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Abstract—We consider the fundamental limits of the secret
key generation problem when the sources are excited by the
sender. In many practical communication settings, the channel
may be influenced by the parties involved. Similar to recent
works on probing capacity and channels with action-dependent
states, our system model captures such a scenario. We derive
single-letter expressions for the secret key capacity. Our coding
strategy involves wiretap channel coding and a key generation
scheme. By assuming that the eavesdropper receives a degraded
version of the legitimate receiver’s observation, we also obtain
a capacity result that does not involve any auxiliary random
variables. Finally, by studying two examples, we show that there
is a fundamental tradeoff in between the amount of common
randomness (i.e., the secret key rate) and the wiretap secrecy
rate.

Index Terms—Secret key capacity, Sender excitation, Probing
capacity, Degraded broadcast channel

I. INTRODUCTION

Within the realm of information theoretic secrecy, the
foundations of sharing a secret key between two parties in
the presence of an eavesdropper were initiated in [1, 2].
Ahlswede and Csiszár [1] studied two models: the source-
type model with wiretapper (Model SW) and the channel-
type model with wiretapper (Model CW). In Model SW, the
users obtain their observations from a discrete memoryless
multiple source (DMMS) and communicate to each other via
a noiseless authenticated public channel. The public messages
they send can be regarded as compressed versions of the data
in a multi-terminal source coding problem. The information
that is independent of the public message can be used to
generate secret keys. In Model CW, one legitimate user (the
sender) controls the input of a discrete memoryless broadcast
channel (DMBC), sending information to the legitimate re-
ceiver and the eavesdropper. The sender randomly chooses a
message and transmits it to receiver. Users may also discuss
over a public channel and generate a key based on all the
available data sent to them by the other party. It is shown
that when one-way public discussion is allowed, the users
can adopt wiretap channel coding [3, 4] without the public
channel and there is no loss of the secret key rate. These
ideas were extended in [5] in which the key generation with
helper problem was studied.

However, in many applications, the system is neither a
source-type nor a channel-type model. This work explores
such a setting. We also derive capacity results for the secret
key agreement problem when the sender can control the

“state” of the channel in the same spirit as the works on prob-
ing capacity and channels with action-dependent states [6–8].

A. Related Work

There are other works dealing with non-source and non-
channel models such as [9, 10], where users observe a
DMMS and they can also transmit information via a wiretap
channel. However, no public discussion is allowed. The
key generation scheme is based on the observation that the
public message, which assists in generating the key, can be
transmitted via the DMBC confidentially, resulting a higher
secret key rate.

The authors in [11–14] considered the setting where a
wiretap channel is influenced by a random state that is known
at the sender (and possibly the receiver) either causally or
noncausally and thus can be treated as a correlated source.
In [11, 12], the sender transmits a confidential message
and the random state is exploited in the coding scheme
to confuse the eavesdropper. The lower bound is proved
using a combination of Gel’fand-Pinsker coding and wiretap
channel coding. In [13], the goal was to generate a secret
key when the encoder and decoders have noncausal state
information. The authors presented a single-letter expression
of the secret key capacity. The resulting key rate consists of
two parts; the first is attributed to the rate of the confidential
message using wiretap channel coding while treating the state
sequence as a time-sharing sequence (multiplexing), while
the second key, independent of the first one, is produced by
exploiting the common knowledge of the state at the sender
and the legitimate receiver. A similar problem with causal
state information was studied in [14] and the coding scheme
involves block Markov coding, Shannon strategy and wiretap
coding.

Another motivation of this paper comes from that fact that
in many applications such as storage for computer memo-
ries, the system (channel) may be influenced by a probing
signal that is influenced by some of the users (typically the
sender). This problem was first studied in the channel coding
context [6] where the channel state of the DMBC depends
on the encoder’s action sequence, which in turn depends
on the message the sender intends to send. As a result, the
channel is one whose states are “action-dependent”. In [7],
the availability of the states at the encoder is controlled by a
probing (action) signal, which is subject to a cost constraint.
Similar action-dependent ideas were studied in [8] in the



source coding context. However, the models studied in [6],
[7] and [8] do not incorporate any secrecy constraints.

In another line of research, Chou et al. [15] studied the
problem of secret key generation from a DMMS with one-
way public discussion. The DMMS studied is influenced
by the inherent randomness of a DMBC that is excited
by a deterministic external sounding signal. Capacity and
reliability results were derived.

B. Our Contributions

In this paper, we consider a system with the model shown
in Fig. 1. The users obtain correlated sources via the outputs
of a DMBC p(x, y, z|s), where the input S, controlled by the
sender, is subject to an input cost constraint. This generalizes
the model of [15] in the sense that the input sounding
signal can be randomly selected by the sender based on her
private source of randoness and the information of the chosen
sounding sequence is protected by using wiretap channel
coding. This allows us to optimize over the distribution of
the sounding signal to maximize the secrecy key rate. We
give a single-letter expression for the secret key capacity of
this system. The capacity-achieving coding scheme is one
in which the optimal tradeoff between two coding strategies
has to be found: (1) Treat the DMBC p(y, z|s) as a wiretap
channel [3, 4] and apply wiretap channel coding, and (2)
Treat the channel outputs (X,Y, Z) as excited correlated
sources and use key generation scheme (as [1]) to extract
the key. We demonstrate this tradeoff by using an example
in which the channel is degraded in favor of the legitimate
receiver.

