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Introduction: Transmission of Information
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information transmission
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Figure: Shannon's Figure 1

e Information theory = Finding fundamental limits for reliable
information transmission

e Channel coding: Concerned with the maximum rate of
communication in bits/channel use
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Channel Coding (One-Shot)

M X Y

g | M

e A code is an triple C = {M, e, d} where M is the message set

5/42



Channel Coding (One-Shot)

M X Y

g | M

e A code is an triple C = {M, e, d} where M is the message set

e The average error probability per(C) is

%@V:”W#W

where M is uniform on M

5/42



Channel Coding (One-Shot)

M X Y d

M

A code is an triple C = {M, e, d} where M is the message set
The average error probability per(C) is

pers(C) = Pr [/\71;& M}
where M is uniform on M

Maximum code size at e-error is

M*(W,e) :=sup{m ‘ 3C st. m=|M|, perr(C) < €}
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Channel Coding (n-Shot)

M X"
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e Consider n independent uses of a channel

d

R
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Channel Coding (n-Shot)

n n Y
M o X wn Y d M
e Consider n independent uses of a channel
o Assume W is a discrete memoryless channel
e For vectors x = (x1,...,x5) € X" and y :== (y1,...,¥n) € V",

w(ylx) = [T W(xilx)
i=1
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Assume W is a discrete memoryless channel
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Channel Coding (n-Shot)

M X"

Wn

Yn

Consider n independent uses of a channel

d

R

Assume W is a discrete memoryless channel

For vectors x = (x1,...,x,) € X" and y := (y1, ...

w(ylx) = [T W(xilx)
i=1

,yn) €Y7,

Maximum code size at average error € and blocklength n is

M*(W" ¢)

Consider both discrete- and continuous-time channels.
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Old Contribution

e Upper bound log M*(W?", ¢) for n large
(converse)

e Concerned with the third-order term of
the asymptotic expansion

e Going beyond the normal approx terms

e

M. Tomamichel
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Old Contribution

e Upper bound log M*(W?", ¢) for n large
(converse)

Ft:o’ll

M. Tomamichel

e Concerned with the third-order term of
the asymptotic expansion

e Going beyond the normal approx terms

Theorem (Tomamichel-Tan (2013))
For all DMCs with positive e-dispersion V.,

1
log M*(W",e) < nC +/nV.&"1(e) + 5 logn+ O(1)
where ®(a) := [°__ % exp (—2x?) dx
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Old Contribution: Remarks
e Qur bound

1
log M*(W", g) < nC + /nV.d71(e) + 3 logn+ O(1)
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Old Contribution: Remarks
e Qur bound

1
log M*(W", g) < nC + /nV.d71(e) + 5 logn+ O(1)

e Best upper bound till date:

mgwﬁuMﬂe)gnc+\hwgv4@y+OX;>mgn+oa)

V. Strassen (1964) Polyanskiy-Poor-Verdd (2010)

e Requires new converse techniques
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Related Work: Third-Order Term

e Recall that we are interested in quantifying the third-order
term p,

pn = log M*(W", &) — [nC + \/nV.071(e)]
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Related Work: Third-Order Term

e Recall that we are interested in quantifying the third-order
term p,

pn = log M*(W", &) — [nC + \/nV.071(e)]

e p, = O(log n) if channel is non-exotic

e p, may be important at very short blocklengths
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Related Work: Third-Order Term

pn = log M*(W",¢) — [nC + VnVo1(e)]

e For the BSC [PPV10]

1
Pn=3 logn+ O(1)
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Related Work: Third-Order Term

pn = log M*(W",¢) — [nC + VnVo1(e)]

e For the BSC [PPV10]

1
Pn=3 logn+ O(1)

e For the BEC [PPV10]
pn = O(1)

e For the AWGN under maximum (or peak) power constraints
[PPV10, Tan-Tomamichel (2015)]

1
Pn=75 logn+ O(1)
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Related Work: Achievability for Third-Order Term

Proposition (Polyanskiy (2010))

Assume that all elements of {W(y|x): x € X,y € Y} are positive
and C > 0. Then,

1
Pn = 5 logn+ O(1)
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1
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Related Work: Achievability for Third-Order Term

Proposition (Polyanskiy (2010))

Assume that all elements of {W(y|x) : x € X',y € )V} are positive
and C > 0. Then,

