Third-Order Asymptotics: Old and New

Vincent Y. F. Tan (National University of Singapore; NUS)

Joint works with M. Tomamichel, Y. Sakai and M. Kovačević

Workshop on Probability and Information Theory (held at the University of Hong Kong, on 20th August 2019)

Outline

1 Introduction

2 Old Contribution

3 New Contribution

Outline

1 Introduction

Old Contribution

3 New Contribution

Introduction: Transmission of Information

Figure: Shannon's Figure 1

Information theory

Finding fundamental limits for reliable information transmission

Introduction: Transmission of Information

Figure: Shannon's Figure 1

- Information theory

 Finding fundamental limits for reliable information transmission
- Channel coding: Concerned with the maximum rate of communication in bits/channel use

• A code is an triple $C = \{M, e, d\}$ where M is the message set

- ullet A code is an triple $\mathcal{C} = \{\mathcal{M}, e, d\}$ where \mathcal{M} is the message set
- ullet The average error probability $p_{
 m err}(\mathcal{C})$ is

$$p_{\mathrm{err}}(\mathcal{C}) := \Pr\left[\widehat{M} \neq M\right]$$

where M is uniform on \mathcal{M}

- A code is an triple $C = \{M, e, d\}$ where M is the message set
- ullet The average error probability $p_{
 m err}(\mathcal{C})$ is

$$p_{\operatorname{err}}(\mathcal{C}) := \Pr\left[\widehat{M} \neq M\right]$$

where M is uniform on \mathcal{M}

• Maximum code size at ε -error is

$$M^*(W, \varepsilon) := \sup \{ m \mid \exists C \text{ s.t. } m = |\mathcal{M}|, p_{\text{err}}(C) \le \varepsilon \}$$

• Consider *n* independent uses of a channel

- Consider *n* independent uses of a channel
- Assume W is a discrete memoryless channel

- Consider n independent uses of a channel
- Assume W is a discrete memoryless channel
- For vectors $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{X}^n$ and $\mathbf{y} := (y_1, \dots, y_n) \in \mathcal{Y}^n$,

$$W^n(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^n W(y_i|x_i)$$

- Consider *n* independent uses of a channel
- Assume W is a discrete memoryless channel
- For vectors $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{X}^n$ and $\mathbf{y} := (y_1, \dots, y_n) \in \mathcal{Y}^n$,

$$W^n(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^n W(y_i|x_i)$$

• Maximum code size at average error ε and blocklength n is

$$M^*(W^n, \varepsilon)$$

- Consider *n* independent uses of a channel
- Assume W is a discrete memoryless channel
- For vectors $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{X}^n$ and $\mathbf{y} := (y_1, \dots, y_n) \in \mathcal{Y}^n$,

$$W^n(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^n W(y_i|x_i)$$

• Maximum code size at average error ε and blocklength n is

$$M^*(W^n,\varepsilon)$$

Consider both discrete- and continuous-time channels.

Outline

1 Introduction

2 Old Contribution

3 New Contribution

Old Contribution

- Upper bound $\log M^*(W^n, \varepsilon)$ for n large (converse)
- Concerned with the third-order term of the asymptotic expansion
- Going beyond the normal approx terms

M. Tomamichel

Old Contribution

- Upper bound $\log M^*(W^n, \varepsilon)$ for n large (converse)
- Concerned with the third-order term of the asymptotic expansion
- Going beyond the normal approx terms

M. Tomamichel

Theorem (Tomamichel-Tan (2013))

For all DMCs with positive ε -dispersion V_{ε} ,

$$\log M^*(W^n,\varepsilon) \leq nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + \frac{1}{2}\log n + O(1)$$

where
$$\Phi(a) := \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right) dx$$

Old Contribution: Remarks

• Our bound

$$\log M^*(W^n,\varepsilon) \leq nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + \frac{1}{2}\log n + O(1)$$

Old Contribution: Remarks

Our bound

$$\log M^*(W^n,\varepsilon) \le nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + \frac{1}{2}\log n + O(1)$$

• Best upper bound till date:

$$\log M^*(W^n,\varepsilon) \leq nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + \left(|\mathcal{X}| - \frac{1}{2}\right)\log n + O(1)$$

V. Strassen (1964)

Polyanskiy-Poor-Verdú (2010)

Old Contribution: Remarks

Our bound

$$\log M^*(W^n,\varepsilon) \le nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + \frac{1}{2}\log n + O(1)$$

• Best upper bound till date:

$$\log M^*(W^n,\varepsilon) \leq nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon) + \left(|\mathcal{X}| - \frac{1}{2}\right)\log n + O(1)$$

V. Strassen (1964)

Polyanskiy-Poor-Verdú (2010)

• Requires new converse techniques

• Recall that we are interested in quantifying the third-order term ρ_n

$$\frac{\rho_n}{\rho_n} = \log M^*(W^n, \varepsilon) - \left[nC + \sqrt{nV_\varepsilon} \Phi^{-1}(\varepsilon) \right]$$

• Recall that we are interested in quantifying the third-order term ρ_n

$$\frac{\rho_{n}}{} = \log M^{*}(W^{n}, \varepsilon) - \left[nC + \sqrt{nV_{\varepsilon}}\Phi^{-1}(\varepsilon)\right]$$

• $\rho_n = O(\log n)$ if channel is non-exotic

• Recall that we are interested in quantifying the third-order term ρ_n

$$\rho_{\mathbf{n}} = \log M^*(W^{\mathbf{n}}, \varepsilon) - \left[nC + \sqrt{nV_{\varepsilon}} \Phi^{-1}(\varepsilon) \right]$$

