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Introduction: Transmission of Information
Shannon’s Figure 1
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Shannon abstracted away information meaning, “semantics”
• treat all data equally — bits as a “universal currency”
• crucial abstraction for modern communication and computing systems

Also relaxed computation and delay constraints to discover a 
fundamental limit: capacity, providing a goal-post to work toward

Saturday, June 11, 2011

Figure: Shannon’s Figure 1

• Information theory ≡ Finding fundamental limits for reliable
information transmission

• Channel coding: Concerned with the maximum rate of
communication in bits/channel use
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Channel Coding (One-Shot)

M X Y
e W d

M̂

• A code is an triple C = {M, e, d} where M is the message set

• The average error probability perr(C) is

perr(C) := Pr
[
M̂ 6= M

]
where M is uniform on M

• Maximum code size at ε-error is

M∗(W , ε) := sup
{
m
∣∣ ∃ C s.t. m = |M|, perr(C) ≤ ε

}
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Channel Coding (n-Shot)

M X n Y n
e W n d

M̂

• Consider n independent uses of a channel

• Assume W is a discrete memoryless channel

• For vectors x = (x1, . . . , xn) ∈ X n and y := (y1, . . . , yn) ∈ Yn,

W n(y|x) =
n∏

i=1

W (yi |xi )

• Maximum code size at average error ε and blocklength n is

M∗(W n, ε)

• Consider both discrete- and continuous-time channels.
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Old Contribution

• Upper bound logM∗(W n, ε) for n large
(converse)

• Concerned with the third-order term of
the asymptotic expansion

• Going beyond the normal approx terms
M. Tomamichel

Theorem (Tomamichel-Tan (2013))

For all DMCs with positive ε-dispersion Vε,

logM∗(W n, ε) ≤ nC +
√
nVεΦ

−1(ε) +
1

2
log n + O(1)

where Φ(a) :=
∫ a
−∞

1√
2π

exp
(
−1

2x
2
)
dx
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Old Contribution: Remarks

• Our bound

logM∗(W n, ε) ≤ nC +
√

nVεΦ
−1(ε) +

1

2
log n + O(1)

• Best upper bound till date:

logM∗(W n, ε) ≤ nC +
√

nVεΦ
−1(ε)+

(
|X | − 1

2

)
log n+O(1)

V. Strassen (1964) Polyanskiy-Poor-Verdú (2010)

• Requires new converse techniques
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Related Work: Third-Order Term

• Recall that we are interested in quantifying the third-order
term ρn

ρn = logM∗(W n, ε)−
[
nC +

√
nVεΦ

−1(ε)
]

• ρn = O(log n) if channel is non-exotic

• ρn may be important at very short blocklengths
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Related Work: Third-Order Term

ρn = logM∗(W n, ε)−
[
nC +

√
nVΦ−1(ε)

]
• For the BSC [PPV10]

ρn =
1

2
log n + O(1)

• For the BEC [PPV10]

ρn = O(1)

• For the AWGN under maximum (or peak) power constraints
[PPV10, Tan-Tomamichel (2015)]

ρn =
1

2
log n + O(1)
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Related Work: Achievability for Third-Order Term

Proposition (Polyanskiy (2010))

Assume that all elements of {W (y |x) : x ∈ X , y ∈ Y} are positive
and C > 0. Then,

ρn ≥
1

2
log n + O(1)

• This is an achievability result but BEC doesn’t satisfy assumptions

• Assumption may be relaxed to

∃P ∈ Π s.t. V r(P,W ) := V

(
PW ,

P ×W

PW

)
> 0

• Based on the concentration bound [Polyanskiy’s thesis]

E

[
exp

(
n∑

i=1

Xi

)
I

{
n∑

i=1

Xi ≥ γ

}]
≤ 2

(
log 2√

2π
+

12T

σ

)
exp(−γ)

σ
√
n

.
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Related Work: Converse for Third-Order Term

