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Abstract

This paper addresses the problem of estimating the latent dimensionality in non-
negative matrix fatorization (NMF) via automatic relevance determination (ARD).
Uncovering the latent dimensionality is necessary for striking the right balance be-
tween data fidelity and overfitting. We propose a Bayesian model for NMF and
two algorithms known as `1- and `2-ARD, each assuming different priors on the
basis and the coefficients. The proposed algorithms leverage on the recent algo-
rithmic advances in NMF with the β-divergence using majorization-minimization
(MM) methods. We show by using auxiliary functions that the cost function de-
creases monotonically to a local minimum. We demonstrate the efficacy and ro-
bustness of our algorithms by performing experiments on the swimmer dataset.

1 Introduction

Given a nonnegative data matrix V of dimensions F ×N with nonnegative entries, nonnegative
matrix factorization (NMF) refers to the problem of finding a factorization V ≈ V̂ , WH where
W and H are nonnegative matrices of dimensions F×K andK×N , respectively. The dimensionK
is usually chosen such that F K +KN � F N . The factorization is usually sought after through
the minimization problem of a cost function D(V|WH) subject to the nonnegativity constraints
W,H ≥ 0. The distance (or divergence or distortion) function D(V|WH) is a separable measure
of fit such that D(V|WH) =

∑
f

∑
n d([V]fn | [WH]fn) where d(x|y) is a nonnegative scalar

cost function of y ∈ R+ given x ∈ R+, with a single minimum when x = y. Without loss of
generality, we assume that d(x|y) = 0 iff x = y. We will consider the d(x|y) to be the so-called
β-divergence, a family of cost functions parametrized by a single scalar shape parameter β ∈ R [1].

In many applications, it is crucial that “right” model order K is selected to balance between data fit
and overfitting. We propose a Bayesian model for β-NMF based on automatic relevance determina-
tion (ARD) [2] to derive computationally efficient algorithms with monotonicity guarantees to select
K. At the same time, we estimate the basis W and the activation coefficients H. The proposed algo-
rithms are based on surrogate auxiliary functions (a local majorization of the cost function). These
auxiliary functions lead to majorization-minimization (MM) algorithms, which then result in effi-
cient multiplicative updates. The monotonicity of the cost function can be proven by leveraging on
techniques in [1]. This paper represents a significant extension of our previous work in [3]. Firstly,
the cost function in [3] was restricted to be the Kullback-Leibler (KL) divergence. In this paper,
we consider a continuum of costs parameterized by a shape parameter β. Secondly, the algorithms
described herein are such that the cost function monotonically decreases to a local minimum.

2 Model and Inference

We are inspired by the use of ARD in Bayesian PCA [2] where each element of W is assigned a
Gaussian prior. However, our formulation has two main differences vis-à-vis Bayesian PCA. Firstly,
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there are no nonnegativity constraints in Bayesian PCA. Secondly, in Bayesian PCA, thanks to the
simplicity of the statistical model (Gaussian observations with Gaussian parameter priors), H can
be easily integrated out of the likelihood, and the optimization can be done over p(W,λ|V), where
λ = (λ1, . . . , λK) is the vector of relevance weights. We have to maintain the nonnegativity of the
elements in W and H and, in our case, the activation matrix H cannot be integrated out analytically.

To ameliorate the abovementioned problems, we propose to tie the columns of W and the rows of H
together through common scale parameters and subsequently prune these columns and rows out of
the model. This construction is not overconstraining the scales of W and H, because of the inherent
scale indeterminacy between wk and hk. Mørup and Hansen in [4] considered the β = 1, 2 models
and pruned only the rows H (via an `1 penalty) but the corresponding columns of W may take any
nonnegative value, which makes the problem ill-posed. In contrast, in our approach wk and hk are
jointly driven to zero. We choose nonnegative priors for W and H to ensure that all elements of
the basis and activation matrices are nonnegative. More precisely, we adopt a maximum a-posteriori
(MAP) Bayesian approach and assign W and H Half-Normal or Exponential priors. When W and
H have Half-Normal priors,

p(wfk|λk) = HN (wfk|λk), p(hkn|λk) = HN (wkn|λk), (1)

where HN ( · |λk) is the Half-Normal prior with variance-like parameter λk. Note that if x is a
Gaussian then |x| is a Half-Normal. When W and H have Exponential priors,

p(wfk|λk) = E(wfk|λk), p(hkn|λk) = E(wkn|λk). (2)

Note from (1) and (2) that the kth column of W and the kth row of H are tied together by a common
variance-like parameter λk. We refer to these λk’s as the relevance parameters. When a particular
λk is small, that particular column of W and row of H are not relevant. When a row and a column
are not relevant, their norms are close to zero and thus can be removed from the factorization. This
removal of common rows and columns makes the model more parsimonious.