- $\rho_n = O(\log n)$ if channel is non-exotic
- ρ_n may be important at very short blocklengths

$$\rho_{\mathbf{n}} = \log M^*(W^n, \varepsilon) - \left[nC + \sqrt{nV} \Phi^{-1}(\varepsilon) \right]$$

• For the BSC [PPV10]

$$\rho_n = \frac{1}{2}\log n + O(1)$$

$$\rho_{n} = \log M^{*}(W^{n}, \varepsilon) - \left[nC + \sqrt{nV}\Phi^{-1}(\varepsilon)\right]$$

• For the BSC [PPV10]

$$\rho_n = \frac{1}{2}\log n + O(1)$$

• For the BEC [PPV10]

$$\rho_n = O(1)$$

$$\rho_{\mathbf{n}} = \log M^*(W^n, \varepsilon) - \left[nC + \sqrt{nV} \Phi^{-1}(\varepsilon) \right]$$

• For the BSC [PPV10]

$$\rho_n = \frac{1}{2}\log n + O(1)$$

• For the BEC [PPV10]

$$\rho_n = O(1)$$

• For the AWGN under maximum (or peak) power constraints [PPV10, Tan-Tomamichel (2015)]

$$\rho_n = \frac{1}{2}\log n + O(1)$$

Proposition (Polyanskiy (2010))

Assume that all elements of $\{W(y|x): x \in \mathcal{X}, y \in \mathcal{Y}\}$ are positive and C > 0. Then,

$$\rho_n \geq \frac{1}{2}\log n + O(1)$$

Proposition (Polyanskiy (2010))

Assume that all elements of $\{W(y|x): x \in \mathcal{X}, y \in \mathcal{Y}\}$ are positive and C > 0. Then,

$$\rho_n \geq \frac{1}{2}\log n + O(1)$$

• This is an achievability result but BEC doesn't satisfy assumptions

Proposition (Polyanskiy (2010))

Assume that all elements of $\{W(y|x): x \in \mathcal{X}, y \in \mathcal{Y}\}$ are positive and C > 0. Then,

$$\rho_n \geq \frac{1}{2}\log n + O(1)$$

- This is an achievability result but BEC doesn't satisfy assumptions
- Assumption may be relaxed to

$$\exists P \in \Pi \quad \text{s.t.} \quad V^{\mathrm{r}}(P, W) := V\left(PW, \frac{P \times W}{PW}\right) > 0$$

Proposition (Polyanskiy (2010))

Assume that all elements of $\{W(y|x): x \in \mathcal{X}, y \in \mathcal{Y}\}$ are positive and C > 0. Then,

$$\rho_n \geq \frac{1}{2}\log n + O(1)$$

- This is an achievability result but BEC doesn't satisfy assumptions
- Assumption may be relaxed to

$$\exists P \in \Pi \quad \text{s.t.} \quad V^{\mathrm{r}}(P, W) := V\left(PW, \frac{P \times W}{PW}\right) > 0$$

Based on the concentration bound [Polyanskiy's thesis]

$$\mathbb{E}\left[\exp\left(\sum_{i=1}^{n}X_{i}\right)\mathbb{I}\left\{\sum_{i=1}^{n}X_{i}\geq\gamma\right\}\right]\leq2\left(\frac{\log2}{\sqrt{2\pi}}+\frac{12T}{\sigma}\right)\frac{\exp(-\gamma)}{\sigma\sqrt{n}}.$$

Proposition (Polyanskiy (2010))

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

Proposition (Polyanskiy (2010))

If W is weakly input-symmetric

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

• This is a converse result

Proposition (Polyanskiy (2010))

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

- This is a converse result
- Gallager-symmetric channels are weakly input-symmetric

Proposition (Polyanskiy (2010))

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

- This is a converse result
- Gallager-symmetric channels are weakly input-symmetric
- The set of weakly input-symmetric channels is very thin

Proposition (Polyanskiy (2010))

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

- This is a converse result
- Gallager-symmetric channels are weakly input-symmetric
- The set of weakly input-symmetric channels is very thin
- We dispense of this symmetry assumption

Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε -dispersion,

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε -dispersion,

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

• The $\frac{1}{2}$ cannot be improved

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε -dispersion,

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

- The $\frac{1}{2}$ cannot be improved
- For BSC

$$\rho_n = \frac{1}{2}\log n + O(1)$$

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε -dispersion,

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

- The $\frac{1}{2}$ cannot be improved
- For BSC

$$\rho_n = \frac{1}{2}\log n + O(1)$$

ullet We can dispense of the positive arepsilon-dispersion assumption

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε -dispersion,

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

- The $\frac{1}{2}$ cannot be improved
- For BSC

$$\rho_n = \frac{1}{2}\log n + O(1)$$

- We can dispense of the positive ε -dispersion assumption
- No need for unique CAID

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε -dispersion,

$$\rho_n \leq \frac{1}{2}\log n + O(1)$$

- The $\frac{1}{2}$ cannot be improved
- For BSC

$$\rho_n = \frac{1}{2}\log n + O(1)$$

- We can dispense of the positive ε -dispersion assumption
- No need for unique CAID
- "A Tight Upper Bound for the Third-Order Asymptotics for Most DMCs" M. Tomamichel and V. Y. F. Tan, IEEE T-IT, Nov 2013

$$W$$
 is exotic if $V_{\sf max}(W)=0$ and $\exists\, x_0\in\mathcal{X}$ such that

$$D(W(\cdot|x_0)||Q^*) = C$$
, and $V(W(\cdot|x_0)||Q^*) > 0$.

