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Nonnegative Matrix Factorization (NMF)
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nonnegative coefficient matrix H > 0 such that
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@ Given a data matrix V > 0, find basis matrix W > 0 and a
nonnegative coefficient matrix H > 0 such that

V =~ WH,

by solving a nonconvex problem

N
i D(V|WH) £ Wh
wn (V[WH) nz::ld(vn” )

@ The non-subtractive, parts-based basis representation makes it
attractive for data analysis.
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Nonnegative Matrix Factorization (NMF)

o NMF provides an unsupervised linear representation of data
V ~ WH

@ Other methods include

e Principal component analysis (PCA)

o Independent component analysis (ICA)

@ Nonnegative matrices W and H are both learned from the set of data
vectors V = [vi,...,Vp, ..., vp]
e Nonnegativity of W ensures interpretability of dictionary

o Nonnegativity of H tends to produce parts-based representations
because subtractive combinations are forbidden
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PCA dictionary with K = 25
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NMF dictionary with K =
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From Lee and Seung's seminal 1999 paper on NMF

6

33
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e When the observation noise is non-Gaussian, other divergence should
be used for purpose of ML estimation.

o When outliers exist in the data matrix V, robust loss functions should
be used.
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@ NMF algorithms with squared-/, loss have limited applications.
e When the observation noise is non-Gaussian, other divergence should
be used for purpose of ML estimation.
o When outliers exist in the data matrix V, robust loss functions should
be used.

@ In Batch NMF, the entire data matrix V is available all at once.
Algorithms have been proposed for many divergences, but not suitable
for large-scale data.

@ In Online NMF, data points v, arrive sequentially.
Algorithms developed so far are mainly confined to the squared-/;
loss. Exceptions include some ad hoc works that
@ have no convergence guarantees;
@ are not easily generalizable

@ How to develop an online NMF algorithm that is applicable to a wide
variety of divergences?
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Challenges and Contributions

e Many online NMF algorithms (with the squared-¢; loss) leverage the
stochastic majorization-minimization framework.

@ This framework crucially relies on that some sufficient statistics can
be formed, but this condition does not hold for most divergences
other than the squared-#» loss.

@ We leverage another framework called stochastic approximation
framework to develop an online NMF algorithm that is applicable to a
wide variety of divergences.
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Divergences in Consideration

In this work, we consider a wide range of divergences D £ D; UDy, where
Dy 2 {d(-||-)|Yx € RE,, d(x||-) is differentiable on Ri+}.
and

Dy 2 {d(-|-)|¥x € RE,,d(x]-) is convex on RE , }.



Examples of Divergences

@ D; contains the families of «, 3, a-f and ~ divergences;

@ D, contains the a-divergences, S-divergences with § € [1,2], several
robust metrics including ¢1, ¢> and Huber loss
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Examples of Divergences

@ D; contains the families of «, 3, a-f and ~ divergences;

@ D, contains the a-divergences, S-divergences with § € [1,2], several
robust metrics including ¢1, ¢> and Huber loss

Table 1: Expressions of some important cases of Csiszar f-divergence

{1 distance Z,- Ixi — yil
a-divergence (o € R\ {0,1}) ﬁ > (y,- [(f) —1] — Ot(Xi—y:'))
Hellinger distance (o = 1) 2> (VX — i)
KL divergence (o — 1) > xilog(xi/yi) — xi+yi

10/33



Examples of Divergences

@ D; contains the families of «, 3, a-f and ~ divergences;

@ D, contains the a-divergences, S-divergences with § € [1,2], several
robust metrics including ¢1, ¢> and Huber loss

Table 1: Expressions of some important cases of Csiszar f-divergence

{1 distance Z,- Ixi — yil
a-divergence (o € R\ {0,1}) ﬁ > (y,- [(f) —1] — a(xz—yf))
Hellinger distance (o = 1) 2> (VX — i)
KL divergence (o — 1) > xilog(xi/yi) — xi+yi