Proposition (Polyanskiy (2010))

If W is weakly input-symmetric

ρn ≤
1

2
log n + O(1)

• This is a converse result

• Gallager-symmetric channels are weakly input-symmetric

• The set of weakly input-symmetric channels is very thin

• We dispense of this symmetry assumption
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Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε-dispersion,

ρn ≤
1

2
log n + O(1)

• The 1
2 cannot be improved

• For BSC

ρn =
1

2
log n + O(1)

• We can dispense of the positive ε-dispersion assumption

• No need for unique CAID

• “A Tight Upper Bound for the Third-Order Asymptotics for
Most DMCs” M. Tomamichel and V. Y. F. Tan, IEEE T-IT,
Nov 2013

14 / 42



Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε-dispersion,

ρn ≤
1

2
log n + O(1)

• The 1
2 cannot be improved

• For BSC

ρn =
1

2
log n + O(1)

• We can dispense of the positive ε-dispersion assumption

• No need for unique CAID

• “A Tight Upper Bound for the Third-Order Asymptotics for
Most DMCs” M. Tomamichel and V. Y. F. Tan, IEEE T-IT,
Nov 2013

14 / 42



Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε-dispersion,

ρn ≤
1

2
log n + O(1)

• The 1
2 cannot be improved

• For BSC

ρn =
1

2
log n + O(1)

• We can dispense of the positive ε-dispersion assumption

• No need for unique CAID

• “A Tight Upper Bound for the Third-Order Asymptotics for
Most DMCs” M. Tomamichel and V. Y. F. Tan, IEEE T-IT,
Nov 2013

14 / 42



Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε-dispersion,

ρn ≤
1

2
log n + O(1)

• The 1
2 cannot be improved

• For BSC

ρn =
1

2
log n + O(1)

• We can dispense of the positive ε-dispersion assumption

• No need for unique CAID

• “A Tight Upper Bound for the Third-Order Asymptotics for
Most DMCs” M. Tomamichel and V. Y. F. Tan, IEEE T-IT,
Nov 2013

14 / 42



Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε-dispersion,

ρn ≤
1

2
log n + O(1)

• The 1
2 cannot be improved

• For BSC

ρn =
1

2
log n + O(1)

• We can dispense of the positive ε-dispersion assumption

• No need for unique CAID

• “A Tight Upper Bound for the Third-Order Asymptotics for
Most DMCs” M. Tomamichel and V. Y. F. Tan, IEEE T-IT,
Nov 2013

14 / 42



Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))

If W is a DMC with positive ε-dispersion,

ρn ≤
1

2
log n + O(1)

• The 1
2 cannot be improved

• For BSC

ρn =
1

2
log n + O(1)

• We can dispense of the positive ε-dispersion assumption

• No need for unique CAID

• “A Tight Upper Bound for the Third-Order Asymptotics for
Most DMCs” M. Tomamichel and V. Y. F. Tan, IEEE T-IT,
Nov 2013

14 / 42



Main Result: Tight Third-Order Term
All cases are covered

Yes

No

Vε > 0

≤nC+
√
nVεΦ−1(ε)+ 1

2
log n+O(1)

Yes

No

not exotic
or ε< 1

2

≤nC+O(1)

Yes

No

exotic
and ε= 1

2

≤nC+ 1
2

log n+O(1)

≤nC+O
(
n

1
3
)

[PPV10]

W is exotic if Vmax(W ) = 0 and ∃ x0 ∈ X such that

D(W (·|x0)‖Q∗) = C , and V (W (·|x0)‖Q∗) > 0.
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Proof Technique for Tight Third-Order Term

• For the regular case, ρn ≤ 1
2 log n + O(1)

• The type-counting trick and upper bounds on M∗P(W n, ε) are
not sufficiently tight

• We need a convenient converse bound for general DMCs

• Information spectrum divergence

Dε
s (P‖Q) := sup

{
R : P

(
log

P(X )