• For the regular case, $\rho_n \leq \frac{1}{2} \log n + O(1)$

- For the regular case, $\rho_n \leq \frac{1}{2} \log n + O(1)$
- The type-counting trick and upper bounds on $M_P^*(W^n, \varepsilon)$ are not sufficiently tight

- For the regular case, $\rho_n \leq \frac{1}{2} \log n + O(1)$
- The type-counting trick and upper bounds on $M_P^*(W^n, \varepsilon)$ are not sufficiently tight
- We need a convenient converse bound for general DMCs

- For the regular case, $\rho_n \leq \frac{1}{2} \log n + O(1)$
- The type-counting trick and upper bounds on $M_P^*(W^n, \varepsilon)$ are not sufficiently tight
- We need a convenient converse bound for general DMCs
- Information spectrum divergence

$$D_{s}^{\varepsilon}(P\|Q) := \sup \left\{ R \, : \, P\left(\log \frac{P(X)}{Q(X)} \le R\right) \le \varepsilon
ight\}$$

"Information Spectrum Methods in Information Theory" by T. S. Han (2003)

$$D_{s}^{\varepsilon}(P\|Q) := \sup \left\{ R \, \big| \, P\left(\log \frac{P(X)}{Q(X)} \leq R\right) \leq \varepsilon \right\}$$

$$D_{s}^{\varepsilon}(P||Q) := \sup \left\{ R \, \middle| \, P\left(\log \frac{P(X)}{Q(X)} \leq R\right) \leq \varepsilon \right\}$$

$$D_{s}^{\varepsilon}(P||Q) := \sup \left\{ R \, \middle| \, P\left(\log \frac{P(X)}{Q(X)} \leq R\right) \leq \varepsilon \right\}$$

$$D_{s}^{\varepsilon}(P\|Q) := \sup \left\{ R \, \middle| \, P\left(\log \frac{P(X)}{Q(X)} \leq R\right) \leq \varepsilon \right\}$$

If X^n is i.i.d. P, the Berry-Esseen theorem yields

$$D_s^{\varepsilon}(P^n \| Q^n) = nD(P \| Q) + \sqrt{nV(P \| Q)} \Phi^{-1}(\varepsilon) + O(1)$$

Lemma (Tomamichel-Tan (2013))

For every channel W, every $\varepsilon \in (0,1)$ and $\delta \in (0,1-\varepsilon)$, we have

$$\log M^*(W,arepsilon) \leq \min_{Q \in \mathcal{P}(\mathcal{Y})} \max_{x \in \mathcal{X}} \, D_s^{arepsilon + \delta}(W(\cdot|x)\|Q) + \log rac{1}{\delta}$$

Lemma (Tomamichel-Tan (2013))

For every channel W, every $\varepsilon \in (0,1)$ and $\delta \in (0,1-\varepsilon)$, we have

$$\log M^*(W,arepsilon) \leq \min_{Q \in \mathcal{P}(\mathcal{Y})} \max_{x \in \mathcal{X}} D_s^{arepsilon + \delta}(W(\cdot|x)\|Q) + \log rac{1}{\delta}$$

• When DMC is used *n* times.

$$\log M^*(W^n, \varepsilon) \leq \min_{\mathbf{Q}^{(n)} \in \mathcal{P}(\mathcal{Y}^n)} \left(\max_{\mathbf{x} \in \mathcal{X}^n} D_s^{\varepsilon + \delta}(W^n(\cdot|\mathbf{x}) \| \mathbf{Q}^{(n)}) \right) + \log \frac{1}{\delta}$$

Lemma (Tomamichel-Tan (2013))

For every channel W, every $\varepsilon \in (0,1)$ and $\delta \in (0,1-\varepsilon)$, we have

$$\log M^*(W,arepsilon) \leq \min_{Q \in \mathcal{P}(\mathcal{Y})} \max_{x \in \mathcal{X}} D_s^{arepsilon + \delta}(W(\cdot|x)\|Q) + \log rac{1}{\delta}$$

• When DMC is used *n* times,

$$\log M^*(W^n,\varepsilon) \leq \min_{\mathbf{Q}^{(n)} \in \mathcal{P}(\mathcal{Y}^n)} \left(\max_{\mathbf{x} \in \mathcal{X}^n} D_s^{\varepsilon+\delta}(W^n(\cdot|\mathbf{x}) \| \mathbf{Q}^{(n)}) \right) + \log \frac{1}{\delta}$$

• Choose $\delta = n^{-\frac{1}{2}}$ so $\log \frac{1}{\delta} = \frac{1}{2} \log n$

Lemma (Tomamichel-Tan (2013))

For every channel W, every $\varepsilon \in (0,1)$ and $\delta \in (0,1-\varepsilon)$, we have

$$\log M^*(W,arepsilon) \leq \min_{Q \in \mathcal{P}(\mathcal{Y})} \max_{x \in \mathcal{X}} \, D_s^{arepsilon + \delta}(W(\cdot|x)\|Q) + \log rac{1}{\delta}$$

• When DMC is used *n* times,

$$\log M^*(W^n,\varepsilon) \leq \min_{\mathbf{Q}^{(n)} \in \mathcal{P}(\mathcal{Y}^n)} \left(\max_{\mathbf{x} \in \mathcal{X}^n} D_s^{\varepsilon+\delta}(W^n(\cdot|\mathbf{x}) \| \mathbf{Q}^{(n)}) \right) + \log \frac{1}{\delta}$$

- Choose $\delta = n^{-\frac{1}{2}}$ so $\log \frac{1}{\delta} = \frac{1}{2} \log n$
- Since all $\mathbf x$ within a type class result in the same $D_s^{\varepsilon+\delta}$ (if $Q^{(n)}$ is permutation invariant), it's really a max over types $P_{\mathbf x}\in\mathcal P_n(\mathcal X)$

$$\log M^*(W^n,\varepsilon) \leq \max_{\mathbf{x} \in \mathcal{X}^n} D_s^{\varepsilon+\delta}(W^n(\cdot|\mathbf{x})\|\frac{Q^{(n)}}{\delta}) + \log \frac{1}{\delta}, \qquad \forall \, \frac{Q^{(n)}}{\delta} \in \mathcal{P}(\mathcal{Y}^n)$$

