
Privacy-Preserving Sharing of Horizontally-Distributed
Private Data for Constructing Accurate Classifiers

Vincent Y. F. Tan
Department of Electrical Engineering and

Computer Science (EECS)
Massachusetts Institute of Technology (MIT)

Cambridge, MA 02139

vtan@mit.edu

See-Kiong Ng
Data Mining Department

Institute for Infocomm Research (I2R)
Singapore 119613

skng@i2r.a-star.edu.sg

ABSTRACT

Data mining tasks such as supervised classification can often
benefit from a large training dataset. However, in many ap-
plication domains, privacy concerns can hinder the construc-
tion of an accurate classifier by combining datasets from
multiple sites. In this work, we propose a novel privacy-
preserving distributed data sanitization algorithm that ran-
domizes the private data at each site independently before
the data is pooled to form a classifier at a centralized site.
Distance-preserving perturbation approaches have been pro-
posed by other researchers but we show that they can be
susceptible to security risks. To enhance security, we re-
quire a unique non-distance-preserving approach. We use
Kernel Density Estimation (KDE) Resampling, where sam-
ples are drawn independently from a distribution that is ap-
proximately equal to the original data’s distribution. KDE
Resampling provides consistent density estimates with ran-
domized samples that are asymptotically independent of the
original samples. This ensures high accuracy, especially
when a large number of samples is available, with low pri-
vacy loss. We evaluated our approach on five standard
datasets in a distributed setting using three different classi-
fiers. The classification errors only deteriorated by 3% (in
the worst case) when we used the randomized data instead of
the original private data. With a large number of samples,
KDE Resampling effectively preserves privacy (due to the
asymptotic independence property) and also maintains the
necessary data integrity for constructing accurate classifiers
(due to consistency).

1. INTRODUCTION
Consider the following scenario: A group of hospitals are

seeking to construct an accurate global classifier to predict
new patients’ susceptibility to illnesses. It would be use-
ful for these hospitals to pool their data, since data min-
ing tasks such as supervised classification can often benefit
from a large training dataset. However, by law, the hospi-
tals cannot release private/sensitive patient data (e.g. blood
pressure, heart rate, EKG signal, X-ray images). Instead,
some form of sanitized data has to be provided to a cen-
tralized server for training and classification purposes. It
is thus imperative to discover means to protect private in-
formation, while at the same time, be able to perform data
mining tasks with a masked version of the raw data. Can

privacy and accuracy co-exist?
In fact, in many application domains, privacy concerns

hinder the combining of datasets generated from multiple
sources despite the growing need to share sensitive data.
For example, military organizations may now need to share
sensitive security information for anti-terrorist operations,
financial institutions may need to share private customer
data for anti-money laundering operations, and so on. In all
these applications, the setting is a Distributed Data Mining
(DDM) scenario [20] in which the private data sources are
distributed across L ≥ 2 multiple sites. The L sites each con-
tain private information that should be shared or combined
as they are probably inadequate on their own. To protect
privacy, the data at each site must undergo randomization
locally to give sanitized data for sharing. The sanitized data
are pooled as a large training data set to construct an ac-
curate global classifier, as shown in Fig. 1. Note that unlike
other previous works [37], in our formulation, there is only a
one-way communication to the centralized server required.
This further minimizes potential security risks when dealing
with large number of sensitive datasets at distributed sites.

In this work, we consider a privacy-preserving distributed
data sanitization approach [3] for the purpose of construct-
ing accurate classifiers at the centralized site. Our work is
very closely related to privacy-preserving classification [22,
23]. Here we focus on randomizing the data at each site
independently before transmitting the data for construct-
ing a global classifier, which is similar to the horizontally
partitioned scenario presented in Du et al. [11]. Also, Lin-
dell and Pinkas [22] used Secure Multi-Party (or 2-party)
Computation techniques to compute a global decision tree
with a (secure) ID3 algorithm. Here, we seek a generic data
sanitization approach that can be applied to any classifica-
tion algorithms on numerical data. More recently, Liu et al.
[23] and Olivera et al. [27] discussed how random projection-
based multiplicative data perturbation can be used for the
privacy-preserving DDM scenario. This data perturbation
method has several nice properties, including being distance-
preserving, which ensures high accuracy in classification and
clustering. However, in section 4, we will show that the
distance-preserving property can present potential compro-
mises on security of the data. As such, in this work, we will
employ a non-distance-preserving randomization algorithm
for (i) randomizing (sanitizing) the data at the distributed
sites (ii) constructing an accurate classifier centrally.

We thus suggest Kernel Density Estimation (KDE) [28,
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Figure 1: Privacy-Preserving Distributed Data Min-
ing (DDM) Scenario with L ≥ 2 sites. x(l) and
y(l) contain the original and randomized data vec-
tors respectively. The Rl(·)’s are the (KDE Resam-
pling) nonlinear randomization operators such that
y(l) = Rl(x(l)). The collection y = {y(l)}

L
l=1 is to be

used as the training data for a global classifier. Test-
ing data samples are used for cross-validation of the
global classifier at the one centralized site. The non-
shaded and shaded cells contain private and random-
ized data respectively.