C. Paper Organization

This paper is organized as follows: In Section II, we
describe the system model and define the notion of degrad-
edness (of the eavesdropper). Our main results pertaining to
the secret key capacity are provided in Section III. We also
prove a (looser) upper bound for the secret key capacity that
does not contain any auxiliary random variables. We show
that this upper bound is in fact tight for degraded channels.
In Section IV, we present two examples to demonstrate
how the preceding theorems can be applied to channels of
interest. We show that there is an inherent tradeoff between
the wiretap rate and the key rate. We conclude our discussion
by suggesting avenues for future research in Section V. The
proofs of the main results are provided in Section VI.

II. PROBLEM SETUP

We adopt the notational conventions employed in the lec-
ture notes by El Gamal and Kim [16]. The setting is depicted
in Fig. 1. Consider a DMBC (S, p(x, y, z|s),X × Y × Z)
consisting of four finite sets S,X ,Y,Z and a collection of
conditional pmfs p(x, y, z|s) on X×Y×Z . The sender, Alice
at terminal X , controls the channel input sounding signal
sn via n uses of the channel. Alice has a private source of
randomness used to select an index m, which influences sn.
The legitimate receiver at terminal Y is known as Bob and
the eavesdropper at terminal Z is known as Eve. There is also
a noiseless public discussion channel which allows Alice to
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Fig. 1. Our problem setup: Based on her private source of randomness M ,
Alice excites the channel via the sounding signal Sn(M). She generates
a public message Φ(M,Xn), which is transmitted through the noiseless
public channel and hence known to all parties. Alice and Bob generate keys
KA(M,Xn) and KB(Φ, Y n) respectively. The keys should agree, while
at the same time, they should be kept secret from Eve.

transmit a message Φ to Bob and Eve. A (2nRM , 2nRΦ , n)
code for the secret key generation protocol consists of:

1) Channel Excitation: Alice first selects an message m ∈
[1 : 2nRM ]. Then, she chooses a message-dependent
input sequence sn = sn(m) such that every input
codeword to the channel satisfies the cost constraint

Λ(sn(m)) =
1

n

n∑
i=1

Λ(si(m)) ≤ Γ , (1)

where Λ : S → R+ is the input cost function.
The sequence sn is transmitted over n channel uses.
The output sequences xn, yn and zn are observed by
Alice, Bob (legitimate receiver) and Eve (eavesdropper)
respectively.

2) (One-Way) Public Discussion: After observing xn, Alice
generates a one-way public message ϕ = ϕ(m,xn) ∈
[1 : 2nRΦ ], and transmits it over a noiseless public
channel.

3) Key Generation: Alice generates a key kA =
kA(m,xn) ∈ N. After receiving his channel output yn

and the public message ϕ, Bob generates another key
kB = kB(y

n, ϕ) ∈ N.

Definition 1 (Achievability). The secret key rate RSK(Γ)
is achievable if there exists a sequence of (2nRM , 2nRΦ , n)
codes for the secret key generation protocol such that for
every ϵ > 0, the following constraints are satisfied:

P(KA ̸= KB) < ϵ (2)
1

n
I(KA;Z

n,Φ) < ϵ (3)

1

n
H(KA) > RSK(Γ)− ϵ (4)

for all n ≥ n0(ϵ, |S|, |X |, |Y|, |Z|).

Definition 2 (Secret Key Capacity). The secret key capacity
CSK(Γ) is the supremum of all achievable secret key rates.

The first constraint on the code in (2) implies that we
would like Alice’s and Bob’s keys to agree with high prob-
ability. The second constraint in (3), known as the secrecy



condition, requires that the eavesdropper should not be able to
estimate the key KA given sequence Zn and public message
Φ. This is manifested in fact that the normalized mutual
information should be arbitrarily small so KA and (Zn,Φ)
are statistically independent asymptotically. Finally, the rate
condition in (4) implies that the entropy of KA should be
close to RSK(Γ). In other words the pmf of KA should be
close to that of a uniform pmf supported on [1 : 2nRSK(Γ)].

Note the conditional distribution of (X,Y, Z|S) can be fac-
torized as p(x|s)p(y, z|x, s). The first conditional distribution
p(x|s) can be thought of as Alice’s influence on the channel
state via the sounding signal sn, while the second p(y, z|x, s)
can be thought of as a state-dependent channel. The variables
S,X are available at Alice but she can only control the
sounding signal S, which in turn triggers the channel. As
mentioned in the Introduction, the model we study in this
paper involves a probing mechanism. This is analogous to the
model studied in [6, 7], in which the channel is influenced by
a sequence of actions but there is no secrecy requirement. The
main difference from [6, 7] is that in our model, we consider
only one DMBC p(x, y, z|s), thus the chosen channel input
sn does not depend on the observation xn. However, the
sender Alice uses both xn and sn to generate a key kA in the
subsequent public messaging step. A special class of channels
in which Eve’s observation is a degraded version of Bob’s is
defined as follows.