• $Q^{(n)}(y)$: invariant to permutations of the n channel uses

$$\log M^*(W^n,\varepsilon) \leq \max_{\mathbf{x} \in \mathcal{X}^n} D_s^{\varepsilon+\delta}(W^n(\cdot|\mathbf{x})\|\frac{Q^{(n)}}{\delta}) + \log \frac{1}{\delta}, \qquad \forall \frac{Q^{(n)}}{\delta} \in \mathcal{P}(\mathcal{Y}^n)$$

• $Q^{(n)}(y)$: invariant to permutations of the *n* channel uses

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

$$\log M^*(W^n,\varepsilon) \leq \max_{\mathbf{x} \in \mathcal{X}^n} D_s^{\varepsilon+\delta}(W^n(\cdot|\mathbf{x})\|\frac{Q^{(n)}}{\delta}) + \log \frac{1}{\delta}, \qquad \forall \frac{Q^{(n)}}{\delta} \in \mathcal{P}(\mathcal{Y}^n)$$

• $Q^{(n)}(y)$: invariant to permutations of the n channel uses

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

• First term: $Q_{\mathbf{k}}$'s and $\lambda(\mathbf{k})$'s designed to form an $n^{-\frac{1}{2}}$ -cover of $\mathcal{P}(\mathcal{Y})$:

$$\forall Q \in \mathcal{P}(\mathcal{Y}), \quad \exists \mathbf{k} \in \mathcal{K} \quad \text{s.t.} \quad \|Q - Q_{\mathbf{k}}\|_{2} < n^{-\frac{1}{2}}.$$

$$\log M^*(W^n,\varepsilon) \leq \max_{\mathbf{x} \in \mathcal{X}^n} D_s^{\varepsilon+\delta}(W^n(\cdot|\mathbf{x})\|\mathbf{Q}^{(n)}) + \log \frac{1}{\delta}, \qquad \forall \, \mathbf{Q}^{(n)} \in \mathcal{P}(\mathcal{Y}^n)$$

• $Q^{(n)}(y)$: invariant to permutations of the n channel uses

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

• First term: $Q_{\mathbf{k}}$'s and $\lambda(\mathbf{k})$'s designed to form an $n^{-\frac{1}{2}}$ -cover of $\mathcal{P}(\mathcal{Y})$:

$$\forall Q \in \mathcal{P}(\mathcal{Y}), \quad \exists \mathbf{k} \in \mathcal{K} \quad \text{s.t.} \quad \|Q - Q_{\mathbf{k}}\|_{2} \leq n^{-\frac{1}{2}}.$$

 Second term: Uniform mixture over output distributions induced by input types [Hayashi (2009)]

First term is

$$\sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) \quad \text{where} \quad \lambda(\mathbf{k}) = \frac{\exp\left(-\gamma \|\mathbf{k}\|_{2}^{2}\right)}{F}$$

and **k** indexes distance to the capacity-achieving output distribution (CAOD). Can be shown that $F < \infty$.

• First term is

$$\sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) \quad \text{where} \quad \lambda(\mathbf{k}) = \frac{\exp\left(-\gamma \|\mathbf{k}\|_{2}^{2}\right)}{F}$$

and **k** indexes distance to the capacity-achieving output distribution (CAOD). Can be shown that $F < \infty$.

• Choose each Q_k as follows:

$$Q_{\mathbf{k}}(y) := Q^*(y) + \frac{k_y}{\sqrt{n\zeta}},$$

where
$$\mathcal{K} := \left\{\mathbf{k} \in \mathbb{Z}^{|\mathcal{Y}|} : \sum_{y} k_y = 0, k_y \geq -Q^*(y) \sqrt{n\zeta}
ight\}$$

• First term is

$$\sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) \quad \text{where} \quad \lambda(\mathbf{k}) = \frac{\exp\left(-\gamma \|\mathbf{k}\|_{2}^{2}\right)}{F}$$

and **k** indexes distance to the capacity-achieving output distribution (CAOD). Can be shown that $F < \infty$.

• Choose each Q_k as follows:

$$Q_{\mathbf{k}}(y) := Q^*(y) + \frac{k_y}{\sqrt{n\zeta}},$$

where
$$\mathcal{K} := \left\{\mathbf{k} \in \mathbb{Z}^{|\mathcal{Y}|} : \sum_{y} k_y = 0, k_y \geq -Q^*(y) \sqrt{n\zeta}
ight\}$$

• By construction, ensures that

$$\forall Q \in \mathcal{P}(\mathcal{Y}), \quad \exists \mathbf{k} \in \mathcal{K}, \quad \text{s.t.} \quad \|Q - Q_{\mathbf{k}}\|_2 \leq \frac{1}{\sqrt{n}}.$$

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

Proof Technique: Novel Choice of Output Distribution

$$\forall \ Q \in \mathcal{P}(\mathcal{Y}), \quad \exists \ \mathbf{k} \in \mathcal{K}, \quad \text{s.t.} \quad \|Q - Q_{\mathbf{k}}\|_2 \leq \frac{1}{\sqrt{n}}.$$

Proof Technique: Standard Choice of Output Distn.

• Recall the output distribution

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

Proof Technique: Standard Choice of Output Distn.

• Recall the output distribution

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

• Second term: Uniform mixture over output distributions induced by input types [Hayashi (2009)]

$$\sum_{P\in\mathcal{P}_n(\mathcal{X})}\frac{1}{|\mathcal{P}_n(\mathcal{X})|}(PW)^n(\mathbf{y}).$$

Proof Technique: Standard Choice of Output Distn.

