minimization over finite fields

@ Assume that the sensing matrices Hy, ..., H; are random.
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A
L
X
v
I
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@ Arithmetic is performed in the field I,
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Problem Setup: Rank minimization over finite fields

@ Assume that the sensing matrices Hy, ..., H; are random.
@ Assume for simplicity that X is square (n x n)

@ Xhasrank<r<n

<

N

>=yk

TTTIIT
:
e

T

-

@ Arithmetic is performed in the field I,

@ Each measurementy,,a =1,...,k belongs to F,
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Problem Setup: Rank minimization over finite fields

@ Problem Statement: Given (y*, H*) and the measurement model,
estimate X.
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Problem Setup: Rank minimization over finite fields

@ Problem Statement: Given (y*, H*) and the measurement model,
estimate X.

@ Find necessary and sufficient conditions on k and sensing model
such that recovery is reliable, i.e.,

P(&) — 0
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Main Results

@ Converse without assuming linear model

@ Lower bound on number of measurements k

@ Achievability under uniform sampling model

e Sufficient condition that matches lower bound
e Reliability function for the particular decoder

@ Achievability under sparse sampling model
o Sufficient condition that matches lower bound

@ Coding-theoretic interpretations: Geometric insights
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Main Results

@ k: Num. of linear measurements
@ n: Dim. of matrix X

@ r: Max. rank of matrix X

@ v = - Rank-dimension ratio
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Main Results

@ k: Num. of linear measurements

@ n: Dim. of matrix X

@ r: Max. rank of matrix X

2y (1—~/2)n*

2

=2m—r
@ v = - Rank-dimension ratio
Result Statement Consequence
Converse k< (2—¢e)y(1—~/2)n? P(E,) 0
P(&,) — 0

Achievability (Uniform)

k> (24 ¢e)y(1 —v/2)n?

P(&,) ~ g " ER)

Achievability (Sparse)

k> (2+¢e)y(1 —~/2)n?

Achievability (Noisy)

kZ B+e)(y+on?

(¢ assumed large)
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Outline

e Converse
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A necessary condition on number of measurements

Given k measurements y, € F, and sensing matrices H, € F;*", we
want a necessary condition for reliable recovery of X.
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A necessary condition on number of measurements

Given k measurements y, € F, and sensing matrices H, € F;*", we
want a necessary condition for reliable recovery of X.

Proposition (Converse)
Assume

@ X drawn uniformly at random from all matrices in ;" of rank <'r
@ Sensing matrices H, independent of X
@ r/n — v (constant)

If the number of measurements satisfies

k<(2—5)7<1—%)n2

then P(X # X) > ¢/2 for all n sufficiently large.
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A necessary condition on number of measurements

Ramifications:

@ We need at least
k> 2y (1 — %) n?

measurements for successful recovery
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A necessary condition on number of measurements

Ramifications:

@ We need at least
k> 2y (1 — %) n?

measurements for successful recovery
@ Need as many measurements as there are degrees of freedom

@ Fano’s inequality and counting
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@ Achievability for Uniform Model
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A sensing model: Uniform model

@ Now we assume that X is non-random
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A sensing model: Uniform model

@ Now we assume that X is non-random

@ rank(X) <r=nn

A

+
X
%
I

=<
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A sensing model: Uniform model

@ Now we assume that X is non-random

@ rank(X) <r=nn

<9§hr X|>= Y.

>=yk

TTTTIT
:
il

INNEEEN}

-

@ Each entry of each sensing matrix H, is i.i.d. and has a uniform
distribution in IF,:

1
P([Ha]i,/:h):*a \V/hGFq
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The min-rank decoder

@ We employ the min-rank decoder

minimize  rank(X)

subject to  (H,, X) =vy,, a=1,...,k
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The min-rank decoder

@ We employ the min-rank decoder

minimize  rank(X)

subject to  (H,, X) =vy,, a=1,...,k

@ NP-hard, combinatorial
@ Denote the set of optimizers as S
@ Define the error event:

En={IS| > 1T U({[S] = 1} N{X" #X})
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The min-rank decoder