Definition 3 (Degradedness). We say that the DMBC
p(x, y, z|s) is degraded if (X,S) − Y − Z form a Markov
chain, i.e., p(y, z|x, s) = p(y|x, s)p(z|y).

Note that we do not differentiate between physical and
stochastic degradedness [16, Ch. 5]. The capacity results will
turn out to be identical for both cases.

III. MAIN RESULTS

We present our main results in this section. We give a
single-letter expression for the secret key capacity containing
three auxiliary random variables. We also provide a looser
upper bound in which there are no auxiliary random variables
in the expression. The upper bound is tight when the system
is such that the channel is degraded in favor of Bob, the
legitimate receiver (as per Definition 3).

Theorem 1 (Secret Key Capacity). The secret key capacity
of DMBC (S, p(x, y, z|s),X × Y × Z) is

CSK(Γ) = max [I(U, V ;Y |W )− I(U, V ;Z|W )] , (5)

where the maximization is over joint distributions of the form

p(w, u, v, s, x, y, z) = p(u,w)p(s|u)p(v|w, u, x)p(x, y, z|s)
(6)

for some p(u,w), p(s|u), p(v|w, u, x) such that E[Λ(S)] ≤ Γ.

Lemma 2 (Properties of CSK(Γ)). The function CSK :
(0,∞) → R+ is non-decreasing, concave and continuous.

The converse and the direct parts of Theorem 1 are detailed
in Sections VI-A and VI-B respectively. We provide an
operational proof of Lemma 2 in Section VI-C. Note that

the joint distribution factorizes as in (6) if and only if the
following Markov chains hold:

W − U − S − (X,Y, Z) , (7)
V − (W,U,X)− (S, Y, Z) . (8)

Furthermore, observe that the rate in (5) can be written as
sum of two rates RSK = Rch +Rsrc where

Rch = I(U ;Y |W )− I(U ;Z|W ) ,

Rsrc = I(V ;Y |W,U)− I(V ;Z|W,U) .

The first rate Rch can be interpreted as the confidential
message rate of the wiretap channel p(y, z|s) [4]. The second
rate Rsrc is the secret key rate from excited correlated source
(X,Y, Z) previously studied in [15] for a particular deter-
ministic sounding signal sn. Here the sounding signal Sn

is randomly chosen by Alice based on her private source of
randomness. As such, we can optimize over the distribution
in (6) to find the largest “sum rate” Rch +Rsrc. It turns out
that there is a natural tradeoff between Rch and Rsrc. We see
this using an example in Section IV-B.

To find the secret key capacity for specific channels, three
auxiliary random variables W,U and V solving (5) and
satisfying (7) and (8) have to be identified. This may be a
difficult task. In the next proposition, we provide an (albeit
looser) upper bound which does not involve any auxiliary
random variables. This result will turn out to be important in
Section IV in which we present several channel models for
which we identify the secret key capacities in closed-form.

Proposition 3 (Upper Bound in Secret Key Capacity). The
secret key capacity is upper bounded by

CSK(Γ) ≤ max I(X,S;Y |Z) , (9)

where the maximization is over all input distributions p(s)
such that E[Λ(S)] ≤ Γ.

The proof of this proposition is given in Section VI-D.
Roughly speaking, the expression in (9) can be interpreted
as the secret key capacity when Alice and Bob have full
knowledge (side information) of Eve’s observation Z, hence
the conditioning on Z. Indeed, in the case of degraded
p(x, y, z|s), the result in Proposition 3 is tight.

Corollary 4 (Secret Key Capacity of Degraded Channels).
If the DMBC p(x, y, z|s) is degraded, the secret key capacity
is

CSK(Γ) = max [I(X,S;Y )− I(X,S;Z)] ,

where the maximization is over all input distributions p(s)
such that E[Λ(S)] ≤ Γ.

Proof: Let S have distribution p(s) that achieves the upper
bound in Proposition 3. The secret key capacity of the
degraded DMBC can be upper bounded as

CSK(Γ) ≤ I(X,S;Y |Z) = I(X,S;Y, Z)− I(X,S;Z)

= I(X,S;Y )− I(X,S;Z) . (10)

The last equality is due to the fact that (X,S)−Y −Z form
a Markov chain. On the other hand, the upper bound (10)



can be achieved by the specific choice of W = ∅, U = S,
and V = X in (5).

IV. EXAMPLES

We consider two examples in this section. The first is an
additive Gaussian interference channel where the interference
of Alice and Bob is correlated. The second example is a
binary on-off channel in which Eve receives a degraded
version of Bob’s (or Alice’s) output.

A. Additive Gaussian Interference Channel

Consider the channel model
X = S + I1 +N1

Y = S + I2 +N2

Z = S + I3 +N3

where Ni, i = 1, 2, 3, are independent Gaussian noises
distributed as N

(
0, σ2

i

)
. The random variables Ii, i = 1, 2, 3

are distributed as N
(
0, ν2i

)
and model interference at each

receiver. The interferences Ii are independent of Ni. It is
assumed that I1, I2, I3 are jointly Gaussian with E[IiIj ] =
ρijνiνj where ρij ∈ (−1, 1) is the correlation coefficient. It is
further assumed that the channel is degraded in favor of Bob
in the sense that ν23 + σ2

3 ≥ ν22 + σ2
2 . The input sequence Sn

is subject to an average power constraint P , i.e., Λ(s) = s2

and Γ = P .
By degradedness, we can define Z ′ , Y +N ′

3 where N ′
3

is independent and distributed as N
(
0, ν23 + σ2

3 − ν22 − σ2
2

)
.