Q(X )
≤ R

)
≤ ε
}

“Information Spectrum Methods in Information Theory”
by T. S. Han (2003)
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Proof Technique: Information Spectrum Divergence

Dε
s (P‖Q) := sup

{
R
∣∣P (log

P(X )

Q(X )
≤ R

)
≤ ε
}

“Density” of log P(X )
Q(X )

R∗

ε 1− ε

If X n is i.i.d. P, the Berry-Esseen theorem yields

Dε
s (Pn‖Qn) = nD(P‖Q) +

√
nV (P‖Q)Φ−1(ε) + O(1)
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Proof Technique: Symbol-Wise Converse Bound

Lemma (Tomamichel-Tan (2013))

For every channel W , every ε ∈ (0, 1) and δ ∈ (0, 1− ε), we have

logM∗(W , ε) ≤ min
Q∈P(Y)

max
x∈X

Dε+δ
s (W (·|x)‖Q) + log

1

δ

• When DMC is used n times,

logM∗(W n, ε) ≤ min
Q(n)∈P(Yn)

(
max
x∈X n

Dε+δ
s (W n(·|x)‖Q(n))

)
+log

1

δ

• Choose δ = n−
1
2 so log 1

δ = 1
2 log n

• Since all x within a type class result in the same Dε+δ
s (if Q(n)

is permutation invariant), it’s really a max over types
Px ∈ Pn(X )
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Proof Technique: Choice of Output Distribution

logM∗(W n, ε) ≤ max
x∈X n

Dε+δ
s (W n(·|x)‖Q(n))+log

1

δ
, ∀Q(n) ∈ P(Yn)

• Q(n)(y): invariant to permutations of the n channel uses

Q(n)(y) :=
1

2

∑
k∈K

λ(k)Qn
k (y) +

1

2

∑
P∈Pn(X )

1

|Pn(X )|
(PW )n(y)

• First term: Qk’s and λ(k)’s designed to form an n−
1
2 -cover of

P(Y):

∀Q ∈ P(Y), ∃ k ∈ K s.t. ‖Q − Qk‖2 ≤ n−
1
2 .

• Second term: Uniform mixture over output distributions
induced by input types [Hayashi (2009)]
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Proof Technique: Novel Choice of Output Distribution
• First term is∑

k∈K
λ(k)Qn

k (y) where λ(k) =
exp

(
− γ‖k‖2

2

)
F

and k indexes distance to the capacity-achieving output
distribution (CAOD). Can be shown that F <∞.

• Choose each Qk as follows:

Qk(y) := Q∗(y) +
ky√
nζ
,

where K :=
{

k ∈ Z|Y| :
∑

y ky = 0, ky ≥ −Q∗(y)
√
nζ
}

• By construction, ensures that

∀Q ∈ P(Y), ∃ k ∈ K, s.t. ‖Q − Qk‖2 ≤
1√
n
.
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Proof Technique: Novel Choice of Output Distribution

Q(n)(y) :=
1

2

∑
k∈K

λ(k)Qn
k (y) +

1

2

∑
P∈Pn(X )

1

|Pn(X )|
(PW )n(y)

Q(0)

Q(1)

(0, 1)

(1, 0) P(Y)

Q∗

Q[−1,1]

Q[1,−1]

Q[2,−2]

Q[−2,2]

1√
2n

1√
2n
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Proof Technique: Novel Choice of Output Distribution

{Qk : k ∈ K} ⊂ P(Y)

Q∗

λ(k′) ∝ exp(−γ‖k′‖2
2)

Qk′

∀Q ∈ P(Y), ∃ k ∈ K, s.t. ‖Q − Qk‖2 ≤
1√
n
.

22 / 42



Proof Technique: Novel Choice of Output Distribution

{Qk : k ∈ K} ⊂ P(Y)

Q∗

λ(k′) ∝ exp(−γ‖k′‖2
2)

Qk′

∀Q ∈ P(Y), ∃ k ∈ K, s.t. ‖Q − Qk‖2 ≤
1√
n
.