• Recall the output distribution

$$Q^{(n)}(\mathbf{y}) := \frac{1}{2} \sum_{\mathbf{k} \in \mathcal{K}} \lambda(\mathbf{k}) Q_{\mathbf{k}}^{n}(\mathbf{y}) + \frac{1}{2} \sum_{P \in \mathcal{P}_{n}(\mathcal{X})} \frac{1}{|\mathcal{P}_{n}(\mathcal{X})|} (PW)^{n}(\mathbf{y})$$

• Second term: Uniform mixture over output distributions induced by input types [Hayashi (2009)]

$$\sum_{P\in\mathcal{P}_n(\mathcal{X})}\frac{1}{|\mathcal{P}_n(\mathcal{X})|}(PW)^n(\mathbf{y}).$$

• Serves to take care of "bad input types" (i.e., types $P \in \mathcal{P}_n(\mathcal{X})$ such that PW is far from Q^*)

Outline

1 Introduction

Old Contribution

3 New Contribution

Mathematical Model of Poisson Channel (1/3)

Consider the following optical communication:

Mathematical Model of Poisson Channel (1/3)

Consider the following optical communication:

Remark: This is a **continuous-time** channel $(0 \le t < T)$.

Mathematical Model of Poisson Channel (2/3)

Mathematical Model of Poisson Channel (2/3)

Optical Signal is Modulated by Input Waveform $\lambda(t)$

- an integrable function $\lambda(\cdot)$ defined on the time block [0, T);
- with **peak power constraint** (A > 0):

$$0 \le \lambda(t) \le A \quad \forall t \in [0, T);$$

• with average power constraint ($0 \le \sigma \le 1$):

$$\frac{1}{T} \int_0^T \lambda(t) \, \mathrm{d}t \le \sigma A.$$

Mathematical Model of Poisson Channel (3/3)

Mathematical Model of Poisson Channel (3/3)

Output is Poisson counting process $\{\nu(t)\}_{0 \leq t < T}$

$$u(0) = 0$$
 a.s. and $\mathbb{P}\{\nu(t+\tau) - \nu(t) = k\} = \frac{e^{\Lambda} \Lambda^k}{k!}$

for each $t, \tau \in \mathbb{R}_{\geq 0}$ and $k \in \mathbb{Z}_{\geq 0}$, where Λ is given by

$$\Lambda \stackrel{\mathsf{def}}{=} \int_{t}^{t+\tau} \left(\frac{\lambda(u)}{\lambda(u)} + \frac{\lambda_{0}}{\lambda_{0}} \right) du.$$

- input waveform (intensity of light) $\lambda : [0, T) \rightarrow [0, A]$
- dark current (background noise level) $0 \le \lambda_0 < \infty$

Block Coding Scheme for Poisson Channel

• input alphabet is the set of waveforms $\lambda(\cdot)$

$$\mathcal{W}(T,A,\sigma) \stackrel{\mathsf{def}}{=} \Big\{ \lambda : [0,T) o [0,A] \; \Big| \; rac{1}{T} \int_0^T \lambda(t) \, \mathsf{d}t \leq \sigma A \Big\},$$

where A (resp. σ) is the peak (resp. average) power constraint.

Block Coding Scheme for Poisson Channel

• input alphabet is the set of waveforms $\lambda(\cdot)$

$$\mathcal{W}(\mathcal{T}, A, \sigma) \stackrel{\mathsf{def}}{=} igg\{ \lambda : [0, \mathcal{T})
ightarrow [0, A] \; igg| \; rac{1}{\mathcal{T}} \int_0^{\mathcal{T}} \lambda(t) \, \mathsf{d}t \leq \sigma A igg\},$$

where A (resp. σ) is the peak (resp. average) power constraint.

• output alphabet is the set of possible counting processes $\nu(\cdot)$

$$\mathcal{S}(T) \stackrel{\mathsf{def}}{=} \{g: [0,T) \rightarrow \mathbb{Z}_{\geq 0} \mid g(0) = 0 \text{ and } g(t_1) \geq g(t_2), t_1 < t_2\}$$

Block Coding Scheme for Poisson Channel

• input alphabet is the set of waveforms $\lambda(\cdot)$

$$\mathcal{W}(\mathcal{T}, A, \sigma) \stackrel{\mathsf{def}}{=} igg\{ \lambda : [0, \mathcal{T})
ightarrow [0, A] \; igg| \; rac{1}{\mathcal{T}} \int_0^{\mathcal{T}} \lambda(t) \, \mathsf{d}t \leq \sigma A igg\},$$

where A (resp. σ) is the peak (resp. average) power constraint.

• output alphabet is the set of possible counting processes $\nu(\cdot)$

$$\mathcal{S}(\mathit{T}) \stackrel{\mathsf{def}}{=} \{ g : [0,\mathit{T}) \to \mathbb{Z}_{\geq 0} \mid g(0) = 0 \text{ and } g(t_1) \geq g(t_2), t_1 < t_2 \}$$

A (T, M, A, σ) -code (ϕ, ψ) for Poisson channel

- encoder $\phi: \{1, 2, \dots, M\} \to \mathcal{W}(T, A, \sigma)$
- decoder $\psi: \mathcal{S}(T) \to \{1, 2, \dots, M\}$

Block Coding Scheme for Poisson Channel (Cont'd)

Block Coding Scheme for Poisson Channel (Cont'd)

A (T, M, A, σ) -code (ϕ, ψ) for Poisson channel

- encoder $\phi: \{1, 2, \dots, M\} \to \mathcal{W}(T, A, \sigma)$
- decoder $\psi: \mathcal{S}(T) \to \{1, 2, \dots, M\}$

Block Coding Scheme for Poisson Channel (Cont'd)

$$m \longrightarrow \phi \xrightarrow{\lambda(t)} \text{Poisson channel} \xrightarrow{\nu(t)} \hat{m}$$