1
Pn > 5 |ogn aF O(l)
e This is an achievability result but BEC doesn’t satisfy assumptions

e Assumption may be relaxed to

Px W
JPen st. VI(P,W)=V(Pw, 27
en st view=v (pw S )

e Based on the concentration bound [Polyanskiy's thesis]

ol )
i=1 i=1
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Related Work: Converse for Third-Order Term
Proposition (Polyanskiy (2010))
If W is weakly input-symmetric

1
Pn < Elogn—k 0(1)
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Related Work: Converse for Third-Order Term

Proposition (Polyanskiy (2010))
If W is weakly input-symmetric

1
Pn < Elogn—f- O(l)

This is a converse result

Gallager-symmetric channels are weakly input-symmetric

The set of weakly input-symmetric channels is very thin

We dispense of this symmetry assumption

13 /42



Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))
If W is a DMC with positive e-dispersion,

1
Pn < §|0gn+ O(l)
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Main Result: Tight Third-Order Term

Theorem (Tomamichel-Tan (2013))
If W is a DMC with positive e-dispersion,

1
Pn < §|0gn+ O(l)

The % cannot be improved

For BSC

1
pn= 3 logn+ O(1)

We can dispense of the positive e-dispersion assumption

No need for unique CAID

“A Tight Upper Bound for the Third-Order Asymptotics for
Most DMCs" M. Tomamichel and V. Y. F. Tan, IEEE T-IT,
Nov 2013
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Main Result: Tight Third-Order Term

All cases are covered

v <nC++/nV.07'(e)+1 log n+0(1)
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0
N

N
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Main Result: Tight Third-Order Term

All cases are covered

v <nC++/nV.07'(e)+1 log n+0(1)
es

Yes

V. >0 < <nC+0(1)

N not exotid

ore<t Vee <nC+1logn+0(1)
No exotic
and 62% \
No 1
<nC+0(n3) [PPV10]

W is exotic if Vimax(W) =0 and Ixp € X such that

D(W(-1x0)Q") = €, and  V(W(|x)[|Q") > 0.
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Proof Technique for Tight Third-Order Term

e For the regular case, p, < % log n+ O(1)
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Proof Technique for Tight Third-Order Term

For the regular case, p, < 2logn+ O(1)

The type-counting trick and upper bounds on M5(W?",¢) are
not sufficiently tight

We need a convenient converse bound for general DMCs

Information spectrum divergence

D:(P|Q) = sup{R P <log 288 < R) < e}

“Information Spectrum Methods in Information Theory"
by T. S. Han (2003)

16 / 42



Proof Technique: Information Spectrum Divergence

D:(P|Q) = sup {R\ P (log 283 < R) < e}

“Density” of log %

17 /42



Proof Technique: Information Spectrum Divergence

D:(P|Q) = sup {R\ P (log 283 < R) < e}

“Density” of log %

R*

17 /42



Proof Technique: Information Spectrum Divergence

D:(P|Q) = sup {R\ P (log 283 < R) < e}

“Density” of log %

17 /42



Proof Technique: Information Spectrum Divergence

D:(P|Q) = sup {R\ P (log 283 < R) < e}

“Density” of log %

If X™isi.i.d. P, the Berry-Esseen theorem vyields

D(PIQ") = nD(P[|Q) + v/nV (P Q)& (e) + O(1)
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Proof Technique: Symbol-Wise Converse Bound

Lemma (Tomamichel-Tan (2013))
For every channel W, every ¢ € (0,1) and § € (0,1 —¢), we have

1
log M*(W.e) < min max DEFO(W(- lo =
g M'(W,e) <  min max D (W(x)]|Q) + log 3
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Proof Technique: Symbol-Wise Converse Bound

Lemma (Tomamichel-Tan (2013))
For every channel W, every ¢ € (0,1) and § € (0,1 —¢), we have

1
log M*(W.e) < min max DEFO(W(- lo =
og M*( ’5)—er'?y)xea? s (WEX)IQ) +log 5

e When DMC is used n times,

1
* n < . e+6 ne. (n) _
log M*(W",e) < Q(n)rg;y(yn) ()[2% DET(W(+x) ]| @'™) +Iog5

NI

e Choose § = n"2 so Iog% = % log n

e Since all x within a type class result in the same D0 (if Q(")

is permutation invariant), it's really a max over types
Py € Pn(X)