Table 2: Expressions of some important cases of Bregman divergence

Mahalanobis distance (x—y)TA(x—y)/2
B-divergence (8 € R\ {0,1}) ﬁ Z; (x,.ﬂ — y,.ﬁ — ﬁyﬁfl(x,- — y,-))

IS divergence (8 — 0) > (log(yi/xi) + xi/yi — 1)

KL divergence (3 — 1) Zix,- log(xi/yi) — xi + yi
Squared ¢» distance (5 = 2) Ix — i3 /2
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Problem Formulation

@ Consider a loss function

{(v,W) = m ?r_} d(v||Wh).

where

HE2{heRE | <h <U,Vie[K]}.
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Problem Formulation

@ Consider a loss function

{(v,W) = m ?r_} d(v||Wh).

where

HE2{heRE | <h <U,Vie[K]}.
@ Main problem (a stochastic program)

min [F(W) £ Eyeff(v. W]

where
CE{W e R Wil > e, Wyl < U,V (i.)) € [F] x [K]}

is the constraint set on W.
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Definitions

Let X be a finite-dimensional real Banach space. Let f : X — R.

Definition (Fréchet subdifferential)

The Fréchet subdifferential at x € X, Of(x) is defined as

liminf fly) = f(x) —gly = x) 20}7
y=x,yeX ly — x|

BF(x)2 {g c X"

where X" is the topological dual space of X.
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Let X be a finite-dimensional real Banach space. Let f : X — R.

Definition (Fréchet subdifferential)

The Fréchet subdifferential at x € X, 9f(x) is defined as

lim inf fly) = f(x) —gly = x) 20}7
y=x,yeX ly — x|

Of (x) & {g e X

where X'* is the topological dual space of X.

Definition (Directional derivative)

The (Gateaux) directional derivative of f at x € X along direction d € X,
f'(x; d) is defined as

T A f(x +0d) — f(x)
f(X'd)_lgT(; 5 .

f is called directionally differentiable if f'(x; d) exists Vx € X,d € X.
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[llustration of Critical Points

x is optimal for the optimization probl. min,cx f(x) if x € X and

Vix)T(y—x)>0 VyeX

f'(x; d) is a generalization of Vf(x)"d
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Other Definitions

o Also define d; : REX¥ — R and d; : RK, — R as
de(W) £ d(v:|Wh,),

and _
de(h) £ d(v¢||W;_1h),

where {v¢, W¢, h;};cn are generated per Algorithm |.

@ Our algorithm will be defined in terms of these divergence functions

14/33



Algorithm |

Input: Initial basis matrix Wy € C, number of iterations T, sequence of
step sizes {Nt}ren (X toqme = 00 and Y72, 77? < 00)
fort =1to T do

1) Draw a data sample v; from P.

min

2) Learn the coefficient vector h; such that h; is a critical point of
7 A
min (de(h) 2 d(ve| W, 1h)| .

3) Update the basis matrix from W;_; to W;

W, = I_lc{Wtfl - nth},
where G; is any element in 53t(Wt_1).
end for

Output: Final basis matrix W
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Subroutine: Learning h;

Input: initial coefficient vector h(t) €H, basis matrix W;_1, data sample

Vs, step sizes {5{5}/@\1
Initialize kK :=0
repeat

hi =My {hi™ - Blgl}, where gf € ddi(h{™?)
ki=k+1

until some convergence criterion is met
Output: Final coefficient vector h;

16 /33



Main convergence theorem

© The support set YV C ]Rf_ . for the data generation distribution P is

compact.
@ For all (v, W)eV x C and d(-||-) € D2, d(v|Wh) is m-strongly convex

in h for some constant m > 0.
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Main convergence theorem

© The support set'V C ]R_"; . for the data generation distribution P is

compact.
@ For all (v, W)eV x C and d(-||-) € D2, d(v|Wh) is m-strongly convex
in h for some constant m > 0.