31, 32] Resampling. KDE Resampling is not new [8] but
it has hitherto not been applied to privacy-preserving data
mining, to the best of the authors’ knowledge. This method
possesses some very desirable properties, including asymp-
totic independence and consistency, which we will discuss
later. Other randomization methods in the literature [1, 2,
7, 23, 27, 37] do not possess these appealing properties. We
will exploit these properties to preserve privacy of the dis-
tributed data and ensure that the sanitized training samples
are still adequate for the construction of accurate classifiers.
Note that in our proposed approach, we do not publish the
data’s distribution/density, since the distribution is fully pa-
rameterized by the data records themselves and publishing
it would be akin to releasing the private data. Instead, we
only transmit the sanitized feature vectors to the central-
ized site. As shown in Fig. 1, the shaded cells contain the
randomized data to be transmitted to the centralized site
for the construction of a classifier.

The rest of the paper is structured as follows. In section 2,
we discuss in further detail some of the relevant work in san-
itization, privacy-preserving DDM and privacy-preserving
classification. In section 3, the problem will be formally
stated and mathematical notations defined. In section 4, we
play the role of a malicious intruder to illustrate the poten-
tial security risk in using distance-preserving perturbation
methods such as the random projection-based multiplicative
data perturbation method [23, 27]. KDE Resampling will
then be described in section 5. In the same section, we will
also discuss the two elegant properties of the samples pro-
duced by KDE Resampling. Following that in section 6, we
will define two performance metrics and explain the validity.
Section 7 details the evaluation experiments and summarizes
the main results. Finally, Section 8 concludes our discussion
and suggests directions for future work.

2. RELATED WORK
Atallah et al. [3] first considered data sanitization but the

work had mainly been applied to association rule mining.
Optimal sanitization is NP-hard [3]. We consider classifi-
cation in this work and a particular randomization method
that is computationally tractable.

The addition of randomly generated Independent and Iden-
tically Distributed (IID) noise to the original data was then
proposed [1, 2] for masking the private data. The authors
reconstructed the probability density function (PDF) of the
data for distribution-based data mining. In addition, they
constructed decision-trees based on the noisy data and found
that the classification results were similar to that using the
original data. Muralidhar et al. [25] comprehensively exam-
ined the statistical properties of noise addition.

However, such noise addition has since been shown to be
insecure [17, 19] and other methods have been proposed.
Chen et al. [7] proposed using a rotation-based perturba-
tion technique that ensures low accuracy loss for most clas-
sifiers. This perturbation technique was further extended
in two papers [23, 27] where the authors used a random
projection-based multiplicative data perturbation method
to perturb the data, while maintaining its utility. These two
papers described a randomization method that is distance-
preserving. However, it was shown by Caetano [5] that there
is data disclosure vulnerability in adopting these distance-
preserving approaches. We will further augment Caetano’s
argument in section 4 by showing that there can be other se-
curity risks with distance-preserving approaches. Thus, we
will adopt a non-distance-preserving randomization scheme
in this paper.

In Zhang et al. [37], an algebraic-based randomization ap-
proach was suggested but it involves multiple communica-
tion from the server to the sites. This makes it infeasible for
extremely large datasets and in scenarios where the commu-
nication channels may not be robust (e.g. military scenar-
ios). In our formulation, there is only a one-way commu-
nication to the centralized server (Fig. 1). We also do not
assume an underlying probability distribution that is para-
meterized, in contrast to Liew et al. [21]. In addition, we
generalize Liew et al. [21] to multiple dependent confidential
attributes by using multivariate densities.

Non-randomization approaches have been suggested as
well. In Sweeney’s papers [30, 34], k-anonymization was
proposed to generalize databases for preserving privacy. Du
et al. [11] approaches the privacy-preserving classification
problem from yet another perspective. Using Secure Multi-
Party Computation (SMC) techniques [4, 33, 36], parties
can collaborate to deduce a global classifier or regression
function or just a general function, like the sum. We will
not deal with SMC techniques in this paper as SMC is not as
efficient as randomization approaches [29]. However, the ob-
tained results are more accurate than sanitization methods.
SMC solutions [4] send and receive input from each of the
participating sites thus it is obvious that this method will
incur higher communication cost than randomization. For
SMC techniques to be collusion-resistant, significant com-
munication is required between the many sites, which make
this technique non-practical. Moreover, in SMC the num-
ber of participating sites are typically small, which is often
not the case in the distributed mining context where num-
ber of sites could be few hundreds to several thousands (e.g.
surveying, consumer browsing patterns etc.). For a detailed
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statistical analysis of computation overhead of SMC, the
reader is referred to Subramaniam et al. [33].

Yet another method in the literature concerns distrib-
uted clustering (unsupervised classification) in which the
authors chose local models before combining them to give a
global model via optimization of information theoretic quan-
tities [24]. We focus on supervised classification here, but
our method can be extended for clustering applications.

As mentioned, we will be adopting a technique known
as KDE Resampling [8]. This method has many appealing
properties, including asymptotic independence and consis-
tency, which will be fully explained in section 5. Besides
these two appealing properties, Indyk and Woodruff [18]
also demonstrated that sampling achieves perfect privacy in
2-party polylog-communication L2 distance approximations.
Motivated by promising nature of sampling, we explore its
properties when applied to a distributed scenario and the
subsequent construction of classifiers.

In terms of evaluation metrics, privacy has typically been
measured using mutual information [1] as well as privacy
breaches [13]. Mutual information is an average measure
of disclosure while privacy breaches examine the worst-case
scenario. Because of our Distributed Data Mining (DDM)
setting, we will measure privacy in this paper using a new
metric – the Distributed Aggregate Privacy Loss, DAPL,
which is related to the mutual information. Our measure
is advantageous because it explicitly takes into account the
distributed nature of the data mining scenario. Moreover,
the privacy breach measure was primarily used in the con-
text of association rule mining [14] while in this paper, we
are concerned with supervised classification using the sani-
tized data from the L independent data sites.