We now describe the likelihood function. When β = 0, 1, 2, Dβ(V|WH) is proportional to
the (negative) log-likelihood of the Itakara-Saito (IS), KL and Euclidean noise models [5] up to
a constant. More precisely, the noise models are given as: β = 0 : vfn ∼ G(vkn; s, v̂fn/s),
β = 1 : vfn ∼ P(vkn; v̂fn) and β = 2 : vfn ∼ N (vkn; v̂fn, σ

2) where G,P and N refer
to the Gamma, Poisson and Gaussian. Hence, for these three special cases − log p(V|W,H) =

ϑDβ(V|WH) + cst where the proportionality constant ϑ , s for β = 0, ϑ , 1 for β = 1 and
ϑ , 1/σ2 for β = 2. We extend the use of Dβ(V|WH) for all β according to dβ defined in [1].

We further impose an inverse-Gamma prior on each relevance parameter λk ∼ IG(λk|a, b), where
a and b are the (nonnegative) shape and scale hyperparameters respectively. We set a and b to be
constant for all k = 1, . . . ,K. It can be shown that the cost function C(W,H,λ) which is equal to
the negative log-posterior − log p(W,H,λ|V) and is to be minimized, can be written as

C(W,H,λ) = ϑDβ(V|WH) +
∑
k

λ−1
k (f(wk) + f(hk) + b) + c log λk + cst, (3)

and for the two models (i) Half Normal f(x) , ‖x‖22/2 and c , (F +N)/2+a+1, (ii) Exponential
f(x) , ‖x‖1 and c , F +N +a+1. The function f( · ) is termed the regularizer. Note that in the
regularized cost function in (3), the second term is monotonically decreasing in λk while the third
term is monotonically increasing in λk. Thus, a subset of the λk’s will be forced to a lower bound
while others tend to a larger value. This serves the purpose of pruning irrelevant components out of
the model. This is also related to group LASSO [6] and reweighted `1-minimization [7].

We now sketch our algorithms termed `2- and `1-ARD for optimizing H given W. These algorithms
correspond to assuming Half Normal and Exponential priors respectively. Updating W given H pro-
ceeds analogously. We use an iterative algorithm that sequentially updates one factor w.r.t. the other.

Our algorithms are based on the optimization of an auxiliary function G(H|H̃) which is a function
that is parametrized by the previous iterate H̃ and majorizes the objectiveC(H) in (3). Furthermore,
G(H|H) = C(H). This auxiliary function is derived by upper bounding the convex part of C by
using Jensen’s inequality and the concave part of C by its tangent. It can be shown by using standard
MM techniques that the iterates results in the objective function being non-increasing (just as in the
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Figure 1: Estimated number of components Keff as a function of a for `1- and `2-ARD. The plain
line is the average value of Keff over the 10 runs and dashed-lines display ± the standard deviation.

Expectation-Maximization algorithm). We use such an MM procedure as well as the moving-term
technique described by Yang and Oja in [8] to derive both `2- and `1-ARD. Eventually, we obtain
the following updates for hkn given the previous iterate h̃kn: For `2-ARD:

hkn = h̃kn

(
pkn

qkn + h̃kn/(ϑλk)

)ξ(β)

, pkn ,
∑
f

wfkvfnṽ
β−2
fn , qkn ,

∑
f

wfkṽ
β−1
fn , (4)

and ṽfn , [WH̃]fn and the exponent ξ(β) = 1/(3 − β) for β ≤ 2 and ξ(β) = 1/(β − 1) for
β > 2. For `1-ARD:

hkn = h̃kn

(
pkn

qkn + 1/(ϑλk)

)γ(β)

, (5)

where the exponent γ(β) = 1/(2−β) for β < 1, γ(β) = 1 for β ∈ [1, 2] and γ(β) = 1/(β− 1) for
β ≥ 2. It should be mentioned that the updates in (4) and (5) are similar to MM in the usual β-NMF
up to an additional term in the denominator; h̃kn/λk for `2-ARD and 1/λk for `1-ARD.