A (T, M, A, σ) -code (ϕ, ψ) for Poisson channel

- encoder $\phi: \{1, 2, \dots, M\} \to \mathcal{W}(T, A, \sigma)$
- decoder $\psi: \mathcal{S}(T) \to \{1, 2, \dots, M\}$

A $(T, M, A, \sigma, \varepsilon)_{avg}$ -code (ϕ, ψ) for Poisson channel

A (T,M,A,σ) -code (ϕ,ψ) is called a $(T,M,A,\sigma,\varepsilon)_{\text{avg}}$ -code if

$$\frac{1}{M}\sum_{m=1}^{M}\mathbb{P}\{\psi(\nu)=m\mid \lambda=\phi(m)\}\geq 1-\varepsilon.$$

Here, λ is the r.v. induced by the encoder ϕ with uniform messages.

Poisson Channel Capacity (1st-Order Asymptotics)

Denote by M^* the max. M s.t. \exists a $(T, M, A, \sigma, \varepsilon)_{avg}$ -code.

Theorem (Kabanov'78; Davis'80; Wyner'88)

$$\log M^* = T C^* + o(T) \quad (as T \to \infty),$$

where

$$\begin{cases} C^* \stackrel{\mathsf{def}}{=} A \left((1 - p^*) \, s \log \frac{s}{p^* + s} + p^* \, (1 + s) \log \frac{1 + s}{p^* + s} \right), \\ s \stackrel{\mathsf{def}}{=} \frac{\lambda_0}{A} & \text{(ratio of } \mathbf{dark } \mathbf{current } \lambda_0 \text{ to } \mathbf{PPC } A), \\ p^* \stackrel{\mathsf{def}}{=} \min \{ \sigma, p_0 \} & \text{(role of } \mathbf{CAID}, \text{ where } \sigma \text{ is } \mathbf{APC}), \\ p_0 \stackrel{\mathsf{def}}{=} \frac{(1 + s)^{1 + s}}{s^s \, \mathrm{e}} - s. \end{cases}$$

• Denote by M^* the max s.t. \exists a $(T, M, A, \sigma, \varepsilon)_{avg}$ -code.

- Denote by M^* the max s.t. \exists a $(T, M, A, \sigma, \varepsilon)_{avg}$ -code.
- We seek second- and third-order terms

$$\log M^* = T C^* + \sqrt{T} L + \rho_T, \qquad T \to \infty.$$

- Denote by M^* the max s.t. \exists a $(T, M, A, \sigma, \varepsilon)_{avg}$ -code.
- We seek second- and third-order terms

$$\log M^* = T C^* + \sqrt{T} L + \rho_T, \qquad T \to \infty.$$

- Many works since 2013 on multi-terminal channels and sources
- First work on higher-order asymptotics for continuous-time channels

- Denote by M^* the max s.t. \exists a $(T, M, A, \sigma, \varepsilon)_{avg}$ -code.
- We seek second- and third-order terms

$$\log M^* = T C^* + \sqrt{T} L + \rho_T, \qquad T \to \infty.$$

- Many works since 2013 on multi-terminal channels and sources
- First work on higher-order asymptotics for continuous-time channels

Yuta Sakai

Mladen Kovačević

Theorem (Sakai-Tan-Kovačević'19: arXiv:1903.10438)

$$\log M^* = T C^* + \sqrt{T V^*} \Phi^{-1}(\varepsilon) + \rho_T,$$

where the Poisson channel dispersion V^* is given by

$$V^* \stackrel{\text{def}}{=} A\left((1-p^*) s \log^2 \frac{s}{p^*+s} + p^* (1+s) \log^2 \frac{1+s}{p^*+s}\right),$$

and the third-order term ρ_T satisfies

$$\frac{1}{2}\log T + \mathrm{O}(1) \leq \rho_T \leq \log T + \mathrm{O}(1) \qquad \text{(as } T \to \infty\text{)}.$$

Result: 2nd-order term $\sqrt{V^*} \, \Phi^{-1}(\varepsilon)$ and bounds on 3rd-order term ρ_T

Proof Ideas of Second- and Third-Order Asymptotics

In both converse and achievability parts, we shall employ **Wyner's discretization argument** (Wyner'88):

Proof Ideas of Second- and Third-Order Asymptotics

In both converse and achievability parts, we shall employ **Wyner's discretization argument** (Wyner'88):

Converse Part

- symbol-wise meta converse bound (Tomamichel-Tan'13)
- novel choice of output distribution (projected ϵ -net)

Proof Ideas of Second- and Third-Order Asymptotics

In both converse and achievability parts, we shall employ **Wyner's discretization argument** (Wyner'88):

Converse Part

- symbol-wise meta converse bound (Tomamichel-Tan'13)
- novel choice of output distribution (projected ϵ -net)

Achievability Part

- random coding union bound (PPV'10) with cost constraint
- some other techniques to handle the continuous nature (e.g., logarithmic Sobolev inequality)

Wyner's Discretization Part I: Input Restriction

Wyner's Discretization Part I: Input Restriction

Discretization of $\{\lambda(t)\}_{0 \le t < T}$ into n Blocks (here, $\Delta = T/n$) input waveform $\lambda(t)$ is restricted to be square, e.g.,

That is, we may think of $\lambda(t)$ as a binary sequence $\{x_k\}_{k=1}^n$.