3. PROBLEM DEFINITION AND NOTATION
We represent the storage of private information in the

form of d-dimensional real row vectors x1, . . . ,xN , where N
is the number of individuals (subjects) and d is the number
of attributes. These row vectors can be vertically concate-
nated into a N × d matrix x such that

x
4
=

2
64

x1

...
xN

3
75 =

2
64

x11 . . . x1d

...
. . .

...
xN1 . . . xNd

3
75 . (1)

These N individuals are associated with N targets (class
labels) t1, . . . tN . The class labels are typically not regarded
as sensitive/private data [2, 37] and thus they do not have
to be randomized.

We then assume that there are L (for 2 ≤ L ≤ N) dis-
tributed data sites (private) and 1 centralized (untrusted)
server (Fig. 1), where the sanitized data are sent to for con-
structing an accurate classifier using the combined training
data. Each data site possesses the private information of
Nl individuals, with

PL
l=1 Nl = N . As in Fig. 1, we use the

notation x(l) for the Nl×d matrix that contains the Nl data
vectors at site l. Thus,

x(l)
4
=
�

xT
(l,1) . . . xT

(l,Nl)

�T
, 1 ≤ l ≤ L, (2)

where x(l,j) for 1 ≤ j ≤ Nl is a sample vector at site l. Thus,
x can alternatively be written as

x =
�

xT
(1) . . . xT

(L)

�T
. (3)

Furthermore, we assume that the row vectors in x(l) are

drawn from IID random vectors with PDF fX(l)

�
x(l)

�
. We

seek to find a randomization scheme for site l, Rl such that

y(l) = Rl(x(l)), 1 ≤ l ≤ L. (4)

and Rl : R
Nl×d → R

Ml×d is the nonlinear randomization
operator that maps Nl row vectors in x(l) to Ml row vectors

in y(l). y = {y(l)}
L
l=1 is then sent to the centralized server,

along with the N associated with targets t1, . . . , tN , where
classification can then be done using randomized data as
training samples1. The centralized server will use the pooled
randomized/sanitized data as training samples to build a
classifier. We will show that the classification results using
these randomized data as training samples are compatible
to the classification results using the original private data
as training samples. Before that, let us first examine why
distance-preserving approaches may be vulnerable to attacks
by malicious intruders.

4. RISK OF DISTANCE-PRESERVING RAN-

DOMIZATION
In this section, we play the role of a malicious attacker and

attempt to deduce information such as the bounds on pri-
vate data sanitized with a distance-preserving perturbation
method such as the random projection-based multiplication
method [7, 23, 27]. Caetano [5] had showed previously that
the randomized data can be vulnerable to disclosure. We
will further augment his argument with two lemmas here.

Lemma 4.1. Assume a Distributed Data Mining (DDM)
scenario with L = 2 sites which contain private data ma-
trices x(1) and x(2) respectively. Upon randomization using
the random projection-based multiplicative data perturbation
method2, we get y(1) = Rx(1) and y(2) = Rx(2) respectively.
Let the matrix x(1) have the structure as follows:

x(1)
4
=
�

x̃(1,1) . . . x̃(1,d)

�
(5)

and its columns x̃(1,i1) to be defined as

x̃(1,i1) =
�

x̃(1,i1,1) . . . x̃(1,i1,N1)

�T
, 1 ≤ i1 ≤ d (6)

Let the other matrices x(2), y(1) and y(2) have similar struc-

tures. Further, suppose we have ̂‖x̃(2,i2)‖, an estimate of the

norm3 of the i2
th column of x(2) for any 1 ≤ i2 ≤ d , then

‖x̃(1,i1)‖ ≥ γ1, (7)

for all 1 ≤ i1 ≤ d, where γ1 > 0 is a constant.

All proofs can be found in the Appendix. Lemma 4.1, gives
us a lower bound for the norm of all the columns of the
matrix x(1), given an estimate of just one column of the
matrix x(2). Clearly, there is an obvious security risk, espe-
cially if the private values are susceptible to being leaked.
Lemma 4.2 builds on this to infer a lower bound on any
private data value given other data values.

1Note that random vectors are denoted in boldface upper
case and the realization is denoted is boldface lower case.
For e.g. , X(l) is a random vector and its realization is x(l).
2In [23], R ∈ R

K×N , a random matrix was used to perturb
the data via a linear transformation to a lower-dimensional
subspace i.e. K < N .
3Any valid lp (for p ≥ 1) norm can be used.
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Lemma 4.2. Assume exactly the same DDM scenario as
in Lemma 4.1 and that we have estimates for all the elements
of x̃(1,i1) except the qth element x̃(1,i1,q) i.e. we are given the
set

Ai1,\q = {x̃(1,i1,k)|x̃(1,i1,k) ∈ x̃(1,i1), k 6= q}. (8)

Then, ��x̃(1,i1,q)

�� ≥ γ2, (9)

for all 1 ≤ q ≤ N1, where γ2 > 0 is a constant.