To update the λk’s, we find the partial derivative of C(W,H,λ) w.r.t. λk, then set it to zero. This
gives the update λk ← [f(wk) + f(hk) + b]/c. Notice that λk ≥ b/c = B. This allows us
to estimate the effective number of components Keff = |{k ∈ [K] : (λk − B)/B ≥ τ}|. The
algorithm is terminated when maxk |(λk − λ̃k)/λ̃k| falls below a pre-specified threshold τ .

Despite being fully Bayesian, the algorithms are not completely parameter-free. One has to choose
the hyperparameters a and b carefully. Roughly, our idea is to equate v̂fn =

∑
k wfkhkn with the

empirical mean of elements in the data matrix µ̂V, then using the method of moments to find the
optimal b. In the case of `2-ARD, it can be shown that b̂ = π(a− 1)µ̂V/(2K). In the case of
`1-ARD, b̂ = ((a− 1)(a− 2)µ̂V/K)

1/2. This is the rule we use for choosing b given a fixed a.

3 Numerical Simulations
In this section we report experiments conducted with the popular swimmer dataset. It is a synthetic
dataset of N = 256 images each of size F = 32 × 32 = 1024. Each image represents a swimmer
composed of an invariant torso and four limbs, where each limb can take one of four positions. We
set background pixel values to 1 and body pixel values to 10, and generated noisy data with Poisson
noise. The “ground truth” number of components for this dataset is Ktrue = 16, which corresponds
to all the different limb positions. The torso and background form an invariant component that can
be associated with any of the four limbs, or equally split among limbs. We applied `1- and `2-ARD
with β = 1 (which matches the Poisson noise assumption), K = 32 = 2Ktrue. We tried several
values for the hyperparameter a ∈ {5, 10, 25, 50, 75, 100, 250, 500, 750, 1000}. For every value of
a we ran the algorithms from 10 common positive random initializations. The regularization paths
returned by the two algorithms are displayed in Fig. 1. `1-ARD consistently estimates the correct
number of components (Ktrue = 16) up to a = 500. Fig. 2 displays the basis learnt in one run of `1-
and `2-ARD when a = 100 and it can be seen that the ground truth is perfectly recovered. Values
of the cost function and of the relevance parameters along iterations are shown in Fig. 3.
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Figure 2: Left: Dictionary learnt in one run of `2-ARD (Left) and `1-ARD (Right) with a = 103.
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Figure 3: Cost function (3) along iterations (log-log scale). Bottom: Values of λk−B. `2-ARD and
`1-ARD are plotted on the left and right respectively.

In contrast to `1-ARD,Keff returned by `2-ARD is more variable across runs and values of a. Manual
inspection reveals that some runs return the correct decomposition when a = 500 (and those are the
runs with lowest cost, indicating the presence of local minima), but far less consistently than `1-
ARD. Then it might appear like the decomposition overfits the noise for a ∈ {750, 1000}. However,
visual inspection of learnt dictionaries with these values show that the solutions are not useless.
Fig. 2 displays the dictionary learnt by `2-ARD with a = 1000. The figure shows that the hierarchy
of the decomposition is preserved, despite that the last 16 components capture some noise. Thus,
despite that pruning is not fully achieved in the 16 extra components, the relevance parameters still
give a valid interpretation of what are the most significant components. Fig. 3 shows the evolution
of relevance parameters along iterations and it can be seen that the 16 “spurious” components do
approach the lower bound in the early iterations before they start to fit the noise. A variant of our
approach could consist in stopping to update a λk when its relative difference with previous iterate
falls under a certain threshold. Note that `2-ARD returns a solution where the torso is equally shared
by the four limbs. This is because `2 penalization favors this particular solution over the one returned
by `1-ARD, which favors sparsity of the individual dictionary elements. Further results including
those on audio datasets using IS-NMF will be presented at the workshop.
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