Theorem

As t — oo, the sequence of dictionaries {W;}cn converges almost surely
to the set of critical points of

Vr‘\r}é% |:f(W) £ EVNP[K(V7 W)]:|

formulated with any divergence in D, (convex class).
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Proof Ideas

@ The following update of the basis matrix is at the core of our
algorithm:

W, — nc{wt_1 - nth}-

18/33



Proof Ideas

@ The following update of the basis matrix is at the core of our
algorithm:

W, — nc{wt_1 - nth}.

@ Model the projection ¢ as an additive noise term Ny:
W; =W 1 —n:VF(W:_1) — n:N¢ + 0 Zs,
where

1 ~
Z; £ ;nc{Wt_l - ntvwg(vtawt—l)}
t

1 ~
- E{Wt—l - Utvwf(vt,wt—l)}-

18/33



Proof Ideas

@ The following update of the basis matrix is at the core of our
algorithm:

W, — nc{wt_1 - nth}.

@ Model the projection ¢ as an additive noise term Ny:
W; =W 1 —n:VF(W:_1) — n:N¢ + 0 Zs,
where

1 ~
Z; £ ;nC{Wt—l - ntvwﬁ(vt,Wt—l)}
t

1 -
- E{Wt—l - Utvwf(vt,wt—l)}-

@ Perform a continuous-time interpolation
Wi(s) = WE(0) + F'1(s) + N*1(s) + Z71(s).
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lllustration of Continuous-Time Interpolation

Zt(w, s)
N1 Ze41(w)
ne+2Lt42(w)
0 Ne+1 ' Me+2 ' Nt4+3 I7it+4 IT]t—l—F}I

Figure 1: Plot of Z*(w,-) on Ry for some w € Q.

S
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Key Lemmas

Lemma (Almost sure convergence to the limit set)

The stochastic process {W;}+cn generated by the algorithm converges

almost surely to L(—Vf,C,Wy), the limit set of the following projected
dynamical system

%W(s) — e [W(s). ~VF(W(s))], W(0) =Wo, s> 0.
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Key Lemmas

Lemma (Almost sure convergence to the limit set)

The stochastic process {W;}+cn generated by the algorithm converges
almost surely to L(—Vf,C,Wy), the limit set of the following projected
dynamical system

d

T W(s) =mc (W(s), ~VF(W(s))|, W(0)=Wo, s>0.

Lemma (Characterization of the limit set)

In the above dynamical system, L(—Vf,C,Wy) C S(—Vf,C), i.e., every
limit point is a stationary point associated with —Vf and C. Moreover,
each W € S(—Vf,C) satisfies

(VF(W),W —W) >0, YW €.

This implies each stationary point in S(—Vf,C) is a critical point.

4
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Applications and Experiments

@ Focus on six important divergences from D1 U D,: IS, KL, squared-£5,
Huber, fl, Ez.
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Applications and Experiments

@ Focus on six important divergences from D1 U D,: IS, KL, squared-£5,
Huber, fl, 52.

@ Test our online algorithms with all the six divergences on a synthetic
dataset.

@ Test our online algorithm with the KL-divergence on topic modeling
and document clustering.

@ Test our online algorithm with the Huber loss on a
foreground-background separation task.
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Heuristics and Parameter Settings

@ Heuristics: mini-batch input and multi-pass extension.
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Heuristics and Parameter Settings

@ Heuristics: mini-batch input and multi-pass extension.

o Parameters:

o The mini-batch size 7 = 20.

o The step size
a

T bt

Nt

where a = b =1 x 10%.
e The latent dimension K was determined from the domain knowledge or
fixed to 40.
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Heuristics and Parameter Settings

@ Heuristics: mini-batch input and multi-pass extension.

@ Parameters:
o The mini-batch size 7 = 20.

o The step size
a

T bt

Nt
where a = b =1 x 10%.
e The latent dimension K was determined from the domain knowledge or

fixed to 40.