Lemma 4.2 shows that if a malicious attacker were to obtain
estimates of data values except the qth element for the data
vectors in any of the d dimensions, he or she will be able
to infer lower bounds on the private data value he does not
possess i.e. |x̃(1,i1,q)|. This is a potential security breach.
Intuitively, there is such a breach because along with the
preservation of distances, the ‘ordering’ of the samples is
also preserved. This reasoning (and lemmas) can be ex-
tended to the case where L > 2. Together with Caetano’s
argument [5], there is clearly a need for a new randomiza-
tion method for privacy-preserving classification that is not
distance-preserving. In light of the limitations of the addi-
tive method [1, 2, 25] and the random projection pertur-
bation method [7, 23, 27], in this work, we will use KDE
Resampling, which is a non-distance-preserving randomiza-
tion algorithm, for data sanitization.

5. KDE RESAMPLING FOR DATA SANITI-

ZATION
In this section, we will detail KDE Resampling and discuss

some elegant and useful properties of the randomized sam-
ples. We will also comment on its computational tractability
and compare it to the more inefficient SMC methods [22].

5.1 Resampling from reconstructed PDF
For each of the L data sites (refer to Fig. 1), we will gen-

erate Ml independent vectors in y(l) with approximately the
same density as the original Nl vectors in x(l). Ml and Nl

do not necessarily have to be equal. The algorithm takes
place in two steps. Firstly, we will approximate the PDF
of the vector in x(l) using Parzen-Windows Estimation [28]
also known as KDE [10, 31, 32]. Then we will sample Ml

vectors from this PDF, which we denote y(l).

5.1.1 Kernel Density Estimation

As mentioned, for data site l, we will construct the multi-
variate PDF using the Nl vectors in the Nl × d matrix x(l),
which we denote x(l,1), . . . ,x(l,Nl). This is given by

f̂X(l)

�
x(l);x(l,1), . . . ,x(l,Nl)

�
=

1

Nl

NlX
j=1

K
�
x(l) − x(l,j);hl

�
,

(10)
where K

�
x(l) − x(l,j);hl

�
is the Epanechnikov4 (a truncated

quadratic) kernel parameterized by hl, the vector of band-
widths. In one dimension, K is given by

K1(x; h) = c h−1

�
1−

�x

h

�2
�

I{|x| ≤ h}, (11)

where c is the normalizing constant. The multivariate ver-
sion of the Epanechnikov kernel is a straightforward gen-
eralization by taking products of the univariate kernel in
4The Epanechnikov kernel is optimal in the l2 sense [8].

Figure 2: Illustration of KDE approximation for es-
timation of the multimodal PDF. The boxes show
the N = 7 independent realizations of the multi-
modal random variable. The individual Epanech-
nikov kernels (h = 1.75) are centered at the real-
izations. Their sum, as detailed in Eq (10), is the
Kernel Density Estimate (KDE), which is the sum
of the Epanechnikov kernels.

Eq (11). K (·;hl), a scalar kernel function, has to satisfy
the following properties for Eq (10) to be a valid PDF [15].

K (x;hl) ≥ 0, ∀x ∈ R
d,

Z
Rd

K (ξ;hl) dξ = 1. (12)

Example An illustration of how the univariate KDE works
for N = 7 is shown in Figure 2. The kernels are centered
on the realizations of the multi-modal random variable and
the sum is an approximation to the true PDF. Notice that,
consistent with intuition, more probability mass is placed
in areas where there are more realizations of the random
variable.

The selection of the bandwidth vector hl ∈ R
d is a very

important consideration in any KDE and will be discussed
in section 5.2.1. For optimal performance and accuracy of
the KDE, hl is to be a function of the number of samples
Nl. We note that the Kernel Density Estimate in Eq (10) is
a function of x(l) and it is parameterized by the realizations
of IID random vectors x(l,1), . . . ,x(l,Nl) present at site l.
Thus, the distribution cannot be published. Instead, we
will transmit the Ml randomized data vectors from site l to
the centralized site for the construction of a classifier.

Remark For the sake of convenience, we chose Ml and Nl

to be equal. However, in practice, they do not have to be
equal. In fact, one can sample fewer data vectors than Nl,
for example to choose Ml = Nl/2. From our experiments,
the classification results do not change significantly when
Ml = Nl/2. We refer the reader to Devroye’s book [9, Chap-
ter 14] for a more rigorous treatment on the selection of Ml.

We will subsequently abbreviate the estimate of the true

PDF by f̂l
4
= f̂X(l)

�
x(l);x(l,1), . . . ,x(l,Nl)

�
and the true PDF

by fl
4
= fX(l)

�
x(l)

�
.

5.1.2 Resampling

Equipped with the non-parametric estimate of the true
PDF f̂l, we will then sample from this PDF to obtain Ml

independent samples y(l,1), . . . ,y(l,Ml). Noting that the ran-

dom vector X(l) = (1/Nl)
PNl

j=1 X(l,j) is a mixture density –
it does not have to be constructed explicitly before random
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samples are taken. Instead we will sample for a random
integer r from 1 to Nl. Following that we will sample a
random vector from the rth kernel K

�
x(l) − x(l,r);hl

�
. The

resampling algorithm is summarized in Algorithm 1.

KDE Resampling Algorithm

Data : x(l,1), . . . ,x(l,Nl) for all 1 ≤ l ≤ L

Result: y(l,1), . . . ,y(l,Ml) for all 1 ≤ l ≤ L

for l← 1 to L do
for i← 1 to d do

σ̂l,i = Standard deviation in dimension i;
hl,i = Bandwidth in dimension i (c.f Eq (16));

endFor
for j ← 1 to Ml do

r = Random integer from 1 to Nl inclusive;
y(l,j) = Random sample vector from rth

Epanechnikov kernel K
�
y(l,j) − x(l,r);hl

�
;

endFor
endFor

Algorithm 1: KDE Resampling

5.2 Discussion
In any privacy-preserving data mining research, the two

key questions are: Has privacy been preserved? Can the
randomized vectors be used for data mining purposes? In
this section, we will state some very important and salient
results from [10]. These results show that the randomized
samples y(l) at each of the L sites are asymptotically in-
dependent of the original samples x(l) at the respective L
sites. Also, the KDE is consistent. We will explain why
these two properties are desirable in subsequent sections.
We will explain that privacy can indeed be preserved while
the randomized samples can be employed for data mining.