Note that (X,S)−Y −Z ′ forms a Markov chain and Z ′ has
the same marginal distribution as Z. Since (3) only depends
on the marginal distribution p(x, z|s), from Corollary 4 the
secret key capacity is

CSK = max
p(s):E[S2]≤P

I(X,S;Y )− I(X,S;Z) = Rch +Rsrc .

Note that in this case, Rsrc is not a function of the input distri-
bution p(s). The optimal input distribution is S ∼ N (0, P ),
which is same as that in the Gaussian wiretap channel [17].
Define C0(x) , 1

2 log(1+x) as the AWGN channel capacity
with signal-to-noise ratio (SNR) x and C1(ρ,νij ,σij) as

C1(ρ,νij ,σij) , C0

(
ρ2ν2i ν

2
j

(ν2i + σ2
i )(ν

2
j + σ2

j )− ρ2ν2i ν
2
j

)
,

where the parameters νij and σij are defined as νij ,
(νi, νj) and σij , (σi, σj). With these definitions, Rch and
Rsrc can be calculated as

Rch = I(S;Y )− I(S;Z)

= C0

(
P

ν22 + σ2
2

)
− C0

(
P

ν23 + σ2
3

)
,

Rsrc = I(X;Y |S)− I(X;Z|S)
= C1(ρ12,ν12,σ12)− C1(ρ13,ν13,σ13) .

Note that, in this case, Rsrc depends on the correlation
between interference and is not a function of P . When we
increase the input power P , only Rch increases.

The secret key capacity for the specific choice of pa-
rameters ρ12 = 0.8, ρ13 = 0.3, ν1 = ν2 = 1, ν3 = 2,
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Fig. 2. Secret key capacity of the Gaussian additive interference channel.
ρ12 = 0.8, ρ13 = 0.3. ν1 = ν2 = 1, ν3 = 2. σi = 1 for all i ∈ {1, 2, 3}.

and σi = 1 for all i ∈ {1, 2, 3} is plotted against the
input power P in Fig. 2. As Lemma 2 suggests, CSK(P ) is
non-decreasing and concave1 in P . When the allowed input
power P is small, extracting common secret information from
correlated interference is important, evidenced by the fact
that Rsrc ≥ Rch at low power levels P . On the other hand,
when the input power is large, we can simply use the wiretap
channel p(y, z|s) without any significant loss of rate.

B. Binary On-off Channel

In our second example, we consider the binary on-off
model

X = H · S ⊕N1

Y = H · S ⊕N2

Z = (H̃ ·H) · S ⊕N3 ,

where all the variables are binary and where the operations
are performed in the field of size 2. Hence, the addition
above is is binary modulo-2 addition. The “channel gain”
H is Bern (q) and H̃ is Bern (q̃). Noise Ni is Bern (δi) and
the Ni are mutually independent. The channel describes a
model in which, in the absence of noise, Eve’s observation
is strictly worse than that of Alice’s and Bob’s since H̃ is
present.

If δ1 = δ2 = δ and q̃δ < δ3, then Eve’s channel output is
a degraded version of Bob’s. In this case, there exists a Z ′ ,
H̃ ′ · Y ⊕N ′

3 for some H̃ ′, with the same distribution as H̃ ,
and independent N ′

3 ∼ Bern (δ′3) such that (X,S)−Y −Z ′,
where

δ′3 =
δ3 − q̃δ

1− 2q̃δ
.

Let S ∼ Bern (α). The first term of Rch is

I(S;Y ) = H(Y )−H(Y |S)
= Hb(αq ∗ δ)− [αH(Y |S = 1) + (1− α)H(Y |S = 0)]

= Hb(αq ∗ δ)− αHb(q ∗ δ)− (1− α)Hb(δ) ,

1The concavity would be more apparent if the horizontal axis of Fig. 2
is linear but we find that it is more convenient to plot it in dB.
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Fig. 3. Secret key rate of the binary on-off channel as a function of α.
The input S ∼ Bern (α). The parameters are q = 0.5, q̃ = 0.8, δ =
0.1, δ3 = 0.2. Note that CSK = maxα∈[0,1] RSK(α) and the maximizing
α∗ ≈ 0.59.

where Hb(·) is the binary entropy function and the operation
a ∗ b , a(1 − b) + (1 − a)b. Similarly, the second term of
Rch can be expressed as

I(S;Z) = Hb(αq̃q ∗ δ3)− αHb(q̃q ∗ δ3)− (1− α)Hb(δ3) .