@ Our algorithms are insensitive to the value of these parameters.
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Synthetic Dataset
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Synthetic Dataset
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Topic Learning |

K was set to the number of topics in the dataset.

Experiments were run using 20 initializations of W.

Application of our online algorithm with KL-divergence.

Topic learned from the columns of W (basis vectors).

Two datasets: Guardian (10801 x 5413, five topics) and Wikipedia
(17311 x 5738, six topics).

Table 3: Topics learned from the Guardian dataset by three algorithms: OL-KL,
B-KL and OL-Wang?2.

Business| Politics |Music|Fashion| Football
company| labour | music | fashion | league
sales ultimately |album| wonder club

market party band | weaves |universally

shares |government|songs | week welsh

business unions |vogue| war team
(a) oL-KL

25 /33



Topic Learning Il

Business | Politics |Music|Fashion| Football
bank labour | music | fashion | league
company | party |album|wonder club
ultimately| cameron | band | weaves |universally
growth |ultimately|vogue| week team
market unions |songs | look welsh
(b) B-KL
Business| Politics |Music|Fashion| Football
bank labour | music | fashion | league
growth party |album| week club

shares unions | band | wonder | welsh
company | miliband | vogue | weaves | season
market |voluntary|songs| war |universally

(C) OL-Wang2

26 /33



Document clustering

Simple clustering rule: we assign the j-th document to the k-th topic if

k € arg max hy;.
k'€[K]
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Document clustering

Simple clustering rule: we assign the j-th document to the k-th topic if
k € arg max hy;.

k'€[K]

Table 4: Average document clustering accuracies and running times of OL-KL,
B-KL and OL-Wang2 on the Guardian dataset.

Algorithms Accuracy Time (s)
OL-KL 0.697 + 0.01 | 29.25 £ 0.58
B-KL 0.701 £ 0.01 | 183.32 £+ 2.09

OL-Wang2 | 0.643 + 0.03 | 32.46 + 0.68
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Foreground-Background Separation |

@ K was set to 40.

Experiments were run using 20 initializations of W.

Application of our online algorithm with Huber loss.

Background in the t-th frame reconstructed as Wh;, foreground
obtained by subtraction.

Two datasets: Hall (25344 x 1250) and Wikipedia (20800 x 2000).

28 /33



Foreground-Background Separation |l

=S

ES

(e)
Figure 2: Foreground-background separation results on the Hall dataset with four algorithms: (a) OL-Huber,
(b) OL-Wang, (c) B-Huber and (d) OL-Guan. The leftmost column shows the original video frames.

QR
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Foreground-Background Separation Il

(d) OL-Guan. The leftmost column shows the original video frames.

Fig 5-4. Additional foreground-background separation results on the Ea1l dataset with four algorithms: (a) OL-Huber. (b) OL-Wang. (c) B-Huber and




Foreground-Background Separation 1V

| E d“:r\‘%

ator dataset with four algorithms: (a) OL-Huber. (b) OL-Wang, (c) B-Huber and (d)




Table 5: Average running times of OL-Huber, OL-Wang, B-Huber and OL-Guan

on the Hall dataset.

Algorithms| Time (s) |Algorithms| Time (s)
OL-Huber | 38.79 £ 0.45 | OL-Wang |45.36 + 0.59
B-Huber [276.66 + 1.93| OL-Guan |95.85 + 0.82

Table 6: Running times of OL-Huber, OL-Wang, B-Huber and OL-Guan on the

Escalator dataset.

Algorithms Time (s) Algorithms Time (s)
OL-Huber | 63.35 £ 0.74 OL-Wang | 71.73 £ 0.97
B-Huber 375.22 £ 2.48 | OL-Guan | 127.12 +£1.35

32/33



Conclusion

@ Proposed a general framework for doing online NMF with general
divergences

@ Proved that the sequence of iterates converges to the set of critical
points

o Validated the algorithm on several real datasets

o Please visit https://arxiv.org/abs/1608.00075 for more details
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