5.2.1 Asymptotic Independence

Asymptotic independence implies that the randomized
samples are independent of the original samples as the num-
ber of samples Nl tends to infinity. If the joint density of
X(l) and Y(l) is denoted as fX(l),Y(l)

�
x(l),y(l)

�
and the mar-

ginals as fX(l)

�
x(l)

�
and fY(l)

�
y(l)

�
, then asymptotic inde-

pendence can be expressed mathematically as

lim sup
Nl→∞

|∆Nl
| = 0, (13)

where the difference between the joint and product of the
marginals is defined as

∆Nl

4
= fX(l),Y(l)

�
x(l),y(l)

�
− fX(l)

�
x(l)

�
fY(l)

�
y(l)

�
, (14)

and the supremum in Eq (13) is over all possible realizations
of x(l) and y(l).

Another important point is that asymptotic independence
is dependent on how we select the bandwidth vector hl in
Eq (10). If hl, a function of Nl, satisfies

hl,i
P
−→ 0, and Nlh

d
l,i

P
−→∞, (15)

as Nl →∞ then asymptotic independence will be achieved [10].
Note that hl,i is the ith element of the bandwidth vector hl.

In our experiments, we are going to use the Scott’s ‘rule-of-
thumb’ [31] to select hl. Thus,

hl,i =

�
4

d + 2

�1/(d+4)

N
−1/(d+4)
l σ̂l,i, (16)

where σ̂l,i is the unbiased estimate of the standard deviation
in the ith dimension at the lth site. Scott’s ‘rule-of-thumb’
satisfies both the asymptotic conditions and thus, we have
asymptotically independent samples. Since the samples are
asymptotically independent, probabilistic inference cannot
be performed based on the randomized samples y(l) if Nl

is sufficiently large. This is very often the case in practical
data mining scenarios, where datasets are extremely large.
Privacy will thus be preserved.

Another way to illustrate this is using the privacy loss
measure based on mutual information [1]. Indeed, if Nl is
sufficiently large (like in most practical data mining appli-
cations), the mutual information I(x(l);y(l)) will be close
to zero (because of asymptotic independence) and thus, the

privacy loss P
�
x(l);y(l)

�
= 1−2−I(x(l);y(l)) will also be low.

In section 6, we will define a new privacy metric, DAPL, and
argue that the asymptotic independence of the randomized
samples will result in low privacy loss when a large number
of samples are available. This property ensures that KDE
Resampling is especially effective for preserving the privacy
of large datasets i.e. large Nl’s.

5.2.2 Consistency of KDE

It is well known [10, 32] that the KDE f̂l, as defined in
Eq (10) is consistent i.e.

lim
Nl→∞

E

�Z ���f̂l − fl

���� = 0, 1 ≤ l ≤ L, (17)

if the asymptotic conditions in Eq (15) are satisfied. This
means that as the number of samples at each site Nl becomes
large, the KDE f̂l(·) becomes increasingly accurate. This
property is important and useful because we can treat the
collection of randomized samples at all the L sites {y(l)}

L
l=1

as the training data for supervised classification purposes
since the distribution it is drawn from is consistent.

Remark We note that because of resampling, our random-
ization algorithm does not suffer from the problems of [7, 23,
27] that were highlighted in section 4 – namely that of being
able to derive bounds on private data given other (relevant)
private information. This is one of the key advantages of
our novel randomization technique as it removes the inher-
ent ordering of the feature vectors by resampling randomly.

5.2.3 Low Computational Complexity

The random vector X(l) = (1/Nl)
PNl

j=1 X(l,j) is a mixture
density with Nl components. Thus, we do not need to con-
struct the full KDE. This is typically the bottleneck for any
algorithm that uses the Kernel Density Estimate (KDE).
Thus the randomized vectors can be obtained simply by:

1. First, estimating the kernel bandwidths hl,i, ∀(l, i) ∈
{1, . . . , L} × {1, . . . , d} using Eq (16).

2. Generating a random (integer) index r from 1 to Nl.

3. Then drawing a random sample vector from the rth

multivariate Epanechnikov kernel.
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This is detailed more precisely in Algorithm 1. Each step
in the algorithm is tractable. There is no multi-way com-
munication between the parties, unlike in SMC [33, 36]. In
conclusion, the KDE Resampling algorithm is computation-
ally feasible.

5.2.4 Possible Application to Horizontally or Verti-
cally Partitioned Data

We have presented a randomization algorithm for the pur-
pose of randomizing horizontally partitioned data over L
sites. The extension to the vertically partitioned scenario,
where different sites hold different attributes, is not trivial
unless attributes are assumed to be independent as in [35].
KDE Resampling requires multiple full data vectors to be
most effective and accurate.

6. PERFORMANCE METRICS
For evaluation, the two performance metrics that we will

use to quantify privacy and accuracy are the Distributed Ag-
gregate Privacy Loss DAPL and the Deterioration of Clas-
sification φ respectively.