@ We employ the min-rank decoder

minimize  rank(X)

subject to  (H,, X) =vy,, a=1,...,k

@ NP-hard, combinatorial
@ Denote the set of optimizers as S
@ Define the error event:

&= {81 > 1Y U({IS] = 1} N {X" £ X})

@ We want the solution to be unique and correct
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Achievability under uniform model

Proposition (Achievability under uniform model)
Assume
@ Sensing matrices H, drawn uniformly
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Achievability under uniform model

Proposition (Achievability under uniform model)
Assume
@ Sensing matrices H, drawn uniformly

@ Min-rank decoder is used

@ r/n — v (constant)
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Achievability under uniform model

Proposition (Achievability under uniform model)
Assume
@ Sensing matrices H, drawn uniformly

@ Min-rank decoder is used
@ r/n — v (constant)

If the number of measurements satisfies

k>(2—|—5)7<1—%)n2

thenP(&,) — 0.
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Proof Sketch

By the union bound, the error probability can be bounded as

P(&,) < > P((Z,H,) = (X,H,),Ya=1,...,k)
Z#X:rank(Z) <rank(X)
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Proof Sketch

By the union bound, the error probability can be bounded as

P(&,) < > P((Z,H,) = (X,H,),Ya=1,...,k)
Z#X:rank(Z) <rank(X)

At the same time, by uniformity and independence,

P(Z,H,) = (X,H,),Va=1,....k)=q*
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Proof Sketch

By the union bound, the error probability can be bounded as

P(&,) < > P((Z,H,) = (X,H,),Ya=1,...,k)
Z#X:rank(Z) <rank(X)

At the same time, by uniformity and independence,
P(Z,H,) = (X,H,),Va=1,....k)=q*
That the number of matrices of rank < r is bounded above as

4q2’7(1—7/2)"2
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Remarks for the sufficient condition

@ Recall the lower bound:

k227<1—%>n2
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Remarks for the sufficient condition

@ Recall the lower bound:

k227<1—%>n2

@ Thus, min-rank decoder matches the lower bound
@ Optimal measurement complexity

@ Can we provide a precise rate of convergence of P(&,)?
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Remarks for the sufficient condition

@ Recall the lower bound:

k227<1—%>n2

@ Thus, min-rank decoder matches the lower bound
@ Optimal measurement complexity
@ Can we provide a precise rate of convergence of P(&,)?

@ Reliability Function?
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The Reliability Function

Definition
The rate of a sequence of linear measurement models is defined as

nz—

k k
R := lim = lim 1 — = k = # measurements
n—oo 1 n—00 n
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The Reliability Function

Definition
The rate of a sequence of linear measurement models is defined as

. onr—k . k
R := lim = lim 1- —, k = # measurements
n—00 n n—oo n

Analogy to coding: The rate of the code
C={C:(C,H,)=0,a=1,...,k}

is lower bounded by 1 — k/n?.
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The Reliability Function

Definition
The reliability function of the min-rank decoder is defined as

. 1
E(R) := lim —ﬁlongP’(Sn)

n—oo
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The Reliability Function

Definition
The reliability function of the min-rank decoder is defined as

. 1
E(R) := lim —ﬁlongP’(Sn)

n—oo

Roughly speaking,
2
IP)((‘:”) ~ q—n E(R)
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The Reliability Function

Definition
The reliability function of the min-rank decoder is defined as

. 1
E(R) := lim —ﬁlongP’(Sn)

n—oo

Roughly speaking,
2
P((gn) ~ q—n E(R)

Reliability function also known as error exponent
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The Reliability Function

@ Our achievability proof gives a lower bound on E(R)
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@ Upper bound is more tricky. But...

Proposition (Reliability Function)
Assume
@ Sensing matrices H, drawn uniformly
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The Reliability Function

@ Our achievability proof gives a lower bound on E(R)

@ Upper bound is more tricky. But...

Proposition (Reliability Function)
Assume
@ Sensing matrices H, drawn uniformly

@ Min-rank decoder is used

@ r/n — v (constant)
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The Reliability Function

@ Our achievability proof gives a lower bound on E(R)

@ Upper bound is more tricky. But...