Wyner's Discretization Part II: Output Quantization

Wyner's Discretization Part II: Output Quantization

Wyner's Discretization Part II: Output Quantization

Poisson counting process $\nu(t)$ is quantized as $\{y_k\}_{k=1}^n$:

$$y_k \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } \nu(k\Delta) - \nu((k-1)\Delta) \neq 1, \\ 1 & \text{if } \nu(k\Delta) - \nu((k-1)\Delta) = 1. \end{cases}$$

Overall Diagram of Wyner's Discretization

- input sequence $\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$ (which is converted to a square wave $\lambda(t)$:
- output sequence $\mathbf{y} = (y_1, \dots, y_n) \in \{0, 1\}^n$ (which is obtained by quantizing the counting process $\nu(t)$)

Overall Diagram of Wyner's Discretization

$$x \rightarrow convertor$$
 Poisson channel $v(t)$ quantizer y

- input sequence $\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$ (which is converted to a square wave $\lambda(t)$:
- output sequence $\mathbf{y} = (y_1, \dots, y_n) \in \{0, 1\}^n$ (which is obtained by quantizing the counting process $\nu(t)$)

Discretized channel
$$\mathit{W}^{\mathit{n}}_{\mathit{n}}:\{0,1\}^{\mathit{n}} \rightarrow \{0,1\}^{\mathit{n}}$$

$$W_n^n(\mathbf{y} \mid \mathbf{x}) \stackrel{\text{def}}{=} \prod_{i=1}^n W_n(y_i \mid x_i),$$

where the single-letter channel $W_n: \{0,1\} \to \{0,1\}$ depends on n.

Remark: the discretization error is negligible as $n \to \infty$ (next slide).

Wyner's Discretization Well-Approximates Poisson Channel

Denote by

- $M_{Poisson}^*(\varepsilon)$: fundamental limit of Poisson channel
- $M^*(W_n^n, \varepsilon)$: fundamental limit of discretized channel W_n^n

Lemma (Wyner'88)

There exist a sequence $\epsilon_n = o(1)$ and a subsequence $\{n_k\}_{k=1}^{\infty}$ s.t.

$$M_{\mathsf{Poisson}}^*(\varepsilon) = M^*(W_{n_k}^{n_k}, \varepsilon + \epsilon_{n_k}) \qquad (\forall k \geq 1).$$

Wyner's Discretization Well-Approximates Poisson Channel

Denote by

- $M_{Poisson}^*(\varepsilon)$: fundamental limit of Poisson channel
- $M^*(W_n^n, \varepsilon)$: fundamental limit of discretized channel W_n^n

Lemma (Wyner'88)

There exist a sequence $\epsilon_n = o(1)$ and a subsequence $\{n_k\}_{k=1}^{\infty}$ s.t.

$$M_{\mathsf{Poisson}}^*(\varepsilon) = M^*(W_{n_k}^{n_k}, \varepsilon + \epsilon_{n_k}) \qquad (\forall k \geq 1).$$

Therefore, we observe that

$$\log M_{\mathsf{Poisson}}^*(\varepsilon) \leq \limsup_{n \to \infty} \log M^*(W_n^n, \varepsilon + \epsilon_n),$$

implying that it suffices to examine the RHS in the converse part.

Meta Converse Bound and Output Distribution

Apply the symbol-wise meta converse (Tomamichel-Tan'13):

$$\log M^*(W_n^n, \varepsilon + \epsilon_n) \leq \max_{\mathbf{x} \in \{0,1\}^n} D_{\mathsf{s}}^{\varepsilon + \epsilon_n + \eta} (\underbrace{W_n^n(\cdot \mid \mathbf{x})}_{\mathsf{discretized Poisson channel}} \parallel Q^{(n)}) + \log \frac{1}{\eta}$$

Meta Converse Bound and Output Distribution

Apply the symbol-wise meta converse (Tomamichel-Tan'13):

$$\log M^*(W_n^n, \varepsilon + \epsilon_n) \leq \max_{\mathbf{x} \in \{0,1\}^n} D_s^{\varepsilon + \epsilon_n + \eta}(\underbrace{W_n^n(\cdot \mid \mathbf{x})}_{\text{discretized Poisson channel}} \parallel Q^{(n)}) + \log \frac{1}{\eta}$$

Since $Q^{(n)} \in \mathcal{P}(\{0,1\}^n)$ is arbitrary, we substitute

$$Q^{(n)}(\mathbf{y}) = \frac{1}{3} \prod_{i=1}^{n} P_{[-\kappa]}^{*} W_{n}(y_{i}) + \frac{1}{3} \prod_{i=1}^{n} P_{[\kappa]}^{*} W_{n}(y_{i})$$

$$+ \frac{1}{3F} \sum_{\substack{m=-\infty:\\0 \le p^{*}+m/T \le 1}}^{\infty} e^{-\gamma m^{2}/T} \prod_{i=1}^{n} P_{[m/T]}^{*} W_{n}(y_{i})$$

where $\kappa = \frac{1}{2}\min\{\sigma,1/\mathrm{e}\} > 0$ and $P^*_{[u]}(1) = p^* + u$.

Meta Converse Bound and Output Distribution

Apply the symbol-wise meta converse (Tomamichel-Tan'13):

$$\log M^*(W_n^n, \varepsilon + \epsilon_n) \leq \max_{\mathbf{x} \in \{0,1\}^n} D_{\mathsf{s}}^{\varepsilon + \epsilon_n + \eta}(\underbrace{W_n^n(\cdot \mid \mathbf{x})}_{\mathsf{discretized Poisson channel}} \parallel Q^{(n)}) + \log \frac{1}{\eta}$$

Since $Q^{(n)} \in \mathcal{P}(\{0,1\}^n)$ is arbitrary, we substitute

$$Q^{(n)}(\mathbf{y}) = \frac{1}{3} \prod_{i=1}^{n} P_{[-\kappa]}^{*} W_{n}(y_{i}) + \frac{1}{3} \prod_{i=1}^{n} P_{[\kappa]}^{*} W_{n}(y_{i})$$

$$+ \frac{1}{3F} \sum_{\substack{m=-\infty:\\0 \le p^{*}+m/T \le 1}}^{\infty} e^{-\gamma m^{2}/T} \prod_{i=1}^{n} P_{[m/T]}^{*} W_{n}(y_{i})$$

where
$$\kappa = \frac{1}{2}\min\{\sigma, 1/e\} > 0$$
 and $P_{[u]}^*(1) = p^* + u$.