6.1 Distributed Aggregate Privacy Loss DAPL
The privacy loss is a function of mutual information [1],

which depends on the degree of independence between the
randomized samples and the original samples. We have de-
cided to design our privacy metric based on mutual informa-
tion because the task we are handling is supervised classifi-
cation. In Evfimievski [13], the notion of security breach was
raised. In this work, we focus more on privacy loss, which
is an average measure of privacy disclosure. Moreover, the
privacy measures proposed by the same paper were more ap-
plicable to association rule mining [14]. Thus, in this paper,
we use DAPL, which is intimately related to mutual infor-
mation. Mutual information measures the average amount
of information disclosed when the randomized data is re-
vealed. Indeed, [8] also mentioned that

“. . . for the sake of asymptotic sample indepen-
dence, it suffices that the expected l1 distance
between [f̂l] and [fl] tends to zero with [Nl].”

Because expected l1 distances provide us with the degree of
independence, we will define our privacy loss as a weighted
average of expected l1 distances.

Definition The Distributed Aggregate Privacy Loss DAPL
is defined as half of the weighted average of the expected l1
distance between the estimate f̂l and fl, over the L sites.
That is,

DAPL
4
=

1

2

 
LX

l=1

cl E

�Z ���f̂l − fl

����
!

, (18)

where cl
4
= Nl/N for 1 ≤ l ≤ L is the proportion of samples

at site l. Clearly, 0 ≤ DAPL ≤ 1.

The DAPL is low (≈ 0) when privacy loss is low and vice
versa. Finally, we emphasize that our privacy loss metric
DAPL is related to, but not exactly identical to, the pri-
vacy loss metric defined in [1]. The difference is in our con-
sidering of the distributed scenario here. Furthermore, we
also measure the degree of independence using the expected
l1 distance between f̂l and fl as opposed to using mutual

information. Since the l1 distance → 0 as Nl → ∞ [32],
the asymptotic independence property ensures low DAPL
when Nl is large.

We emphasize that Eq (18) is a reasonable privacy mea-
sure because independence of the original and randomized
data samples is measured in terms of expected l1 distances
between the original density and the KDE [8].

Example For an intuitive feel of Eq (18), let us consider a
single site with Nl samples. Suppose Nl is large, then an ac-
curate KDE will be constructed. Subsequently, because we
sample from a randomly chosen kernel (out of the Nl ker-
nels whose means are the original data vectors), the resulting
randomized data vectors will be approximately independent
of the original samples. On the other hand, suppose Nl is
small, say only two samples, then the resulting randomized
data vectors will be strongly dependent on the positions, in
R

d, of the two original samples, resulting in less ‘random-
ness’ and greater privacy loss. Another relevant paper by
Dwork [12] applies the definition of differential privacy to
the case of distributed computations, much like our paper.

6.2 Deterioration of Classification φ

In any supervised classification algorithm, the usual per-
formance metric is the probability of error, which is also
known as the classification error and is defined as [16]

P (err)
4
= 1−

|C|X
i=1

Z
Ωi

p (ξ|Ci) P (Ci) dξ, (19)

where P (Ci) is the prior probability (known a priori) of class
Ci and

R
Ωi

p (ξ|Ci) P (Ci) dξ is the conditional probability of

correct classification5 for given the sample is from Ci. |C|
denotes the total number of classes.

Definition The Deterioration of Classification φ is defined
as:

φ
4
= Prand(err)− Pori(err), (20)

where Pori(err) (resp. Prand(err)) is the classification error
using the original (randomized) samples as training data.

Clearly, the closer φ is to zero, the greater the utility of the
randomized samples and the higher the accuracy. So, we
want φ to be as small as possible.

7. SIMULATION RESULTS
In this section, we will detail the classification experiments

on five diverse datasets with continuous, numerical values
using three different classifiers. We will consider the distrib-
uted setting in Fig. 1. We will empirically show that the
classification error is invariant to original and randomized
data being used as training examples.

7.1 Experimental Setup of Distributed Setting
In all our experiments, we consider a distributed scenario

(like in Fig. 1) with L sites, where L is taken over a range of
integers. Hence, suppose there are N data points (and N is a
multiple of L), then each site will contain Nl = N/L points.
If N is not a multiple of L, minor adjustments are made.
Each of the Nl data points at the L sites are randomized

5Also known as a ‘hit’ in the detection theory literature.
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Dataset #Class #Dim(d) #Trg(N) #Test
Iris 2 4 120 30

SVMGuide1 2 4 3089 4000
Diabetes 2 8 576 192

Breast-Cancer 2 10 512 171
Ionosphere 2 34 263 88

Table 1: Our five datasets from LIBSVM and the
UCI Machine Learning Repository.

using the algorithm detailed section 5. The data is then
pooled to the centralized site for the construction of various
classifiers. The classification accuracy is compared to the
baseline – the result when the data is not randomized.

7.2 Datasets
We obtained five numerical datasets from LIBSVM [6] and

the UCI Machine Learning Repository [26]. These are sum-
marized in Table 1. These include the common Iris Dataset
and the more difficult Pima Indians Diabetes Dataset.

We pre-process the data by normalizing the values in each
dimension to the interval [−1, 1] before the randomization
and classification processes. As mentioned in the above sec-
tion, for each dataset, we performed the randomization fol-
lowed by classification using a different number of sites L.
For example, for the Iris dataset6 (see Figure 3), L was cho-
sen to be from 1 to 4.