22 / 42



Proof Technique: Novel Choice of Output Distribution

{Qk : k ∈ K} ⊂ P(Y)

Q∗

λ(k′) ∝ exp(−γ‖k′‖2
2)

Qk′

∀Q ∈ P(Y), ∃ k ∈ K, s.t. ‖Q − Qk‖2 ≤
1√
n
.

22 / 42



Proof Technique: Novel Choice of Output Distribution

{Qk : k ∈ K} ⊂ P(Y)

Q∗

λ(k′) ∝ exp(−γ‖k′‖2
2)

Qk′

∀Q ∈ P(Y), ∃ k ∈ K, s.t. ‖Q − Qk‖2 ≤
1√
n
.

22 / 42



Proof Technique: Standard Choice of Output Distn.

• Recall the output distribution

Q(n)(y) :=
1

2

∑
k∈K

λ(k)Qn
k (y) +

1

2

∑
P∈Pn(X )

1

|Pn(X )|
(PW )n(y)

• Second term: Uniform mixture over output distributions
induced by input types [Hayashi (2009)]∑

P∈Pn(X )

1

|Pn(X )|
(PW )n(y).

• Serves to take care of “bad input types” (i.e., types
P ∈ Pn(X ) such that PW is far from Q∗)

23 / 42



Proof Technique: Standard Choice of Output Distn.

• Recall the output distribution

Q(n)(y) :=
1

2

∑
k∈K

λ(k)Qn
k (y) +

1

2

∑
P∈Pn(X )

1

|Pn(X )|
(PW )n(y)

• Second term: Uniform mixture over output distributions
induced by input types [Hayashi (2009)]∑

P∈Pn(X )

1

|Pn(X )|
(PW )n(y).

• Serves to take care of “bad input types” (i.e., types
P ∈ Pn(X ) such that PW is far from Q∗)

23 / 42



Proof Technique: Standard Choice of Output Distn.

• Recall the output distribution

Q(n)(y) :=
1

2

∑
k∈K

λ(k)Qn
k (y) +

1

2

∑
P∈Pn(X )

1

|Pn(X )|
(PW )n(y)

• Second term: Uniform mixture over output distributions
induced by input types [Hayashi (2009)]∑

P∈Pn(X )

1

|Pn(X )|
(PW )n(y).

• Serves to take care of “bad input types” (i.e., types
P ∈ Pn(X ) such that PW is far from Q∗)

23 / 42



Outline

1 Introduction

2 Old Contribution

3 New Contribution

24 / 42



Mathematical Model of Poisson Channel (1/3)
Consider the following optical communication:

in
p

u
t

w
a

ve
fo

rm
λ

(t
)

time t

(peak power A)

light source photon-detector

co
u

n
ti

n
g

p
ro

ce
ss
ν

(t
)

time t

(# of photons)

modulates

(optical signal)

outputs

Remark: This is a continuous-time channel (0 ≤ t < T ).
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Mathematical Model of Poisson Channel (2/3)
λ(t) (peak power A)

t

light source

modulates

(optical signal)

Optical Signal is Modulated by Input Waveform λ(t)

• an integrable function λ(·) defined on the time block [0,T );

• with peak power constraint (A > 0):

0 ≤ λ(t) ≤ A ∀t ∈ [0,T );

• with average power constraint (0 ≤ σ ≤ 1):

1

T

∫ T

0
λ(t) dt ≤ σA.
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Mathematical Model of Poisson Channel (3/3)

(light)

photon-detector

outputs
ν(t)

(# of photons)

t

Output is Poisson counting process {ν(t)}0≤t<T

ν(0) = 0 a.s. and P{ν(t + τ)− ν(t) = k} =
eΛ Λk

k!

for each t, τ ∈ R≥0 and k ∈ Z≥0, where Λ is given by

Λ
def
=

∫ t+τ

t

(
λ(u) + λ0

)
du.