The secret key rate due to source X can be calculated as

Rsrc = I(X;Y |S)− I(X;Z|S)
= α[I(X;Y |S = 1)− I(X;Z|S = 1)]

= α[Hb(q ∗ δ)−Hb(δ ∗ δ)−Hb(q̃q ∗ δ3)
+ (1− q ∗ δ)Hb(δ

′
3) + (q ∗ δ)Hb(q̃ ∗ δ′3)] .

The second equality is because if S = 0, the source is not
observed and so there is no mutual information between X
and Y (and also between X and Z).

The secret key rate when the input is a Bern (α) source
is RSK(α) = Rch(α) +Rsrc(α) and is shown in Figure 3 as
a function of α for the set of parameters q = 0.5, q̃ = 0.8,
δ = 0.1, δ3 = 0.2. Note that Rch is a concave function of
α and Rsrc is a linear function of α. Also, if α = 0, then
Rsrc = 0 in this example. In contrast, Rsrc is positive at all
powers for the additive Gaussian interference channel. When
α = 1 (Sn is the all ones sequence), the input excites all
common randomness due to the common on-off coefficient
H . However, when α = 1, the secrecy rate of the wiretap
channel Rch = 0. Thus, we observe that there is a inherent
tradeoff in between the amount of common randomness and
the wiretap secrecy rate.

V. EXTENSIONS

In this paper, we derived capacity theorems for the secret
key agreement problem when the sender excites the channel
model. Several questions arise naturally from this work:

• What happens if we place a constraint on the rate of
the public channel as was done in [5]? In fact, a lower
bound for the capacity of this problem can be derived
based on the coding scheme described in Section VI-B.
The upper bound is still an open problem.

• What changes if we allow Alice and Bob to com-
municate over multiple rounds, i.e, multi-way public
discussion is permitted?

• Can we derive reliability and secrecy exponents along
the lines of [15]?

• Can we derive upper and/or lower bounds for the secret
key capacity when the transition probability is state-
dependent, i.e., when it is a function of an underlying
state s0 so the transition probability is p(x, y, z|s, s0)?
The state s0 assumed to be known at the encoder.

VI. PROOFS OF THEOREMS

A. Proof of Converse of Theorem 1

We start with a lemma [1, Lemma 4.1], which is a
consequence of the Csiszár sum identity [16, Ch. 2].

Lemma 5. The following equality holds for arbitrary random
variables K,Φ, Y n, Zn:

I(K;Y n|Φ)− I(K;Zn|Φ)

=
n∑

i=1

I(K;Yi|Y i−1, Zn
i+1,Φ)− I(K;Zi|Y i−1, Zn

i+1,Φ) .

The converse follows from the following steps:

nRSK

(a)

≤ I(KA;Y
n,Φ) + nϵn

(b)

≤ I(KA;Y
n,Φ)− I(KA;Z

n,Φ) + 2nϵn

= I(KA;Y
n|Φ)− I(KA;Z

n|Φ) + 2nϵn

(c)
=

n∑
i=1

I(KA;Yi|Y i−1, Zn
i+1,Φ)

− I(KA;Zi|Y i−1, Zn
i+1,Φ) + 2nϵn

(d)
=

n∑
i=1

I(KA;Yi|Wi)− I(KA;Zi|Wi) + 2nϵn

(e)
=

n∑
i=1

I(Ui, Vi;Yi|Wi)− I(Ui, Vi;Zi|Wi) + 2nϵn ,

where (a) is due to Fano’s inequality (ϵn → 0 as n → ∞),
(b) is due to the secrecy condition (3), (c) by applying
Lemma 5, (d) follows from defining the auxiliary random
variable Wi , (Y i−1, Zn

i+1,Φ), (e) follows by defining the
auxiliary random variables Ui , (KA,Wi) and Vi , KA.
The chosen variables Wi, Ui, Vi satisfy the Markov condi-
tions Wi −Ui − (Yi, Zi) and Vi − (Wi, Ui, Xi)− (Yi, Zi) as
required in (7) and (8). Finally, by using the definition and
concavity of CSK(Γ) (see Lemma 2), we have

nRSK ≤
n∑

i=1

CSK(E[Λ(Si)]) + 2nϵn

≤ n
n∑

i=1

CSK

(
1

n
E[Λ(Si)]

)
+2nϵn≤n[CSK(Γ)+ 2ϵn].

This completes the proof of the converse.
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figure, the function f2 partitions the 100 indices into a two-dimensional grid
of bins where each bin contains T = |J |/(|Φ||K|) = 5 indices.

B. Proof of Achievability of Theorem 1

We use the notion of typicality in [16, Ch. 2]. The
typical set is denoted as T (n)

ε . Fix ε > ε′ > ε′′ > 0
and also fix the distributions p(u,w), p(s|u), p(v|w, u, x) that
achieve CSK(

Γ
1+ε ) in (5). By marginalization, this choice of

distributions induces p(u,w), p(s|u) and p(v|u,w). We first
prove achievability for W = ∅. At the end, we generalize the
result.

1) Codebook generation: Define the five index sets:

M , [1 : 2n(I(U ;Y )−2δ)]

L , [1 : 2n(I(V ;X|U)+δ)]

Φ , [1 : 2n(I(V ;X|U)−I(V ;Y |U)+2δ)] (11)

K , [1 : 2n(I(U,V ;Y )−I(U,V ;Z))]

J , [1 : 2n(I(V ;X|U)+I(U ;Y )−δ)] .