For the purpose of validating the classification accuracy,
the raw data (except for the SVMGuide1 dataset7) was ran-
domly split into a training set (≈75%) and a testing set
(≈25%). This is also commonly-known in the literature as
random subsampling 4-fold cross-validation. For consistent
results, we averaged the classification errors over 100 inde-
pendent random seeds.

Finally, the number of vectors we resampled Ml is the
same as the number of original vectors Nl at all L sites.
However, as argued in section 5.1, Ml does not have to be
the same as Nl. For brevity, we only report the case where
Ml = Nl in this section. However, an obvious advantage of
using a fewer number of samples is reduction in complexity.

7.3 Classification Techniques
We used three standard classification techniques on the

combined randomized data from the L sites y(1), . . . ,y(L)

and the original data in x. These techniques include:

1. Artificial Neural Networks (ANN) by trained by error
backpropagation.

2. k-Nearest Neighbors classifier (kNN) with k = 11.

3. Näıve Bayes classifier (NB) with each attribute or di-
mension (d) assumed to follow a Gaussian distribution.

The details of these classification techniques can be found
in any standard pattern classification text. See for instance
[16].
6For the Iris dataset, we merged the Setosa and the Versi-
colour classes into one single class so that we have a binary
classification problem. Even though all of our analysis can
be extended to the multi-class scenario, it seems not too
relevant for the questions addressed here.
7SVMGuide1 had already been partitioned into training and
testing data a priori [6] and thus we use the given partition-
ing to test the classifiers constructed.

Dataset ANN kNN NB
Iris 0.0352 0.0346 0.1230

SVMGuide1 0.0389 0.0328 0.0695
Diabetes 0.2441 0.2611 0.2263

Breast-Cancer 0.0312 0.0214 0.0396
Ionosphere 0.1255 0.1522 0.0000

Table 2: Pori(err) using original data x as training
samples for various classification techniques. Refer
to Figs. 3 to 7 for φ = Prand(err)− Pori(err).

Figure 3: Iris; (a) Deterioration of Classification φ
(Key: x - ANN, o - kNN, + - NB); (b) Distributed
Aggregate Privacy Loss DAPL (Key: x - Class C1, o
- Class C2); L was chosen to be from 1 to 4 for the
commonly-encountered Iris dataset. Note from (a)
that φ increases as L is increased, as the number of
data records Nl at each site is reduced. However, the
Deterioration of Classification φ is less than 3% and
in this case, the Näıve Bayes classifier (+) performs
the best (least deterioration). DAPL increases as the
number of sites L increases because there are fewer
samples at each site (cf. example in section 6.1).

First, we used the above three classification techniques
to obtain initial classification results on the original data
samples. These are shown in Table 2. These results, denoted
Pori(err), will be compared to Prand(err), the classification
results on the randomized samples in a distributed setting
with L sites. The basis for comparison is their difference

φ
4
= Prand(err)− Pori(err) (cf. section 6.2).

7.4 Results of Distributed Experiments
The results are shown in Figures 3 to 7. Sub-figures

(a) show the values of the Deterioration of Classification
φ, which is defined in Eq (20). The three lines show φ for
different classification techniques ANN (in crosses – x), kNN
(in circles – o) and NB (in plusses – +). We plot the Dis-
tributed Aggregate Privacy Loss DAPL for the two classes
in sub-figures (b) (in crosses – x and circles – o). From the
plots, we made the following observations.

The classification errors Prand(err) and Pori(err) are close.
This can be seen from sub-figures (b) for each of the five
datasets, where φ deviates from zero by at most only 3%.
In general, Näıve Bayes (NB) and Artificial Neural Networks
(ANN) perform better as compared to k-Nearest Neighbors
(kNN) as the Deterioration of Classification φ is closest to
zero for all the datasets for NB and ANN.
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Figure 4: SVMGuide1; (a) Deterioration of Classi-
fication φ (Key: x - ANN, o - kNN, + - NB); (b)
Distributed Aggregate Privacy Loss DAPL (Key: x
- Class C1, o - Class C2); The SVMGuide1 dataset
describes an astroparticle application. For this
dataset, we observe that the φ does not increase
significantly across L. There is little correlation be-
tween the number of sites L and the classification
errors Prand(err) or the Deterioration of Classifica-
tion φ. Comparing the results in (a) with Table 2,
we observe that the deterioration is not too severe.
However, as expected, Privacy Loss DAPL increases
as the number of sites L increases for the same rea-
son as stated in the caption for the Iris dataset.

Figure 5: Diabetes; (a) Deterioration of Classifi-
cation φ (Key: x - ANN, o - kNN, + - NB); (b)
Distributed Aggregate Privacy Loss DAPL (Key: x
- Class C1, o - Class C2); The diabetes dataset ex-
hibits the same characteristics as the SVMGuide1
dataset. However, in this case, it is somewhat sur-
prising to note that in most cases, the ANN clas-
sifier constructed based on the randomized samples
results in a lower classification error as compared to
the one constructed based on the original samples.

Figure 6: Breast-Cancer; (a) Deterioration of Clas-
sification φ (Key: x - ANN, o - kNN, + - NB);
(b) Distributed Aggregate Privacy Loss DAPL (Key:
x - Class C1, o - Class C2); For the Breast-Cancer
dataset, the Deterioration of Classification φ stays
fairly constant across all L. Indeed, the NB classi-
fier (+) constructed based on the randomized sam-
ples is better (improves by 1%) than the classifier
constructed using the original samples. Again, we
observe that, as expected, Privacy Loss DAPL in-
creases as L increases because the number of sam-
ples at each site Nl decreases.