Proposition (Reliability Function)
Assume
@ Sensing matrices H, drawn uniformly

@ Min-rank decoder is used
@ r/n — v (constant)
Then,
ER) =|(1-R) -2y (1 _ 1>‘+

Note |x|* := max{x,0}.
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Interpretation
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Interpretation

+

k Y
E(R) ~ |5 —2 (1_7)
(R)~ |5 =27 7

@ The more the ratio % exceeds 27 (1 — 3)
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Interpretation
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@ The more the ratio % exceeds 27 (1 — 3)

@ The larger E(R)
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Interpretation

+

k Y
E(R) ~ |5 —2 (1_7)
(R)~ |5 =27 7

@ The more the ratio % exceeds 27 (1 — 3)

@ The larger E(R)

@ The faster P(&,) decays
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Interpretation

+

k Y
E(R) ~ |5 —2 (1_7)
(R)~ |5 =27 7

@ The more the ratio % exceeds 27 (1 — 3)

@ The larger E(R)
@ The faster P(&,) decays

@ Linear relationship
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Remarks on the reliability function

@ ER) ~ |k -2 (1)

@ Proof of upper bound on E(R) is interesting
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Remarks on the reliability function

@ ER) ~ |k -2 (1)
@ Proof of upper bound on E(R) is interesting
@ It utilizes de Caen’s lower bound: Let By, ..., By be events:

" M P(B,,)?
P(|])Bn]| > .
(H >>Zz¢;zlﬂ»<zsmnsm,>

m=1
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@ It utilizes de Caen’s lower bound: Let By, ..., By be events:

" M P(B,,)?
P(|])Bn]| > .
(H >>Zz¢;zlﬂ»<zsmnsm,>
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@ Pairwise independence of error events
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@ Proof of upper bound on E(R) is interesting
@ It utilizes de Caen’s lower bound: Let By, ..., By be events:

" M P(B,,)?
P(|])Bn]| > .
(H >>Zz¢;zlﬂ»<zsmnsm,>

m=1

@ Pairwise independence of error events

@ Analogy: Linear codes achieve capacity for symmetric DMCs
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Remarks on the reliability function

@ ER) ~ |k -2 (1)
@ Proof of upper bound on E(R) is interesting
@ It utilizes de Caen’s lower bound: Let By, ..., By be events:

" M P(B,,)?
P(|])Bn]| > .
(H >>Zz¢;zlﬂ»<zsmnsm,>

m=1

@ Pairwise independence of error events
@ Analogy: Linear codes achieve capacity for symmetric DMCs

@ de Caen’s inequality allows us to exploit pairwise independence to
make statements about error exponents
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Remarks on the reliability function

@ ER) ~ |k -2 (1)
@ Proof of upper bound on E(R) is interesting
@ It utilizes de Caen’s lower bound: Let By, ..., By be events:

" M P(B,,)?
P(|])Bn]| > .
(H >>Zz¢;zlﬂ»<zsmnsm,>

m=1

@ Pairwise independence of error events
@ Analogy: Linear codes achieve capacity for symmetric DMCs

@ de Caen’s inequality allows us to exploit pairwise independence to
make statements about error exponents

@ Union bound in achievability is tight!
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Extensions

@ All the preceding analyses can be extended to the noisy case:

Ya = <Ha7X> + wq
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@ Noise w, can be random or deterministic but assume ||w||o = on?
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Extensions

@ All the preceding analyses can be extended to the noisy case:

Ya = <Ha7X> + wq

@ Noise w, can be random or deterministic but assume ||w||o = on?

minimize  rank(X) + A||W]|o

subject to (Ha,fQ FWe=ya, a=1,...k
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Extensions

@ All the preceding analyses can be extended to the noisy case:
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@ Noise w, can be random or deterministic but assume ||w||o = on?

minimize  rank(X) + A||W]|o

subject to (Ha,fQ FWe=ya, a=1,...k

@ Choose A =1/n
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Extensions

@ All the preceding analyses can be extended to the noisy case:

Ya = <Ha7X> + wq

@ Noise w, can be random or deterministic but assume ||w||o = on?

minimize  rank(X) + A||W]|o

subject to (Ha,fQ FWe=ya, a=1,...k

@ Choose A =1/n

o If
kZ B+e)(y+on,

P(&,) — 0. See preprint
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© Achievability for Sparse Model
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Sparse sensing model

@ Assume as usual that X is non-random
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@ Assume as usual that X is non-random

@ rank(X) <r=nn
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Sparse sensing model

@ Assume as usual that X is non-random
@ rank(X) <r=nn

@ Sensing matrices are sparse

8. [ 7]

S | X

Y

=j=lu]

—“1:1
nn'mD
X

>=yk
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Sparse sensing model

@ Assume as usual that X is non-random
@ rank(X) <r=nn

@ Sensing matrices are sparse

8. [ 7]

<Diﬁaq;-él X > =Y,

o
ID
i

5 080
< jt‘lﬁf X > = yk

@ Arithmetic still performed in I,
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Sparse sensing model

@ Each

entry of each sensing matrix H, is i.i.d. and has a é-sparse

distribution in IF,:

1-6

1-9
b

h=0
S h#0
q

Rl

8(q-1) d(g-1) d(q-1) &/(a-1)

? ? ? L

0
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Sparse sensing model

@ Each

entry of each sensing matrix H, is i.i.d. and has a é-sparse

distribution in IF,:

1-6

1-6 h=0
Pl =m={ '3 2

q—1

Rl

8(q-1) d(g-1) d(q-1) &/(a-1)

o 9 ? ? L

@ Fewe

r adds and multiplies since H, sparse = Encoding cheaper
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distribution in IF,:
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1-6 h=0
Pl =m={ '3 2

q—1

Rl

8(q-1) d(g-1) d(q-1) &/(a-1)

o 9 ? ? L

@ Fewe

r adds and multiplies since H, sparse = Encoding cheaper

@ May help in decoding via message-passing algorithms
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Sparse sensing model

@ Each

entry of each sensing matrix H, is i.i.d. and has a é-sparse

distribution in IF,:

1-6

1-6 h=0
Pl =m={ '3 2

q—1

Rl

8(q-1) d(g-1) d(q-1) &/(a-1)

o 9 ? ? L

@ Fewe

r adds and multiplies since H, sparse = Encoding cheaper

@ May help in decoding via message-passing algorithms

@ How fast can 9, the sparsity factor, decay with » for reliable

recov

ery?
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Sparse sensing model

@ Problem becomes more challenging
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@ Problem becomes more challenging
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@ Measurements y* do not contain as much information about X
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Sparse sensing model

@ Problem becomes more challenging
@ X is not sensed “as much”
@ Measurements y* do not contain as much information about X
@ The equality
P((Z,H,) = (X,H,),Ya=1,...,k) =q*

no longer holds
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Sparse sensing model

@ Problem becomes more challenging
@ X is not sensed “as much”
@ Measurements y* do not contain as much information about X
@ The equality
P((Z,H,) = (X,H,),Ya=1,...,k) =q*
no longer holds

@ Nevertheless....
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Achievability under sparse model

Theorem (Achievability under sparse model)
Assume
@ Sensing matrices H, drawn according to ¢-sparse distribution
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Theorem (Achievability under sparse model)
Assume
@ Sensing matrices H, drawn according to ¢-sparse distribution
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Achievability under sparse model

Theorem (Achievability under sparse model)
Assume
@ Sensing matrices H, drawn according to ¢-sparse distribution

@ Min-rank decoder is used

@ r/n — v (constant)
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Achievability under sparse model

Theorem (Achievability under sparse model)
Assume

@ Sensing matrices H, drawn according to ¢-sparse distribution
@ Min-rank decoder is used

@ r/n — v (constant)

If the sparsity factor satisfies

0N (10gn>
n

Vincent Tan (UW-Madison)

Rank Minimization over Finite Fields

UIUC Comm Seminar 38/49



Achievability under sparse model
Theorem (Achievability under sparse model)
Assume

@ Sensing matrices H, drawn according to ¢-sparse distribution
@ Min-rank decoder is used

@ r/n — v (constant)

If the sparsity factor satisfies

0N (10gn>
n

and the number of measurements satisfies

thenP(&€,) — 0.