• input waveform (intensity of light) λ : [0,T )→ [0,A]

• dark current (background noise level) 0 ≤ λ0 <∞
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Block Coding Scheme for Poisson Channel

m φ Poisson channel ψ m̂
λ(t) ν(t)

• input alphabet is the set of waveforms λ(·)

W(T ,A, σ)
def
=

{
λ : [0,T )→ [0,A]

∣∣∣∣ 1

T

∫ T

0
λ(t) dt ≤ σA

}
,

where A (resp. σ) is the peak (resp. average) power constraint.

• output alphabet is the set of possible counting processes ν(·)

S(T )
def
= {g : [0,T )→ Z≥0 | g(0) = 0 and g(t1) ≥ g(t2), t1 < t2}

A (T ,M ,A, σ)-code (φ, ψ) for Poisson channel

• encoder φ : {1, 2, . . . ,M} → W(T ,A, σ)

• decoder ψ : S(T )→ {1, 2, . . . ,M}
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Block Coding Scheme for Poisson Channel (Cont’d)

m φ Poisson channel ψ m̂
λ(t) ν(t)

A (T ,M ,A, σ)-code (φ, ψ) for Poisson channel

• encoder φ : {1, 2, . . . ,M} → W(T ,A, σ)

• decoder ψ : S(T )→ {1, 2, . . . ,M}

A (T ,M ,A, σ, ε)avg-code (φ, ψ) for Poisson channel

A (T ,M,A, σ)-code (φ, ψ) is called a (T ,M,A, σ, ε)avg-code if

1

M

M∑
m=1

P{ψ(ν) = m | λ = φ(m)} ≥ 1− ε.

Here, λ is the r.v. induced by the encoder φ with uniform messages.
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Poisson Channel Capacity (1st-Order Asymptotics)

Denote by M∗ the max. M s.t. ∃ a (T ,M,A, σ, ε)avg-code.

Theorem (Kabanov’78; Davis’80; Wyner’88)

logM∗ = T C ∗ + o(T ) (as T →∞),

where

C ∗
def
= A

(
(1− p∗) s log

s

p∗ + s
+ p∗ (1 + s) log

1 + s

p∗ + s

)
,

s
def
=
λ0

A
(ratio of dark current λ0 to PPC A),

p∗
def
= min{σ, p0} (role of CAID, where σ is APC),

p0
def
=

(1 + s)1+s

ss e
− s.
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Poisson Channel Dispersion (2nd-Order Asymptotics)
• Denote by M∗ the max s.t. ∃ a (T ,M,A, σ, ε)avg-code.

• We seek second- and third-order terms

logM∗ = T C ∗ +
√
T L + ρT , T →∞.

• Many works since 2013 on multi-terminal channels and sources

• First work on higher-order asymptotics for continuous-time
channels

Yuta Sakai Mladen Kovačević
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Poisson Channel Dispersion (2nd-Order Asymptotics)

Theorem (Sakai–Tan–Kovačević’19: arXiv:1903.10438)

logM∗ = T C ∗ +
√
T V ∗Φ−1(ε) + ρT ,

where the Poisson channel dispersion V ∗ is given by

V ∗
def
= A

(
(1− p∗) s log2 s

p∗ + s
+ p∗ (1 + s) log2 1 + s

p∗ + s

)
,

and the third-order term ρT satisfies

1

2
logT + O(1) ≤ ρT ≤ logT + O(1) (as T →∞).