Figure 7: Ionosphere; (a) Deterioration of Classifi-
cation φ (Key: x - ANN, o - kNN, + - NB); (b)
Distributed Aggregate Privacy Loss DAPL (Key: x
- Class C1, o - Class C2); In this dataset, we observe
that the ANN classifier constructed based on the
pooled randomized data samples from L sites results
in a smaller classification error. The kNN classifica-
tion technique does results in a worse classification
error but, in the worst case, the performance does
not deteriorate by more than 3%. Compared with
the baseline in Table 2, we see that this deteriora-
tion is not too severe.
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Except for the Iris dataset, there is no correlation between
the number of sites L and the classification errors Prand(err)
or the Deterioration of Classification φ. Consequently, the
randomized data is still amenable to data mining tasks irre-
gardless of L. This is because of the consistency of the KDE
as discussed in section 5.2.2.

Finally, from sub-figures (b), we observe that there is a
general increasing trend for the DAPL. This is because as
the number of sites L increases, the number of individuals
at each site Nl decreases. Consequently, the expected l1
difference between the the original and reconstructed PDFs
increases and the privacy loss DAPL also increases. Thus,
with the use of KDE Resampling, there is a compromise
between L and DAPL. The DAPL can be further reduced
by improving the simple sampling algorithm suggested in
Algorithm 1. This can be done by improving selection of
the optimal of hl [31, 32] by possibly optimizing over non-
diagonal bandwidth matrices, which enhances generality but
increases complexity.

8. CONCLUSIONS
In this paper, we have suggested a novel method for data

sanitization for the purpose of sharing private data at dis-
tributed data sites for constructing a classifier. In our setup,
we are provided with Nl data records at each site and we
apply the randomization algorithm at each site independent
of other sites. Then the data is pooled together for classifi-
cation at the centralized site. As mentioned in the introduc-
tion, this problem has ramifications in a variety of settings,
including the sharing of patients’ private records and for
collaborations across military or financial organizations for
various security operations.

We employed Kernel Density Estimation (KDE) Resam-
pling to sample for new, representative data vectors given
the original private data. Our experiments on five datasets
conducted in a distributed data setting illustrate that re-
sampling provides sanitized/randomized data samples that
can be adequately employed for a particular data mining
task – supervised classification. In summary, our data san-
itization algorithm has the following advantages over some
existing approaches for privacy-preserving classification.

KDE Resampling provides samples that are asymptoti-
cally independent and the KDE is consistent. We have ex-
plained, that the former ensures low privacy loss, while the
latter preserves the data’s integrity and hence, its utility.

We have shown that the classification errors using the ran-
domized data collated from the distributed sites as training
samples differs from that using the original data as training
samples by less than 3% for all the datasets. We have also
shown that various data mining algorithms can be applied
on the randomized training data.

In contrast to random projection-based multiplicative data
perturbation methods [7, 23, 27], a malicious intruder can-
not establish bounds on the private data using KDE Re-
sampling. In fact, Caetano [5] also argued that random
projection-based randomization may be susceptible to dis-
closure. KDE Resampling thus ensures greater security as
it involves an element of random swapping, which enhances
privacy by losing the ordering of the feature vectors.

In contrast to [37], our framework as shown in Figure 1
does not involve multi-way communication from the central-
ized server to the individual sites and vice versa. Since our
technique involves only a one-way communication from the

sites to the server, it is feasible for large datasets. Besides,
one-way communication reduces the risk of inadvertent dis-
closure of private data.

Although SMC techniques may provide better privacy pro-
tection and accuracy as compared to randomization meth-
ods, they suffer from inefficiency [22, 29, 33]. Our algorithm
generates samples in an efficient fashion, because each step
of the algorithm is tractable and there is no need for multi-
way communication.

Finally, we hope to re-examine the issue of the privacy
metric. Since DAPL only looks at the l1 distances between
the two distributions the point-wise distance can be rather
significant. Thus, the privacy of any individual may be com-
promised, without the knowledge of whether the data vector
happens to belong to the set with unusually high distance
between the two distributions. Though the probability of
this event may be low, it is precisely the privacy of out-
liers that we ought to protect. Another point worth noting
is the following – our assumption that the data records is
generated from IID random variables is may not be entirely
realistic in some practical applications. We hope to relax
this assumption in our future research.
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APPENDIX

A. PROOFS OF LEMMAS 4.1 AND 4.2

Proof. Since the random projection-based multiplica-
tive data perturbation method is orthogonal on expecta-
tion [23], E

�
YT

(1)Y(2)

�
= xT

(1)x(2), the columns are also or-

thogonal on expectation i.e. E

h
ỸT

(1,i1)Ỹ(2,i2)

i
= x̃T

(1,i1)x̃(2,i2)

for all 1 ≤ i1, i2 ≤ d. Using the Cauchy-Schwarz Inequality,
we have x̃T

(1,i1)x̃(2,i2) ≤ ‖x̃(1,i1)‖‖x̃(2,i2)‖. Since we are also

given ̂‖x̃(2,i2)‖, we can bound ‖x̃(2,i2)‖,

‖x̃(1,i1)‖ ≥
E

h
ỸT

(1,i1)Ỹ(2,i2)

i
̂‖x̃(2,i2)‖

4
= γ1, (21)

This yields Eq (7). Lemma 4.2 follows directly from Lemma 4.1
by subtracting elements contained in the set Ai1,\q as de-
fined in Eqn (8).