Vincent Tan (UW-Madison)
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Remarks on achievability under sparse model

@ No loss in measurement complexity
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@ Average number of entries in H, is 2(nlogn)
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Remarks on achievability under sparse model

@ No loss in measurement complexity
@ Average number of entries in H, is 2(nlogn)

@ Number of measurements matches uniform model and
information-theoretic (Fano’s) lower bound
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Remarks on achievability under sparse model

@ No loss in measurement complexity
@ Average number of entries in H, is 2(nlogn)

@ Number of measurements matches uniform model and
information-theoretic (Fano’s) lower bound

1
5€Q<Ogn>
n

probability of error events still “look like” the uniform model

@ Roughly speaking, if
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Proof Strategy

Approximate with uniform model
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Proof Strategy

Approximate with uniform model

P(&,) < > P((Z,H,) = (X,H,),Ya=1,...,k)

Z#X:rank(Z)<rank(X)
Z—X]lo<n?
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Proof Strategy

Approximate with uniform model

P(E,) < > P((Z,H,) = (X, H,),Ya =1,....k)
Z#X:rank(Z)<rank(X)
Z—X]lo<n?
+ > P((Z,H,) = (X,H,),Ya=1,...,k)
Z#X:rank(Z) <rank(X)
1 Z—X]|o>pn?
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Proof Strategy

Approximate with uniform model

P(&,) < > P((Z,H,) = (X,H,),Ya=1,...,k)
Z#X:rank(Z)<rank(X)
Z—X]lo<Bn
+ > P((Z,H,) = (X,H,),Ya=1,...,k)
Z#X:rank(Z) <rank(X)
1Z—X|lo>Bn
@ Firstterm

o Few terms
e Low Hamming weight — can afford loose bound on probability
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Proof Strategy

Approximate with uniform model

P(&,) < > P((Z,H,) = (X,H,),Ya=1,...,k)
Z#X:rank(Z)<rank(X)
Z—X]lo<Bn
+ > P((Z,H,) = (X,H,),Ya=1,...,k)
Z#X:rank(Z) <rank(X)
1Z—X|lo>Bn
@ Firstterm

o Few terms
e Low Hamming weight — can afford loose bound on probability

@ Second term

e Many terms
e Tight bound on probability (circular convolution of §-sparse pmf)
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@ Coding-Theoretic Interpretations
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Interpreting our results from the rank-metric lens

@ Recall that a rank-metric code C is a non-empty subset of F7*"
endowed with the rank distance
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Interpreting our results from the rank-metric lens

@ Recall that a rank-metric code C is a non-empty subset of F7*"
endowed with the rank distance

@ The minimum rank distance decoding problem

min rank(R — C)
CeC

is in one-to-one correspondence to the rank minimization problem
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Interpreting our results from the rank-metric lens

@ Recall that a rank-metric code C is a non-empty subset of F7*"
endowed with the rank distance

@ The minimum rank distance decoding problem

min rank(R — C)
CeC

is in one-to-one correspondence to the rank minimization problem

minimize  rank(X)
subjectto  (H,, X)=y,, a=1,...,k

with the identification X = R — C and
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Interpreting our results from the rank-metric lens

@ Recall that a rank-metric code C is a non-empty subset of F7*"
endowed with the rank distance

@ The minimum rank distance decoding problem

min rank(R — C)
CeC

is in one-to-one correspondence to the rank minimization problem
minimize  rank(X)

subjectto  (H,, X)=y,, a=1,...,k

with the identification X = R — C and
C:={C:(C.H,) =0,a=1,...,k}
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Minimum rank distance

Definition
The minimum rank distance of a rank-metric code C is

d(C) := min rank(C; — Cy)
C,CeC:C1#£C,
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Minimum rank distance

Definition
The minimum rank distance of a rank-metric code C is

d(C) := min rank(C; — Cy)
C,CeC:C1#£C,

If the code is linear (as it is)

= i k
d(C) Celglél#o rank(C)

How does d(C) behave for the random linear rank-metric code under
the uniform and sparse models?
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Minimum rank distance

The rate of the code is defined as

k
n?