Result: 2nd-order term
√
V ∗Φ−1(ε) and bounds on 3rd-order term ρT

32 / 42

arXiv:1903.10438


Proof Ideas of Second- and Third-Order Asymptotics

In both converse and achievability parts, we shall employ
Wyner’s discretization argument (Wyner’88):

x

{0, 1} n
3

convertor Poisson ch. quantizer y ∈
{0
, 1
}n

λ(t) ν(t)

Converse Part

• symbol-wise meta converse bound (Tomamichel–Tan’13)

• novel choice of output distribution (projected ε-net)

Achievability Part

• random coding union bound (PPV’10) with cost constraint

• some other techniques to handle the continuous nature
(e.g., logarithmic Sobolev inequality)
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Wyner’s Discretization Part I: Input Restriction
λ(t) (peak power A)

t

light source

modulates

(optical signal)

Discretization of {λ(t)}0≤t<T into n Blocks (here, ∆ = T/n)

input waveform λ(t) is restricted to be square, e.g.,

0

λ(t) (peak power constraint A)

time t

∆
3∆ 4∆ 5∆ 6∆ 7∆

That is, we may think of λ(t) as a binary sequence {xk}nk=1.
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Wyner’s Discretization Part II: Output Quantization

(light)

photon-detector

outputs
ν(t)

(# of photons)

t

Discretization of {ν(t)}0≤t<T into n Blocks (here, ∆ = T/n)

∆
t

(k − 1)∆ k∆

ν((k − 1)∆)

ν(k∆)
the gap = 1?

Poisson counting process ν(t) is quantized as {yk}nk=1:

yk
def
=

{
0 if ν(k∆)− ν((k − 1)∆) 6= 1,

1 if ν(k∆)− ν((k − 1)∆) = 1.
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Overall Diagram of Wyner’s Discretization

x convertor Poisson channel quantizer y
λ(t) ν(t)

• input sequence x = (x1, . . . , xn) ∈ {0, 1}n
(which is converted to a square wave λ(t): )

• output sequence y = (y1, . . . , yn) ∈ {0, 1}n
(which is obtained by quantizing the counting process ν(t))

Discretized channel W n
n : {0, 1}n → {0, 1}n

W n
n (y | x)

def
=

n∏
i=1

Wn(yi | xi ),

where the single-letter channel Wn : {0, 1} → {0, 1} depends on n.

Remark: the discretization error is negligible as n→∞ (next slide).
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Wyner’s Discretization Well-Approximates Poisson Channel

Denote by

• M∗Poisson(ε): fundamental limit of Poisson channel

• M∗(W n
n , ε): fundamental limit of discretized channel W n

n

Lemma (Wyner’88)

There exist a sequence εn = o(1) and a subsequence {nk}∞k=1 s.t.

M∗Poisson(ε) = M∗(W nk
nk
, ε+ εnk ) (∀k ≥ 1).

Therefore, we observe that

logM∗Poisson(ε) ≤ lim sup
n→∞

logM∗(W n
n , ε+ εn),

implying that it suffices to examine the RHS in the converse part.
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Meta Converse Bound and Output Distribution
Apply the symbol-wise meta converse (Tomamichel–Tan’13):

logM∗(W n
n , ε+ εn) ≤ max

x∈{0,1}n
Dε+εn+η

s ( W n
n (· | x)︸ ︷︷ ︸

discretized Poisson channel

‖Q(n)) + log
1

η

Since Q(n) ∈ P({0, 1}n) is arbitrary, we substitute

Q(n)(y) = 1

3

n∏
i=1

P∗[−κ]Wn(yi ) + 1

3

n∏
i=1

P∗[κ]Wn(yi )

+
1

3F

∞∑
m=−∞:

0≤p∗+m/T≤1

e−γm
2/T

n∏
i=1

P∗[m/T ]Wn(yi )

where κ = 1
2 min{σ, 1/e} > 0 and P∗[u](1) = p∗ + u.

• third term is the main part of our novel construction

• first and second terms are to apply Lipschitz properties
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ε-Net Argument: Tomamichel–Tan’s Original Choice
Consider a binary-input binary-output channel W : {0, 1} → {0, 1}.