18 /42



Proof Technique: Choice of Output Distribution
log M*(W", £) < max D (W (-|x) | Q" )—i—log(ls v Q" e p(Y™)

e Q") (y): invariant to permutations of the n channel uses
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Proof Technique: Choice of Output Distribution
log M*(W", £) < max D (W (-|x) | Q" )—i—log; v e P(Y™)

e Q") (y): invariant to permutations of the n channel uses

1 i 1 1 .
= QZ)‘(k)Qk(Y)‘{'E Z \73,,(2()|(PW) (¥)

kek PEPA(X)

o First term: Qk's and A(k)'s designed to form an n~2-cover of
PY):
1

VQGIP(J}), dk e K s.t. HQ—QkHQSn_E.

e Second term: Uniform mixture over output distributions
induced by input types [Hayashi (2009)]
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Proof Technique: Novel Choice of Output Distribution

e First term is

xp (— 2
Z)‘(k)Qf(y) where )\(k):w

kel

and k indexes distance to the capacity-achieving output
distribution (CAOD). Can be shown that F < co.
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e First term is

xp (— 2
Z)\(k)Qf(y) where )\(k):ep(ljuw

kel

and k indexes distance to the capacity-achieving output
distribution (CAOD). Can be shown that F < co.

e Choose each @ as follows:

Q) = Q°(y) + ;LC

where K := {k € AR >y ky =0,k > —Q*(y)v/nC}
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Proof Technique: Novel Choice of Output Distribution

e First term is

exp (—7/k[13)

Z)‘(k)Qlf(y) where  \(k) = -

kel

and k indexes distance to the capacity-achieving output
distribution (CAOD). Can be shown that F < co.

e Choose each @ as follows:

where K := {k € AR >y ky =0,k > —Q*(y)v/nC}

e By construction, ensures that

VQeP(Q), Jkek, st [|Q- Qkuzg—

g
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Proof Technique: Novel Choice of Output Distribution

1 1
Q(")(Y Z)\ 2 Z W(PW)H(Y)
kelC Pep,(x) " "
Q(1)
(1,0) P(Y)
Q(0)
(0,1)
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Proof Technique: Novel Choice of Output Distribution
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Proof Technique: Novel Choice of Output Distribution

{Q ke K} CPY)
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Proof Technique: Novel Choice of Output Distribution
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Proof Technique: Novel Choice of Output Distribution

{Q ke K} CPY)

Qf f vov e e Qi
(k') oc exp(—|[K'[|3)

1
VQeP(Y), 3kek, st ||Q—Qk||2§%.
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Proof Technique: Standard Choice of Output Distn.

e Recall the output distribution

Q) =5 MR +5 D (PW)(Y)

kek PePH(X)
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Proof Technique: Standard Choice of Output Distn.

e Recall the output distribution

1
|Pa(X))]

Q(y) := % Z A(k)Q(y) + % Z

kek PePH(X)

(PW)"(y)

e Second term: Uniform mixture over output distributions
induced by input types [Hayashi (2009)]

> (PW )

Peﬂ(x)' n(X)]
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Proof Technique: Standard Choice of Output Distn.

e Recall the output distribution

1
|Pa(X))]

Q(y) := % Z A(k)Q(y) + % Z

kek PePH(X)

(PW)"(y)

e Second term: Uniform mixture over output distributions
induced by input types [Hayashi (2009)]

> (PW )

PEPn(X)‘ n(X)]

e Serves to take care of "bad input types” (i.e., types
P € P,(X) such that PW is far from Q*)

23 /42
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Mathematical Model of Poisson Channel (1/3)

Consider the following optical communication:

light source

modulates

(optical signal)

input waveform \(t)

time t

counting process v/(t)

photon-detector
[

*outputs

(# of photons)

time t
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Mathematical Model of Poisson Channel (1/3)

Consider the following optical communication:

light source

modulates

(optical signal)

input waveform \(t)

time t

counting process v/(t)

photon-detector
[

*outputs

(# of photons)

time t

Remark: This is a continuous-time channel (0 <t < T).
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Mathematical Model of Poisson Channel (2/3)
A(t) (peak power A)

(optical signal)

4 light source <:|’\/\/\/\/\/\/\,—)

modulates

t
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Mathematical Model of Poisson Channel (2/3)
A(t) (peak power A)

4 light source

modaulates
t

(optical signal)

Optical Signal is Modulated by Input Waveform A(t)
e an integrable function A(-) defined on the time block [0, T);

e with peak power constraint (A > 0):
0<ANt)<A Vte|0,T);
e with average power constraint (0 < o < 1):

1 T
— < .
- /0 A(t)dt < oA
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Mathematical Model of Poisson Channel (3/3)

(light)

photon-detector

outputs

—y

v(t)