- third term is the main part of our novel construction
- first and second terms are to apply Lipschitz properties

ϵ -Net Argument: Tomamichel—Tan's Original Choice Consider a binary-input binary-output channel $W: \{0,1\} \rightarrow \{0,1\}$.

(0,1)

[output probab. simplex]

ϵ -Net Argument: Tomamichel—Tan's Original Choice Consider a binary-input binary-output channel $W: \{0,1\} \rightarrow \{0,1\}$.

ϵ-Net Argument: Tomamichel–Tan's Original Choice

Consider a binary-input binary-output channel $W:\{0,1\} \rightarrow \{0,1\}.$

ϵ-Net Argument: Tomamichel–Tan's Original Choice

Consider a binary-input binary-output channel $W:\{0,1\} \rightarrow \{0,1\}.$

Use a convex combination of the ϵ -net: $\sum_{\mathbf{k}} \mu(\mathbf{k}) Q_{\mathbf{k}}^n$.

Consider a (single-letter) discretized channel $W_n: \{0,1\} \to \{0,1\}$.

Consider a (single-letter) discretized channel $W_n: \{0,1\} \to \{0,1\}$.

[output probab. simplex]

Consider a (single-letter) discretized channel $W_n : \{0,1\} \to \{0,1\}$.

Consider a (single-letter) discretized channel $W_n: \{0,1\} \to \{0,1\}$.

Use a convex combination of the projected ϵ -net: $\sum_{\mathbf{k}} \mu(\mathbf{k}) Q_{\mathbf{k}}^n$

Recall that we chose

Third Term of
$$Q^{(n)}(\mathbf{y}) = \frac{1}{3F} \sum_{\substack{m = -\infty: \\ 0 \le p^* + m/T \le 1}}^{\infty} e^{-\gamma m^2/T} \prod_{i=1}^{n} P_{[m/T]}^* W_n(y_i)$$

• Recall that we chose

Third Term of
$$Q^{(n)}(\mathbf{y}) = \frac{1}{3F} \sum_{\substack{m = -\infty: \\ 0 \le p^* + m/T \le 1}}^{\infty} e^{-\gamma m^2/T} \prod_{i=1}^{n} P_{[m/T]}^* W_n(y_i)$$

- Need to control normalization constant F.
- By the sifting property of D_s , appears as $\log F$ bound on $\log M^*$.

Recall that we chose

Third Term of
$$Q^{(n)}(\mathbf{y}) = \frac{1}{3F} \sum_{\substack{m = -\infty: \\ 0 \le p^* + m/T \le 1}}^{\infty} e^{-\gamma m^2/T} \prod_{i=1}^{n} P_{[m/T]}^* W_n(y_i)$$

- Need to control normalization constant F.
- By the sifting property of D_s , appears as $\log F$ bound on $\log M^*$.
- By direct calculation

$$F < \sum_{m=-\infty}^{\infty} e^{-\gamma m^2/T} < 1 + \int_{-\infty}^{\infty} e^{-\gamma m^2/T} dm = 1 + \sqrt{\frac{\pi T}{\gamma}} = O(\sqrt{T})$$

• Recall that we chose

Third Term of
$$Q^{(n)}(\mathbf{y}) = \frac{1}{3F} \sum_{\substack{m = -\infty: \\ 0 \le p^* + m/T \le 1}}^{\infty} e^{-\gamma m^2/T} \prod_{i=1}^{n} P_{[m/T]}^* W_n(y_i)$$

- Need to control normalization constant F.
- By the sifting property of D_s , appears as $\log F$ bound on $\log M^*$.
- By direct calculation

$$F < \sum_{m=-\infty}^{\infty} e^{-\gamma m^2/T} < 1 + \int_{-\infty}^{\infty} e^{-\gamma m^2/T} dm = 1 + \sqrt{\frac{\pi T}{\gamma}} = O(\sqrt{T})$$

• Tomamichel-Tan's construction in the output distn. space cannot handle the non-stationary W_n^n .

• Full understanding of third-order asymptotics for DMCs

- Full understanding of third-order asymptotics for DMCs
- Second- and third-order asymptotics for the Poisson channel

$$\log M^*(T, A\sigma, \varepsilon) = T C^* + \sqrt{T V^*} \Phi^{-1}(\varepsilon) + \rho_T,$$

where

$$\frac{1}{2}\log T + \mathrm{O}(1) \le \rho_T \le \log T + \mathrm{O}(1)$$

- Full understanding of third-order asymptotics for DMCs
- Second- and third-order asymptotics for the Poisson channel

$$\log M^*(T, A\sigma, \varepsilon) = T C^* + \sqrt{T V^*} \Phi^{-1}(\varepsilon) + \rho_T,$$

where

$$\frac{1}{2}\log T + \mathrm{O}(1) \le \rho_T \le \log T + \mathrm{O}(1)$$

• Different choices of output distributions.

- Full understanding of third-order asymptotics for DMCs
- Second- and third-order asymptotics for the Poisson channel

$$\log M^*(T, A\sigma, \varepsilon) = T C^* + \sqrt{T V^*} \Phi^{-1}(\varepsilon) + \rho_T,$$

where

$$\frac{1}{2}\log T + \mathrm{O}(1) \le \rho_T \le \log T + \mathrm{O}(1)$$

- Different choices of output distributions.
- Check out arXiv:1903.10438.