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Motivation

Given a set of i.i.d. samples drawn from
p, a Gaussian tree model.

Inferring structure of Phylogenetic Trees from observed data.

Carlson et al. 2008,
PLoS Comp. Bio.
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More motivation

What is the exact rate of decay of the probability of error?

How do the structure and parameters of the model influence the
error exponent (rate of decay)?

What are extremal tree distributions for learning?

Consistency is well established (Chow and Wagner 1973).

Error Exponent is a quantitative measure of the “goodness” of
learning.
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Main Contributions

1 Provide the exact Rate of Decay for a given p.

2 Rate of decay ≈ SNR for learning.

3 Characterized the extremal trees structures for learning, i.e., stars
and Markov chains.

Stars have the slowest rate. Chains have the fastest rate.
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Notation and Background

p = N (0,Σ): d-dimensional Gaussian tree model.

Samples xn = {x1, x2, . . . , xn} drawn i.i.d. from p.

p: Markov on Tp = (V, Ep), a tree.

p: Factorizes according to Tp.

p(x) = p1(x1)
p1,2(x1, x2)

p1(x1)

p1,3(x1, x3)

p1(x1)

p1,4(x1, x4)

p1(x1)
, Σ−1 =


♠ ♣ ♣ ♣
♣ ♠ 0 0
♣ 0 ♠ 0
♣ 0 0 ♠


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Max-Likelihood Learning of Tree Distributions
(Chow-Liu)

Denote p̂ = p̂xn as the empirical distribution of xn, i.e.,

p̂(x) := N (x; 0, Σ̂)

where Σ̂ is the empirical covariance matrix of xn.

p̂e: Empirical on edge e.

Reduces to a max-weight spanning tree problem (Chow-Liu 1968)

ÊCL(xn) = argmax
Eq : q∈Trees

∑
e∈Eq

I(p̂e). I(p̂e) := Î(Xi;Xj).
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ÊCL(xn) = argmax
Eq : q∈Trees

∑
e∈Eq

I(p̂e). I(p̂e) := Î(Xi;Xj).
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Max-Likelihood Learning of Tree Distributions

True MIs {I(pe)} Max-weight spanning tree Ep

Empirical MIs {I(p̂e)} from xn Max-weight spanning tree ÊCL(xn) 6= Ep
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Problem Statement
The estimated edge set is ÊCL(xn)

and the error event is{
ÊCL(xn) 6= Ep

}
.

Find and analyze the error exponent Kp:

Kp := lim
n→∞

−1
n

logP
({
ÊCL(xn) 6= Ep

})
.

Alternatively,

P
({
ÊCL(xn) 6= Ep

})
.
= exp(−nKp).
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The Crossover Rate I

Two pairs of nodes e, e′ ∈
(V

2

)
with distribution pe,e′ , s.t.

I(pe) > I(pe′).

Consider the crossover event:

{I(p̂e) ≤ I(p̂e′)}.

Definition: Crossover Rate

Je,e′ := lim
n→∞

−1
n

logP ({I(p̂e) ≤ I(p̂e′)}) .

This event may potentially lead to an error in structure learning. Why?
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The Crossover Rate II

Theorem
The crossover rate is

Je,e′ = inf
q∈Gaussians

{
D(q || pe,e′) : I(qe′) = I(qe)

}
.

By assumption I(pe) > I(pe′). v

v

pe,e′

q∗e,e′
{I(qe)= I(qe′)}

D(q∗e,e′ ||pe,e′)
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Error Exponent for Structure Learning II

P
({
ÊCL(xn) 6= Ep

})
.
= exp(−nKp).

Theorem (First Result)

Kp = min
e′ /∈Ep

(
min

e∈Path(e′;Ep)
Je,e′

)
.
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Approximating the Crossover Rate I

Definition: pe,e′ satisfies the very noisy learning condition if

||ρe| − |ρe′ || < ε ⇒ I(pe) ≈ I(pe′).

Euclidean Information Theory (Borade, Zheng 2007).

12/20 Vincent Tan (MIT) Learning Gaussian Tree Models Allerton Conference 12 / 20



Approximating the Crossover Rate II

Theorem (Second Result)
The approximate crossover rate is:

J̃e,e′ =
(I(pe′)− I(pe))

2

2 Var(se′ − se)

where se is the information density:

se(xi, xj) = log
pi,j(xi, xj)

pi(xi)pj(xj)

The approximate error exponent is

K̃p = min
e′∈Ep

(
min

e∈Path(e′;Ep)
J̃e,e′

)
.
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Correlation Decay

w
w w
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p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p
x1

x2 x3

x4

ρ1,2

ρ2,3

ρ3,4

ρ1,4

ρ1,3

ρi,j = E[xi xj].

Markov property⇒ ρ1,3 = ρ1,2 × ρ2,3.

Correlation decay⇒ |ρ1,4| ≤ |ρ1,3|.

(1, 4) is not likely to be mistaken as a true edge.

Only need to consider triangles in the true tree.
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Extremal Structures I

Fix ρ, a vector of correlation coefficients on the tree, e.g.

w
w w

ww w
@
@
@
@
@ �

�
�
�
�

ρ1

ρ2

ρ3ρ4 ρ5

ρ := [ρ1, ρ2, ρ3, ρ4, ρ5].

Which structures gives the highest and lowest exponents?
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Extremal Structures II

Theorem (Main Result)

Worst: The star minimizes K̃p.

K̃star ≤ K̃p.

Best: The Markov chain maximizes K̃p.

K̃chain ≥ K̃p.

w
w
w
w

w
ρ1

ρ2

ρ3ρ4

w w w w wρπ(1) ρπ(2) ρπ(3) ρπ(4)
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Extremal Structures III

Chain, Star and Hybrid Graphs for d = 10.
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Plot of the error probability and error exponent for 3 tree graphs.
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Extremal Structures IV

Remarks:
Universal result.

Extremal structures wrt diameter are the extremal structures for
learning.

Corroborates our intuition about correlation decay.
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Extensions

Significant reduction of complexity for computation of error
exponent.

Finding the best distributions for fixed ρ.

Effect of adding and deleting nodes and edges on error exponent.
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Conclusion
1 Found the rate of decay of the error probability using large

deviations.

2 Used Euclidean Information Theory to obtain an SNR-like
expression for crossover rate.

3 We can say which structures are easy and hard based on the
error exponent.

Extremal structures in terms of the tree diameter.

Full versions can be found at
http://arxiv.org/abs/0905.0940.
http://arxiv.org/abs/0909.5216.
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