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Nonnegative Matrix Factorization (NMF)

Given a data matrix V ≥ 0, find basis matrix W ≥ 0 and a
nonnegative coefficient matrix H ≥ 0 such that

V ≈WH,

by solving a nonconvex problem

min
W≥0,H≥0

[
D(V‖WH) ,

N∑
n=1

d(vn‖Whn)
]

The non-subtractive, parts-based basis representation makes it
attractive for data analysis.
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Nonnegative Matrix Factorization (NMF)

NMF provides an unsupervised linear representation of data

V ≈WH

Other methods include
Principal component analysis (PCA)
Independent component analysis (ICA)

Nonnegative matrices W and H are both learned from the set of data
vectors V = [v1, . . . , vn, . . . , vN ]

Nonnegativity of W ensures interpretability of dictionary
Nonnegativity of H tends to produce parts-based representations
because subtractive combinations are forbidden
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49 images among 2429 from MIT’s CBCL face dataset
Generalities about NMF Itakura-Saito NMF Variants Concept of NMF Measure of fit Algorithms

49 images among 2429 from MIT’s CBCL face dataset

Cédric Févotte (CNRS) Itakura-Saito nonnegative matrix factorization
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PCA dictionary with K = 25
Generalities about NMF Itakura-Saito NMF Variants Concept of NMF Measure of fit Algorithms

PCA dictionary with K = 25

red pixels indicate negative values

Cédric Févotte (CNRS) Itakura-Saito nonnegative matrix factorizationRed pixels indicate negative values
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NMF dictionary with K = 25
Generalities about NMF Itakura-Saito NMF Variants Concept of NMF Measure of fit Algorithms

NMF dictionary with K = 25

as shown in (Lee and Seung, 1999)

Cédric Févotte (CNRS) Itakura-Saito nonnegative matrix factorizationFrom Lee and Seung’s seminal 1999 paper on NMF
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Motivation

NMF algorithms with squared-`2 loss have limited applications.
When the observation noise is non-Gaussian, other divergence should
be used for purpose of ML estimation.
When outliers exist in the data matrix V, robust loss functions should
be used.

In Batch NMF, the entire data matrix V is available all at once.
Algorithms have been proposed for many divergences, but not suitable
for large-scale data.

In Online NMF, data points vn arrive sequentially.
Algorithms developed so far are mainly confined to the squared-`2
loss. Exceptions include some ad hoc works that

1 have no convergence guarantees;
2 are not easily generalizable

How to develop an online NMF algorithm that is applicable to a wide
variety of divergences?
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Challenges and Contributions

Many online NMF algorithms (with the squared-`2 loss) leverage the
stochastic majorization-minimization framework.

This framework crucially relies on that some sufficient statistics can
be formed, but this condition does not hold for most divergences
other than the squared-`2 loss.

We leverage another framework called stochastic approximation
framework to develop an online NMF algorithm that is applicable to a
wide variety of divergences.
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Divergences in Consideration

In this work, we consider a wide range of divergences D , D1 ∪ D2, where

D1 , {d(·‖·) | ∀ x ∈ RF
++, d(x‖·) is differentiable on RF

++}.

and

D2 , {d(·‖·) | ∀ x ∈ RF
++, d(x‖·) is convex on RF

++}.
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Examples of Divergences

D1 contains the families of α, β, α-β and γ divergences;
D2 contains the α-divergences, β-divergences with β ∈ [1, 2], several
robust metrics including `1, `2 and Huber loss

Table 1: Expressions of some important cases of Csiszár f -divergence

`1 distance
∑

i |xi − yi |
α-divergence (α ∈ R \ {0, 1}) 1

α(α−1)
∑

i

(
yi
[( xi

yi

)α−1
]
− α(xi−yi)

)
Hellinger distance (α = 1

2 ) 2
∑

i(
√xi −

√yi)2

KL divergence (α→ 1)
∑

i xi log(xi/yi)− xi + yi

Table 2: Expressions of some important cases of Bregman divergence

Mahalanobis distance (x− y)T A(x− y)/2
β-divergence (β ∈ R \ {0, 1}) 1

β(β−1)
∑

i

(
xβ

i − yβ
i − βyβ−1

i (xi − yi)
)

IS divergence (β → 0)
∑

i (log(yi/xi) + xi/yi − 1)
KL divergence (β → 1)

∑
i xi log(xi/yi)− xi + yi

Squared `2 distance (β = 2) ‖x− y‖2
2 /2
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Problem Formulation

Consider a loss function

`(v,W) , min
h∈H

d(v‖Wh).

where
H , {h ∈ RK

+ | ε′ ≤ hi ≤ U ′, ∀ i ∈ [K ]}.