Note that |J | = |M||L|. The set K represents the alphabet
of Alice’s and Bob’s key. The secret key rate is 1

n log |K|
[compare to (5) with W = ∅].

Randomly and independently generate 2n(I(U ;Y )−2δ) se-
quence pairs (un(m), sn(m)),m ∈ M drawn according
to
∏n

i=1 p(ui, si). For each m ∈ M, randomly and con-
ditionally independently generate 2n(I(V ;X|U)+δ) sequences
vn(m, l), l ∈ L according to

∏n
i=1 p(vi|ui(m)).

Let f : M × L → Φ × K be a deterministic binning
function defined as follows. First, let f1 : M×L → J be
the function2 defined as f1(m, l) , (m− 1)|L|+ l. Second,
let f2 : J → Φ × K be a function that induces a partition
of the indices in J such that each sub-bin, doubly-indexed
by (ϕ, k), contains an equal number of (m, l) pairs, namely3

T = |J |/(|Φ||K|) .
= 2n(I(U,V ;Z)−3δ). More precisely, we

may set ϕ ∈ Φ and k ∈ K as follows: f2(j) = (ϕ, k) if
k = ⌈j/|K|⌉ and ϕ = ⌈((j − 1) mod |K|)/T ⌉. Then, we
define the composite function f(m, l) , f2(f1(m, l)). See
Fig. 4 for an illustration of the function f . In addition, if

2Similar to Matlab’s (:) notation, the raster scan f1 “unwraps” the pair of
indices (m, l). Equivalently, f1 may be defined as f1(m, l) ,(l−1)|M|+
m.

3We say that an
.
= bn if limn→∞ n−1 log(an/bn) = 0.

f(m, l) = (ϕ, k), we also define the two (projection) maps
ϕ(m, l) , ϕ and k(m, l) , k. These are called the first bin
(public message) and second bin (key) respectively. Define

B(ϕ) , {(un(m), vn(m, l)) : ϕ(m, l) = ϕ}
C(k) , {(un(m), vn(m, l)) : k(m, l) = k} ,

to be the set of pairs of sequences with first bin index
equal to ϕ and the set of pairs of sequences with second
bin index equal to k respectively. Note that the number
of pairs of sequences in B(ϕ) is |B(ϕ)| = |J |/|Φ| .

=
2n(I(U,V ;Y )−3δ). It can similarly verified that |C(k)| .

=
2n(I(V ;X|U)−I(V ;Y |U)+I(U,V ;Z)−δ).

2) Encoding: Alice selects m ∈ M uniformly at random,
sets un = un(m) and selects inputs sn = sn(m) to channel.
Let the event that the codewords are atypical be

E0 , {(un, sn) /∈ T (n)
ε′′ } ∪ {Λ(sn) > Γ} .

After observing the channel output xn, Alice finds an l ∈
L such that (vn(m, l), un, xn) ∈ T (n)

ε′′ . If no such index is
found, declare l = 1. Define

E1 , {(vn(m, l), un, xn) /∈ T (n)
ε′′ , ∀ l ∈ L}

to be the encoding error event. Alice generates the public
message as ϕ = ϕ(m, l) and sets her key kA = k(m, l),
where the functions ϕ and k are defined in the codebook
generation step.

3) Decoding: Bob receives yn from the channel output
and finds a unique m̂ ∈ M such that (un(m̂), yn) ∈ T (n)

ε′ .
If more than one such m̂ ∈ M is found, declare m̂ to be the
smallest such index. The error events are

E2 , {(un(m), yn) /∈ T (n)
ε′ } ,

where m corresponds to the m used in encoding and

E3 , {∃ m̃ ∈ M : m̃ ̸= m, (un(m̃), yn) ∈ T (n)
ε′ }

is the first decoding error. Define ûn , un(m̂).
After receiving ϕ from the public channel, Bob also

finds an index l̂ ∈ L such that vn(m̂, l̂) ∈ B(ϕ) and
(vn(m̂, l̂), ûn, yn) ∈ T (n)

ε . If more than one such l̂ is found,
choose the one with the smallest index. The error events are

E4 , {(vn(m, l), un(m), yn) /∈ T (n)
ε } ,

where l corresponds to the l used in encoding and

E5 , {∃ l̃ ̸= l : vn(m̂, l̃) ∈ B(ϕ) and (vn(l̃), ûn, yn) ∈ T (n)
ε }

is the second decoding error. Bob generates his key as kB =
k(m̂, l̂), where the function k is defined in the codebook
generation step.

4) Error probability analysis: The error probability can
be decomposed as

P

[
5∪

i=0

Ei

]
=

5∑
i=0

P

Ei ∩ (

i−1∪
j=0

Ej)c
 .