[input probab. simplex]

(1, 0)

(0, 1)

•
CAID P∗

[output probab. simplex]

(1, 0)

(0, 1)

•
CAOD P∗W

multiplied by W

put-up
an
ε-net

around
CAO

D
P ∗
W

Qk

Use a convex combination of the ε-net:
∑

k µ(k)Qn
k .
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ε-Net Argument: For Discretized Poisson Channels

Consider a (single-letter) discretized channel Wn : {0, 1} → {0, 1}.

[input probab. simplex]

(1, 0)

(0, 1)

•
CAID P∗

put-up an ε-net

[output probab. simplex]

(1, 0)

(0, 1)

•

•

•

•

multiplied by W
n

•
CAOD P∗W

Qk

get a projected ε-net

Use a convex combination of the projected ε-net:
∑

k µ(k)Qn
k
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Why This Choice of Output Distn. and not TT13?

• Recall that we chose

Third Term of Q(n)(y) =
1

3F

∞∑
m=−∞:

0≤p∗+m/T≤1

e−γm
2/T

n∏
i=1

P∗[m/T ]Wn(yi )

• Need to control normalization constant F .

• By the sifting property of Ds, appears as log F bound on logM∗.

• By direct calculation

F <

∞∑
m=−∞

e−γm
2/T < 1+

∫ ∞
−∞

e−γm
2/T dm = 1+

√
πT

γ
= O(

√
T )

• Tomamichel-Tan’s construction in the output distn. space cannot
handle the non-stationary W n

n .

41 / 42



Why This Choice of Output Distn. and not TT13?

• Recall that we chose

Third Term of Q(n)(y) =
1

3F

∞∑
m=−∞:

0≤p∗+m/T≤1

e−γm
2/T

n∏
i=1

P∗[m/T ]Wn(yi )

• Need to control normalization constant F .

• By the sifting property of Ds, appears as log F bound on logM∗.

• By direct calculation

F <
∞∑

m=−∞
e−γm

2/T < 1+

∫ ∞
−∞

e−γm
2/T dm = 1+

√
πT

γ
= O(

√
T )

• Tomamichel-Tan’s construction in the output distn. space cannot
handle the non-stationary W n

n .

41 / 42



Why This Choice of Output Distn. and not TT13?

• Recall that we chose

Third Term of Q(n)(y) =
1

3F

∞∑
m=−∞:

0≤p∗+m/T≤1

e−γm
2/T

n∏
i=1

P∗[m/T ]Wn(yi )

• Need to control normalization constant F .

• By the sifting property of Ds, appears as log F bound on logM∗.

• By direct calculation

F <

∞∑
m=−∞

e−γm
2/T < 1+

∫ ∞
−∞

e−γm
2/T dm = 1+

√
πT

γ
= O(

√
T )

• Tomamichel-Tan’s construction in the output distn. space cannot
handle the non-stationary W n

n .

41 / 42



Why This Choice of Output Distn. and not TT13?

• Recall that we chose

Third Term of Q(n)(y) =
1

3F

∞∑
m=−∞:

0≤p∗+m/T≤1

e−γm
2/T

n∏
i=1

P∗[m/T ]Wn(yi )

• Need to control normalization constant F .

• By the sifting property of Ds, appears as log F bound on logM∗.

• By direct calculation

F <

∞∑
m=−∞

e−γm
2/T < 1+

∫ ∞
−∞

e−γm
2/T dm = 1+

√
πT

γ
= O(

√
T )

• Tomamichel-Tan’s construction in the output distn. space cannot
handle the non-stationary W n

n .

41 / 42



Concluding Remarks

• Full understanding of third-order asymptotics for DMCs

• Second- and third-order asymptotics for the Poisson channel

logM∗(T ,Aσ, ε) = T C ∗ +
√
T V ∗Φ−1(ε) + ρT ,

where
1

2
logT + O(1) ≤ ρT ≤ logT + O(1)

• Different choices of output distributions.

• Check out arXiv:1903.10438.
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