Main problem (a stochastic program)

min
W∈C

[
f (W) , Ev∼P[`(v,W)]

]
,

where

C , {W ∈ RF×K
+ | ‖Wi :‖1 ≥ ε, ‖W:j‖∞ ≤ U,∀ (i , j) ∈ [F ]× [K ]}

is the constraint set on W.
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Definitions
Let X be a finite-dimensional real Banach space. Let f : X → R.

Definition (Fréchet subdifferential)
The Fréchet subdifferential at x ∈ X , ∂̂f (x) is defined as

∂̂f (x),
{

g ∈ X ∗
∣∣∣ lim inf
y→x ,y∈X

f (y)− f (x)− g(y − x)
‖y − x‖ ≥0

}
,

where X ∗ is the topological dual space of X .

Definition (Directional derivative)
The (Gâteaux) directional derivative of f at x ∈ X along direction d ∈ X ,
f ′(x ; d) is defined as

f ′(x ; d) , lim
δ↓0

f (x + δd)− f (x)
δ

.

f is called directionally differentiable if f ′(x ; d) exists ∀ x ∈ X , d ∈ X .

Definition (Critical point)
Assume f to be directionally differentiable on X . Let K ⊆ X be a convex
set. A point x∗ ∈ K is a critical point of the constrained optimization
problem minx∈K f (x) if f ′(x∗; x − x∗) ≥ 0, ∀ x ∈ K.
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Illustration of Critical Points
x is optimal for the optimization probl. minx∈X f (x) if x ∈ X and

∇f (x)T (y − x) ≥ 0 ∀ y ∈ X

f ′(x ; d) is a generalization of ∇f (x)T d
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Other Definitions

Also define d̃t : RF×K
++ → R and d̄t : RK

++ → R as

d̃t(W) , d(vt‖Wht),

and
d̄t(h) , d(vt‖Wt−1h),

where {vt ,Wt ,ht}t∈N are generated per Algorithm I.

Our algorithm will be defined in terms of these divergence functions

14 / 33



Algorithm I

Input: Initial basis matrix W0 ∈ C, number of iterations T , sequence of
step sizes {ηt}t∈N (

∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <∞)

for t = 1 to T do
1) Draw a data sample vt from P.
2) Learn the coefficient vector ht such that ht is a critical point of

min
h∈H

[
d̄t(h) , d(vt‖Wt−1h)

]
.

3) Update the basis matrix from Wt−1 to Wt

Wt := ΠC
{

Wt−1 − ηtGt
}
,

where Gt is any element in ∂̂d̃t(Wt−1).
end for
Output: Final basis matrix WT

15 / 33



Subroutine: Learning ht

Input: initial coefficient vector h0
t ∈H, basis matrix Wt−1, data sample

vt , step sizes {βk
t }k∈N

Initialize k := 0
repeat

hk
t := ΠH

{
hk−1

t − βk
t gk

t

}
, where gk

t ∈ ∂̂d̄t(hk−1
t )

k := k + 1

until some convergence criterion is met
Output: Final coefficient vector ht

16 / 33



Main convergence theorem

Assumptions
1 The support set V ⊆ RF

++ for the data generation distribution P is
compact.

2 For all (v,W)∈V × C and d(·‖·)∈D2, d(v‖Wh) is m-strongly convex
in h for some constant m > 0.

Theorem

As t →∞, the sequence of dictionaries {Wt}t∈N converges almost surely
to the set of critical points of

min
W∈C

[
f (W) , Ev∼P[`(v,W)]

]
formulated with any divergence in D2 (convex class).
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Proof Ideas

The following update of the basis matrix is at the core of our
algorithm:

Wt := ΠC
{

Wt−1 − ηtGt
}
.

Model the projection ΠC as an additive noise term Nt :

Wt := Wt−1 − ηt∇f (Wt−1)− ηtNt + ηtZt ,

where

Zt ,
1
ηt

ΠC
{

Wt−1 − ηt∇W ˜̀(vt ,Wt−1)
}

− 1
ηt

{
Wt−1 − ηt∇W ˜̀(vt ,Wt−1)

}
.