(# of photons)

t
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Mathematical Model of Poisson Channel (3/3)

photon-detector
(# of photons)
t
Output is Poisson counting process {v(t)}o<t<T
e K
v(0)=0 as. and P{v(t+7)—v(t) =k} = o

for each t,7 € R>g and k € Z>o, where A is given by
t+7
/\d:'Ef/ <)\(u) = )\o)du.
t

e input waveform (intensity of light) A: [0, T) — [0, Al

e dark current (background noise level) 0 < Ao < co
27 /42



Block Coding Scheme for Poisson Channel

A(t) v(t)
m —> Poisson channel —>@—> m

e input alphabet is the set of waveforms A(-)

W(T, A o) d:ef{)\ 0, T) — [0, A ' ;_/OT)\(t)dtgoA},

where A (resp. o) is the peak (resp. average) power constraint.
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where A (resp. o) is the peak (resp. average) power constraint.
e output alphabet is the set of possible counting processes v/(+)

S(T) = {g:[0.T) = Zo | g(0) = 0 and g(t1) > g(t2), tr < t2}
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Block Coding Scheme for Poisson Channel

A(t) v(t)
m —> Poisson channel —>@—> m

e input alphabet is the set of waveforms A(-)

W(T, A o) d:ef{)\ 0, T) — [0, A ' ;_/OT)\(t)dtgoA},

where A (resp. o) is the peak (resp. average) power constraint.
e output alphabet is the set of possible counting processes v/(+)

S(T)= {g:]0,T) = Zxo | g(0) = 0 and g(t1) > g(t2), t1 < 2}
A (T, M,A,o)-code (¢,1)) for Poisson channel
e encoder ¢ : {1,2,...,M} - W(T,A, o)
e decoder ¢ : S(T) — {1,2,..., M}
28 / 42



Block Coding Scheme for Poisson Channel (Cont'd)

. _». A(t)

Poisson channel

ﬂ.@—.m
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Block Coding Scheme for Poisson Channel (Cont'd)

A(t) v(t)
m —> Poisson channel —>@—> m

A (T, M, A, o)-code (¢,1)) for Poisson channel
e encoder ¢ : {1,2,..., M} - W(T,A, o)
e decoder ¢ : S(T) — {1,2,..., M}

A (T, M, A, o,¢)ag-code (¢,1) for Poisson channel
A (T, M, A, o)-code (¢,1) is called a (T, M, A, 7, €)ayg-code if

M
1
MZP{w(V):mM:(p(m)} >1-—e.
m=1
Here, A is the r.v. induced by the encoder ¢ with uniform messages.
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Poisson Channel Capacity (1st-Order Asymptotics)
Denote by M* the max. M s.t. 3a (T, M, A, 0,€)ag-code.

Theorem (Kabanov'78; Davis'80; Wyner'88)

logM* =T C*+0o(T) (as T — o),

where

)
1+s

C*d:efA<1—*s|o * P (1+s)lo >
(1-p) 8 s P ( )gp*+s

A
P (ratio of dark current \o to PPC A),

A
p* = min{o, po} (role of CAID, where o is APC),
def (1 ar 5)1+s
PO= e T
sSe
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Poisson Channel Dispersion (2nd-Order Asymptotics)
e Denote by M* the max s.t. 3a (T, M, A, o,¢€)ayg-code.
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Poisson Channel Dispersion (2nd-Order Asymptotics)
o Denote by M* the max s.t. 3a (T, M, A, 0,¢c)ag-code.

e We seek second- and third-order terms
logM* =T C*+VTL+pr, T— oo
e Many works since 2013 on multi-terminal channels and sources

e First work on higher-order asymptotics for continuous-time
channels

Yuta Sakai Mladen Kovac&evié
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Poisson Channel Dispersion (2nd-Order Asymptotics)
Theorem (Sakai-Tan—Kovalevi¢'19: arXiv:1903.10438)

logM* = T C* + VT Vo~ Ye) + pr,

where the Poisson channel dispersion V* is given by

s def o 2 S « 5 1+s
V= A|[(1- Slog® —— + 1+5s)lo ,
(@-p)stog = p @ s)iog? 22 )

and the third-order term pt satisfies
1
ElogT—i-O(l) <pr <log T +0O(1) (as T — o0).