Firstly, P[E0] → 0 by the law of large numbers and
the Typical Average Lemma [16]. Secondly, for each m,



the number of vn sequences is .
= 2n(I(V ;X|U)+δ). By the

Covering Lemma [16], for sufficiently small ε (the typicality
tolerance) relative to δ, P[E1 ∩ Ec

0 ] → 0. Thirdly, by the
Conditional Typicality Lemma [16], P[E2 ∩ Ec

0 ] → 0 and
P[E4 ∩ Ec

0 ∩ Ec
1 ] → 0. To bound the error event E3, since

|M| .
= 2n(I(U ;Y )−2δ), by the Packing Lemma [16], P[E3 ∩

(
∪2

j=0 Ej)c] → 0. Finally, since |B(ϕ)|
|M|

.
= 2n(I(V ;Y |U)−δ), by

the Packing Lemma P[E5 ∩ (
∪4

j=0 Ej)c] → 0. For this final
step, note that we have conditioned on the event that Bob
decoded m correctly so the “cloud center” un is known.

5) Equivocation rate analysis: The information leakage
rate in (3) can be rewritten as

1

n
I(KA;Z

n,Φ) =
1

n
H(KA)−

1

n
H(KA|Zn,Φ)

≤ I(U, V ;Y )− I(U, V ;Z)− 1

n
H(KA|Zn,Φ) .

(12)

The inequality is due to the code construction, namely that
|K| .

= 2n(I(U,V ;Y )−I(U,V ;Z)). It remains to show that

H(KA|Zn,Φ) ≥ n(I(U, V ;Y )− I(U, V ;Z))− nϵn . (13)

where ϵn → 0 as n → ∞. This is because substituting (13)
into (12) yields I(KA;Z

n,Φ) ≤ nϵn, satisfying the secrecy
condition in (3). To show (13), firstly write the equivocation
in (12) as a difference of two terms:

H(KA|Zn,Φ) = H(KA, U
n, V n|Zn,Φ)

−H(Un, V n|KA, Z
n,Φ) . (14)

We bound each term on the right hand side separately. For
the first term, consider

H(KA, U
n, V n|Zn,Φ) = H(KA, U

n, V n,Φ|Zn)−H(Φ|Zn)

≥ H(Un, V n|Zn)−H(Φ|Zn) , (15)

Now, we lower bound the multi-letter entropy (first term)
in (15) as follows. Let C be a particular realization of the
random codebook. Then consider,

H(Un, V n|Zn,C) = H(Un, V n, Zn|C)−H(Zn|C)
= H(Zn|Un, V n,C) +H(Un, V n|C)−H(Zn|C)

=

n∑
i=1

H(Zi|Zi−1, Un, V n,C) +H(Ui, Vi|U i−1, V i−1,C)

−H(Zi|Zi−1,C)

≥
n∑

i=1

H(Zi|Ui, Vi,C)+H(Ui, Vi|U i−1, V i−1,C)−H(Zi|C) ,

where the inequality comes from conditioning reduces en-
tropy and the fact that (Un\i, V n\i, Zi−1) − (Ui, Vi) − Zi

form a Markov chain conditioned on a specific realization of
the codebook C. If we average over all codebooks, we have∑

C

p(C)H(Ui, Vi|U i−1, V i−1,C) = H(Ui, Vi) ,

so the multi-letter conditional entropy can be lower bounded
as H(Un, V n|Zn) ≥ nH(U, V |Z). Continuing from (15),

H(KA, U
n, V n|Zn,Φ)

≥ nH(U, V |Z)−H(Φ|Zn)

≥ n[H(U |Z) +H(V |U,Z)]−H(Φ)

(a)

≥ n[H(U |Z) +H(V |U,Z)−I(V ;X|U)+I(V ;Y |U)−2δ]

(b)

≥ n[H(U |Z)−H(U |Y ) +H(V |U,Z)−H(V |U,X)

− I(V ;X|U) + I(V ;Y |U)− 2δ]

= n[I(U ;Y )− I(U ;Z) + I(V ;X|U)− I(V ;Z|U)

− I(V ;X|U) + I(V ;Y |U)− 2δ]

= n[I(U, V ;Y )− I(U, V ;Z)− 2δ] ,

where (a) comes from the fact that H(Φ) ≤ log |Φ| =
I(V ;X|U)− I(V ;Y |U) + 2δ by the code construction and
(b) because H(U |Y ) ≥ 0 and H(V |U,X) ≥ 0.

Now we bound the second term in (14). We claim that

H(Un, V n|KA, Z
n,Φ) ≤ nϵn (16)

for some sequence ϵn → 0. For this purpose, we show that
there exists a decoding function (M̃, L̃) , g(KA, Z

n,Φ)
such that P[(Un, V n) ̸= (un(M̃), vn(M̃, L̃))] → 0 as n →
∞. Then, by applying Fano’s inequality, we get (16).

Let g : Zn × K × Φ → M × L be a joint typicality
decoder. More precisely, declare g(zn, kA, ϕ) = (m̃, l̃) if
there is a unique pair of sequences (un(m̃), vn(m̃, l̃)) such
that (un(m̃), vn(m̃, l̃), zn) ∈ T (n)

ε and f(m̃, l̃) = (kA, ϕ),
where f is defined in the code construction. Otherwise, set
g(kA, z

n, ϕ) to be (1, 1). Since there are |J |/(|Φ||K|) .
=

2n(I(U,V ;Z)−3δ) sequences in each sub-bin, by the Packing
Lemma, P[(Un, V n) ̸= (un(M̃), vn(M̃, L̃))] → 0 as n →
∞.