Perform a continuous-time interpolation

Wt(s) = Wt(0) + Ft−1(s) + Nt−1(s) + Zt−1(s).
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Illustration of Continuous-Time Interpolation

Figure 1: Plot of Z t(ω, ·) on R+ for some ω ∈ Ω.
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Key Lemmas

Lemma (Almost sure convergence to the limit set)

The stochastic process {Wt}t∈N generated by the algorithm converges
almost surely to L(−∇f , C,W0), the limit set of the following projected
dynamical system

d
ds W(s) = πC

[
W(s),−∇f (W(s))

]
, W(0) = W0, s ≥ 0.

Lemma (Characterization of the limit set)

In the above dynamical system, L(−∇f , C,W0) ⊆ S(−∇f , C), i.e., every
limit point is a stationary point associated with −∇f and C. Moreover,
each W ∈ S(−∇f , C) satisfies

〈∇f (W),W′ −W〉 ≥ 0, ∀W′ ∈ C.

This implies each stationary point in S(−∇f , C) is a critical point.
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Applications and Experiments

Focus on six important divergences from D1 ∪D2: IS, KL, squared-`2,
Huber, `1, `2.

Test our online algorithms with all the six divergences on a synthetic
dataset.

Test our online algorithm with the KL-divergence on topic modeling
and document clustering.

Test our online algorithm with the Huber loss on a
foreground-background separation task.
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Heuristics and Parameter Settings

Heuristics: mini-batch input and multi-pass extension.

Parameters:
The mini-batch size τ = 20.
The step size

ηt = a
b + τ t ,

where a = b = 1× 104.
The latent dimension K was determined from the domain knowledge or
fixed to 40.

Our algorithms are insensitive to the value of these parameters.
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Synthetic Dataset
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Synthetic Dataset
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Topic Learning I

K was set to the number of topics in the dataset.
Experiments were run using 20 initializations of W0.
Application of our online algorithm with KL-divergence.
Topic learned from the columns of W (basis vectors).
Two datasets: Guardian (10801× 5413, five topics) and Wikipedia
(17311× 5738, six topics).

Table 3: Topics learned from the Guardian dataset by three algorithms: OL-KL,
B-KL and OL-Wang2.

Business Politics Music Fashion Football
company labour music fashion league

sales ultimately album wonder club
market party band weaves universally
shares government songs week welsh

business unions vogue war team
(a) OL-KL
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Topic Learning II

Business Politics Music Fashion Football
bank labour music fashion league

company party album wonder club
ultimately cameron band weaves universally

growth ultimately vogue week team
market unions songs look welsh

(b) B-KL

Business Politics Music Fashion Football
bank labour music fashion league

growth party album week club
shares unions band wonder welsh

company miliband vogue weaves season
market voluntary songs war universally

(c) OL-Wang2
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Document clustering

Simple clustering rule: we assign the j-th document to the k-th topic if

k ∈ arg max
k′∈[K ]

hk′j .

Table 4: Average document clustering accuracies and running times of OL-KL,
B-KL and OL-Wang2 on the Guardian dataset.

Algorithms Accuracy Time (s)
OL-KL 0.697 ± 0.01 29.25 ± 0.58
B-KL 0.701 ± 0.01 183.32 ± 2.09

OL-Wang2 0.643 ± 0.03 32.46 ± 0.68
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Foreground-Background Separation I

K was set to 40.
Experiments were run using 20 initializations of W0.
Application of our online algorithm with Huber loss.
Background in the t-th frame reconstructed as Wht , foreground
obtained by subtraction.
Two datasets: Hall (25344× 1250) and Wikipedia (20800× 2000).
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Foreground-Background Separation II
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Foreground-Background Separation III
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Foreground-Background Separation IV
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Running times

Table 5: Average running times of OL-Huber, OL-Wang, B-Huber and OL-Guan
on the Hall dataset.

Algorithms Time (s) Algorithms Time (s)
OL-Huber 38.79 ± 0.45 OL-Wang 45.36 ± 0.59
B-Huber 276.66 ± 1.93 OL-Guan 95.85 ± 0.82

Table 6: Running times of OL-Huber, OL-Wang, B-Huber and OL-Guan on the
Escalator dataset.

Algorithms Time (s) Algorithms Time (s)
OL-Huber 63.35 ± 0.74 OL-Wang 71.73 ± 0.97
B-Huber 375.22 ± 2.48 OL-Guan 127.12 ± 1.35
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Conclusion

Proposed a general framework for doing online NMF with general
divergences

Proved that the sequence of iterates converges to the set of critical
points

Validated the algorithm on several real datasets

Please visit https://arxiv.org/abs/1608.00075 for more details
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