Result: 2nd-order term /V* ®~1(¢) and bounds on 3rd-order term pr
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arXiv:1903.10438

Proof ldeas of Second- and Third-Order Asymptotics

In both converse and achievability parts, we shall employ
Wyner's discretization argument (Wyner'88):

;{! O
S A(t) — v(t) , >
X —| convertor |—> Poisson ch. > quantizer —— Y
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Proof ldeas of Second- and Third-Order Asymptotics

In both converse and achievability parts, we shall employ
Wyner's discretization argument (Wyner'88):

;{2 O
S A(t) — v(t) , >
X —| convertor |—> Poisson ch. > quantizer —— Y

Converse Part
e symbol-wise meta converse bound (Tomamichel-Tan'13)

e novel choice of output distribution (projected e-net)

Achievability Part
e random coding union bound (PPV'10) with cost constraint

e some other techniques to handle the continuous nature
(e.g., logarithmic Sobolev inequality)

33 /42



Wyner's Discretization Part |: Input Restriction
A(t) (peak power A)

4 light source

modulates

(optical signal)

t
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Wyner's Discretization Part |: Input Restriction
A(t) (peak power A)

4 light source

modulates
t

Discretization of {\(t)}o<t<7 into n Blocks (here, A = T /n)

input waveform A(t) is restricted to be square, e.g.,

(optical signal)

A(t) (peak power constraint A)
: : time t
0 = 3A 4A 5A 6A T7A

That is, we may think of \(t) as a binary sequence {xi}}_;. 34/ 42



Wyner's Discretization Part Il: Output Quantization

(light)

photon-detector

outputs

—y

v(t)

(# of photons)

t
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photon-detector
(# of photons)
t

Discretization of {v(t)}o<:<7 into n Blocks (here, A = T /n)

v(kA)

/\)
v((k—1)A)

(k _ 1)Alj kA
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Wyner's Discretization Part Il: Output Quantization

photon-detector
(# of photons)
t

Discretization of {v(t)}o<:<7 into n Blocks (here, A = T /n)

v(kA)

/\)
v((k ~1)A)

(k—1a—" kA
Poisson counting process v/(t) is quantized as {yx}7_;:

ger [0 if v(kA) — v((k — 1)A) # 1,
“T 1 i u(kD) — u((k—1)A) = 1.
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Overall Diagram of Wyner's Discretization

A(t) v(t)
X —>| convertor |—> Poisson channel >
e input sequence x = (x1,...,xp) € {0,1}"

quantizer

_>y

(which is converted to a square wave A(t): I L1 1)

e output sequence y = (y1,...,¥n) € {0,1}"
(which is obtained by quantizing the counting process v(t))
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Overall Diagram of Wyner's Discretization

A(t) v(t)
x —>| convertor |—> Poisson channel »| quantizer — Yy

e input sequence x = (x1,...,xp) € {0,1}"

(which is converted to a square wave A(t): [ L_[1LT 1)

e output sequence y = (y1,...,¥n) € {0,1}"
(which is obtained by quantizing the counting process v(t))

Discretized channel W :{0,1}" — {0,1}"
def T~
Wiy | x) = T Walyi | ),
i=1
where the single-letter channel W, : {0,1} — {0,1} depends on n.

Remark: the discretization error is negligible as n — oo (next slide).
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Wyner's Discretization Well-Approximates Poisson Channel

Denote by
o M

Poisson
o M*(W}, e): fundamental limit of discretized channel W;}

(€): fundamental limit of Poisson channel

Lemma (Wyner'88)

There exist a sequence €, = 0(1) and a subsequence {n,}?° ; s.t.

Mpoisson(€) = M*(Wpk,e +€n,)  (Vk 21).

ng o
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Wyner's Discretization Well-Approximates Poisson Channel

Denote by
o M

Poisson
o M*(W}, e): fundamental limit of discretized channel W;}

(€): fundamental limit of Poisson channel

Lemma (Wyner'88)

There exist a sequence €, = 0(1) and a subsequence {n,}?° ; s.t.
Mpgisson(€) = M*(Wpk,e +en)  (Vk 21).
Therefore, we observe that

log Mpisson(€) < limsuplog M* (W', + €p),

n—oo

implying that it suffices to examine the RHS in the converse part.
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Meta Converse Bound and Output Distribution
Apply the symbol-wise meta converse (Tomamichel-Tan'13):

1
log M*(W" e 4+€,) < max Dot wo(-| x) || Q™) + Iogf
xe{0,1}"
discretized Poisson channel
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Meta Converse Bound and Output Distribution
Apply the symbol-wise meta converse (Tomamichel-Tan'13):

1
log M*(WJ,e+€) < max D 1( Wa(- | x) || Q)+ log =
x€{0,1}" n

discretized Poisson channel

Since (" € P({0,1}") is arbitrary, we substitute

n n
M (y) = LTT px 17 ps
Q (y) §HP[_R]Wn(.yI) + §HP[;€] W”(yi)
i=1 i=1

1 > 2T T
+ 3F > e " /T_HP[m/r] Wi (yi)
0<p+m) T<1 =

where # = 3 min{o,1/e} > 0 and Py, (1) = p* +u.