To complete the proof, let p(w) be the optimizing W
distribution in (5). Let pn(w) be a sequence of n-types
such that pn(w) → p(w) for every w ∈ W . Fix wn as
some sequence in the type class of pn(w), i.e., the type
of wn is equal to pn(w). The sequence wn is appended
to the codebook and thus known to all parties. Then we
follow the previous proof by replacing the marginal distri-
butions with the conditional distributions in the codebook
generation step (as in [1, Lemma A]). More precisely,
we use

∏n
i=1 p(ui, si|wi) in place of

∏n
i=1 p(ui, si) and∏n

i=1 p(vi|ui, wi) in place of
∏n

i=1 p(vi|ui). This achieves
the rate I(U, V ;Y |W )− I(U, V ;Z|W ) as desired.

Hence, the rate CSK(
Γ

1+ε ) is achievable. The proof of the
achievability of (5) completed by taking ε → 0 and appealing
to the continuity of CSK (Lemma 2).

C. Proof of Lemma 2

The fact that CSK(Γ) is non-decreasing is evident from
its definition. We now show that CSK(Γ) is concave. Fix
two length-n codes C1 and C2 that achieve CSK(Γ1) and
CSK(Γ2) respectively. Consider the length-2n code C that
is the concatenation of C1 and C2. That is, for the first n



channel uses, we use C1 and for the next n, we use C2. Then
the total expected cost of C is

E

[
2n∑
i=1

Λ(Si)

]
= E

[
n∑

i=1

Λ(Si) +

2n∑
i=n+1

Λ(Si)

]
≤ n(Γ1+Γ2) ,

since the first and second codes have expected costs
smaller than Γ1 and Γ2 respectively. Hence, C satisfies
1
2nE[

∑2n
i=1 Λ(Si)] ≤ 1

2 (Γ1 + Γ2). We have constructed
a codebook with rate 1

2 (CSK(Γ1) + CSK(Γ2)) and with
expected cost ≤ 1

2 (Γ1 + Γ2). Thus, CSK(
1
2 (Γ1 + Γ2)) ≥

1
2 (CSK(Γ1) + CSK(Γ2)), i.e., it is mid-point concave. Since
CSK(Γ) is non-decreasing, its level sets are intervals and so it
is Lebesgue measurable (Sierpinski’s theorem [18, pp. 12]).
Combining this with the fact that it is mid-point concave, we
conclude that CSK(Γ) is concave. Since a concave function
on an open set is also continuous, CSK(Γ) is continuous on
(0,∞).

Note that the above proof is an operational one and does
not depend on the functional form of CSK(Γ) in (5).

D. Proof of Proposition 3

We prove the upper bound in (9). Consider the inequalities:

nRSK

(a)

≤ I(KA;Y
n,Φ) + nϵn ≤ I(KA;Y

n,Φ, Zn) + nϵn
(b)

≤ I(KA;Y
n|Φ, Zn) + 2nϵn

≤ I(KA,Φ;Y
n|Zn) + 2nϵn

(c)

≤ I(Xn,M ;Y n|Zn) + 2nϵn

= I(Xn;Y n|Zn) + I(M ;Y n|Xn, Zn) + 2nϵn
(d)

≤ I(Xn;Y n|Zn) + I(Sn;Y n|Xn, Zn) + 2nϵn

= I(Sn;Y n|Zn) + I(Xn;Y n|Sn, Zn) + 2nϵn,
(17)

where (a) follows Fano’s inequality, (b) is due to the secrecy
condition (3), (c) follows because (KA,Φ) is a function of
(Xn,M) and (d) follows because the channel only depends
on Sn so M −Sn− (Xn, Y n, Zn).4 Now the first term (17)
can be upper bounded as follows

I(Sn;Y n|Zn) = H(Y n|Zn)−H(Y n|Sn, Zn)

=

n∑
i=1

H(Yi|Y i−1, Zn)−H(Yi|Y i−1, Sn, Zn)

≤
n∑

i=1

H(Yi|Zi)−H(Yi|Si, Zi) =

n∑
i=1

I(Si;Yi|Zi) , (18)

where the inequality follows by conditioning reduces entropy
and the Markov chain (Y i−1, Zn\i, Sn\i)−(Si, Zi)−Yi. The
second term in (17) can be written as a sum:

I(Xn;Y n|Sn, Zn) =
n∑

i=1

I(Xi;Yi|Si, Zi) (19)

4In fact, (d) holds with equality because Sn = Sn(M) in addition to
the stated Markov relationship.

because the channel p(x, y, z|s) is memoryless. Substitut-
ing (18) and (19) into (17) yields

nRSK ≤
n∑

i=1

I(Si;Yi|Zi) + I(Xi;Yi|Si, Zi) + 2nϵn

=

n∑
i=1

I(Xi, Si;Yi|Zi) + 2nϵn

(e)

≤
n∑

i=1

max
p(s)

I(X,S;Y |Z) + 2nϵn ,

where (e) holds due to the fact that mutual information is
concave function of input distribution p(s). This completes
the proof of (9).
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