R=1-
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Minimum rank distance

The rate of the code is defined as

Proposition (Concentration of minimum rank distance)

For the uniform model, with probability approaching 1 as n — oo, the
relative minimum distance satisfies

d(C)

n

€e(1—vVR—e,1—VR+¢)
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Minimum rank distance: Interpretation

@ The rate-dependent function
’YGV(R) = 1 — \/E

can be regarded as the “Gilbert-Varshamov distance” of the
random rank-metric code
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Minimum rank distance: Interpretation

@ The rate-dependent function
’YGV(R) = 1 — \/E

can be regarded as the “Gilbert-Varshamov distance” of the
random rank-metric code

@ Barg and Forney (2002) derived similar properties for the binary
Hamming case
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Minimum rank distance: Interpretation

@ The rate-dependent function
’YGV(R) = 1 — \/E

can be regarded as the “Gilbert-Varshamov distance” of the
random rank-metric code

@ Barg and Forney (2002) derived similar properties for the binary
Hamming case

Uniform rank-metric code has
minimum distance

myev(R) = n(1 —VR)

with high probability for n large
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Ramification in terms of measurement complexity for

uniform model

For successful recovery of X on average,

relative minimum distance > rank-dimension ratio
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Ramification in terms of measurement complexity for

uniform model

For successful recovery of X on average,
relative minimum distance > rank-dimension ratio

Achievability result may be derived by settingR =1 — n% and
considering

r
')’GV(R):I—\/E—&“Z’Y:E
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Ramification in terms of measurement complexity for

uniform model

For successful recovery of X on average,
relative minimum distance > rank-dimension ratio

Achievability result may be derived by settingR =1 — n% and
considering

,
VGV(R):I—\/R—EZ’Y:E

which is equivalent to
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Minimum distances for the sparse model

Proposition (Concentration of minimum rank distance)

For the

5—Q <logn>
n

sparse model, with probability approaching 1 as n — oo, the relative
minimum distance satisfies
4©) >1—-vVR—¢

n
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Minimum distances for the sparse model

Proposition (Concentration of minimum rank distance)

For the

5—Q <logn>
n

sparse model, with probability approaching 1 as n — oo, the relative
minimum distance satisfies
4©) >1—-vVR—¢

n

@ The minimum distance properties of the uniform and sparse
models are identical
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Minimum distances for the sparse model

Proposition (Concentration of minimum rank distance)

For the

5—Q <logn>
n

sparse model, with probability approaching 1 as n — oo, the relative
minimum distance satisfies

le—\/ﬁ—e

n

@ The minimum distance properties of the uniform and sparse
models are identical

@ So are their measurement complexities!

k>(2+5)7<1—1>n2
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Concluding remarks

@ Derived necessary and sufficient conditions for rank minimization
over finite fields
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Concluding remarks

@ Derived necessary and sufficient conditions for rank minimization
over finite fields

@ Derived minimum distance properties of rank-metric codes

@ Drawn analogies between number of measurements and
minimum distance properties
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Concluding remarks

@ Derived necessary and sufficient conditions for rank minimization
over finite fields

@ Derived minimum distance properties of rank-metric codes

@ Drawn analogies between number of measurements and
minimum distance properties

@ Reduced complexity of the min-rank decoder vis-a-vis exhaustive
search
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Open Problems

@ Can the sparsity level of

O <logn>
n

be improved (reduced) further?
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http://arxiv.org/abs/1104.4302

Open Problems

@ Can the sparsity level of

O <log n)
n
be improved (reduced) further?

@ Tradeoff between sparsity and number of measurements?
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Open Problems

@ Can the sparsity level of

O <log n)
n
be improved (reduced) further?

@ Tradeoff between sparsity and number of measurements?

Check out the preprint: http://arxiv.org/abs/1104.4302
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