[u
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Meta Converse Bound and Output Distribution
Apply the symbol-wise meta converse (Tomamichel-Tan'13):

1
log M*(WJ,e+€) < max D 1( Wa(- | x) || Q)+ log =
x€{0,1}" n

discretized Poisson channel

Since (" € P({0,1}") is arbitrary, we substitute

n n
M (y) = LTT px 17 ps
Q (y) §HP[_R]Wn(.yI) + §HP[;€] W”(yi)
i=1 i=1

1 > 2T T
+ 3F > e " /THP[m/T] Wi (yi)
0<p+m) T<1 =

where # = 3 min{o,1/e} > 0 and Py, (1) = p* +u.

e third term is the main part of our novel construction

e first and second terms are to apply Lipschitz properties
38 /42



e-Net Argument: Tomamichel-Tan’s Original Choice
Consider a binary-input binary-output channel W :{0,1} — {0,1}.

(1,0)

CAID P*

(0.1)"

[input probab. simplex]

(1,0)

(0,1)"

[output probab. simplex]
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Consider a binary-input binary-output channel W :{0,1} — {0,1}.

N &
multiplied by W (1,0)

CAOD P*W

(0.1)"

[input probab. simplex] [output probab. simplex]

Use a convex combination of the e-net: >, u(k)Q/.
39 /42



e-Net Argument: For Discretized Poisson Channels

Consider a (single-letter) discretized channel W, : {0,1} — {0,1}.

N

(1,0)

CAID P*

(0.1)°
[input probab. simplex]

(1,0)

(0,1)"

[output probab. simplex]
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N N
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e-Net Argument: For Discretized Poisson Channels

Consider a (single-letter) discretized channel W, : {0,1} — {0,1}.

(1,0)

get a projected e-net

CAOD P*W

put-up an e-net

(0,1) (0,1)

[input probab. simplex] [output probab. simplex]

Use a convex combination of the projected e-net: >, u(k)Q/

40/ 42



Why This Choice of Output Distn. and not TT137

e Recall that we chose

1 > P
Third Term of Q("(y) = 3F Z ENE /TH Pl 11 Wa(yi)
0<pr+m) T<1 =

4142



Why This Choice of Output Distn. and not TT137

e Recall that we chose

1 > P
Third Term of Q("(y) = 3F Z ENE /TH Pl 11 Wa(yi)
0<pr+m) T<1 =

e Need to control normalization constant F.

e By the sifting property of Ds, appears as log F bound on log M*.

41/42



Why This Choice of Output Distn. and not TT137

Recall that we chose

1 > P
Third Term of Q("(y) = 3F Z ENE /TH Pl 11 Wa(yi)
0<pr+m) T<1 =

Need to control normalization constant F.
By the sifting property of Ds, appears as log F bound on log M*.
By direct calculation

o0 00 T
F< Y emiT< 1+/ e ™ /T dm = 1+ % =O0(VT)
—0o0

m=—0o0

41/42



Why This Choice of Output Distn. and not TT137

Recall that we chose

1 > P
Third Term of Q("(y) = 3F Z ENE /TH Pl 11 Wa(yi)
0<pr+m) T<1 =

Need to control normalization constant F.
By the sifting property of Ds, appears as log F bound on log M*.

By direct calculation

o0 00 T
F< Y emiT< 1+/ e ™ /T dm = 1+ % =O0(VT)
—0o0

m=—0o0

Tomamichel-Tan's construction in the output distn. space cannot
handle the non-stationary W/.

41/42



Concluding Remarks

e Full understanding of third-order asymptotics for DMCs
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arXiv:1903.10438

Concluding Remarks

Full understanding of third-order asymptotics for DMCs
Second- and third-order asymptotics for the Poisson channel
log M*(T,Ac,e) = T C* + VT Vo7 1(e) + pr,
where 1
5 log T+ O(1) < pr <log T + O(1)
Different choices of output distributions.

Check out arXiv:1903.10438.
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